Catecholamines Induce Left Ventricular Subclinical Systolic Dysfunction: A Speckle-Tracking Echocardiography Study
Abstract
:1. Introduction
2. Results
2.1. Characteristic of Groups
2.2. Laboratory Results
2.3. Echocardiography Parameters
3. Discussion
4. Materials and Methods
4.1. BP Measurement
4.2. Laboratory
4.3. Echocardiography
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pacak, K.; Keiser, H.R.; Eisenhofer, G. Pheochromocytoma. In Endocrinology, 5th ed.; DeGroot, L.J., Jamenson, J.L., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2006; pp. 2501–2534. [Google Scholar]
- Ariton, M.; Juan, C.S.; AvRuskin, T.W. Pheochromocytoma: Clinical observations from a Brooklyn tertiary hospital. Endocr. Pract. 2000, 6, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Omura, M.; Saito, J.; Yamaguchi, K.; Kakuta, Y.; Nishikawa, T. Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan. Hypertens. Res. 2004, 27, 193–202. [Google Scholar] [PubMed]
- Lenders, J.W.; Eisenhofer, G.; Mannelli, M.; Pacak, K. Phaeochromocytoma. Lancet 2005, 366, 665–675. [Google Scholar] [CrossRef]
- Berends, A.M.A.; Buitenwerf, E.; de Krijger, R.R.; Veeger, N.; van der Horst-Schrivers, A.N.A.; Links, T.P.; Kerstens, M.N. Incidence of pheochromocytoma and sympathetic paraganglioma in the Netherlands: A nationwide study and systematic review. Eur. J. Intern. Med. 2018, 51, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Zelinka, T.; Eisenhofer, G.; Pacak, K. Pheochromocytoma as a catecholamine producing tumor: Implications for clinical practice. Stress 2007, 10, 195–203. [Google Scholar] [PubMed]
- Zhang, H.; Faber, J.E. Trophic effect of norepinephrine on arterial intima-media and adventitia is augmented by injury and mediated by different alpha1-adrenoceptor subtypes. Circ. Res. 2001, 89, 815–822. [Google Scholar] [PubMed]
- Nakaki, T.; Nakayama, M.; Yamamoto, S.; Kato, R. Alpha 1-adrenergic stimulation and beta 2-adrenergic inhibition of DNA synthesis in vascular smooth muscle cells. Mol. Pharm. 1990, 37, 30–36. [Google Scholar]
- Zelinka, T.; Petrák, O.; Turková, H.; Holaj, R.; Štrauch, B.; Kršek, M.; Vrankova, A.B.; Musil, Z.; Dušková, J.; Kubinyi, J.; et al. High incidence of cardiovascular complications in pheochromocytoma. Horm. Metab. Res. 2012, 44, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, K.S.; Sul, J.Y.; Shin, S.K.; Kim, J.H.; Lee, J.H.; Choi, S.W.; Jeong, J.O.; Seong, I.W. Prevalence and patterns of left ventricular dysfunction in patients with pheochromocytoma. J. Cardiovasc. Ultrasound 2011, 19, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Majtan, B.; Zelinka, T.; Rosa, J.; Petrák, O.; Kratka, Z.; Štrauch, B.; Tuka, V.; Vránková, A.; Michalský, D.; Novák, K.; et al. Long-Term Effect of Adrenalectomy on Cardiovascular Remodeling in Patients With Pheochromocytoma. J. Clin. Endocrinol. Metab. 2017, 102, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Kalam, K.; Otahal, P.; Marwick, T.H. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 2014, 100, 1673–1680. [Google Scholar] [PubMed]
- Smiseth, O.A.; Torp, H.; Opdahl, A.; Haugaa, K.H.; Urheim, S. Myocardial strain imaging: How useful is it in clinical decision making? Eur. Heart J. 2016, 37, 1196–1207. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.P.; Stewart, W.J.; Yang, X.S.; Donnell, R.O.; Leon, A.R.; Felner, J.M.; Thomas, J.D.; Merlino, J.D. Differentiation of hypertrophic cardiomyopathy and cardiac amyloidosis from other causes of ventricular wall thickening by two-dimensional strain imaging echocardiography. Am. J. Cardiol. 2009, 103, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.W.; Huang, K.C.; Lee, J.K.; Lin, L.C.; Chen, C.W.; Chang, Y.Y.; Liao, C.W.; Wu, V.C.; Hung, C.S.; Lin, Y.H. Aldosterone induces left ventricular subclinical systolic dysfunction: A strain imaging study. J. Hypertens. 2017, 36, 353–360. [Google Scholar]
- Plana, J.C.; Galderisi, M.; Barac, A.; Ewer, M.S.; Ky, B.; Scherrer-Crosbie, M.; Ganame, J.; Sebag, I.A.; Agler, D.A.; Badano, L.P.; et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2014, 27, 911–939. [Google Scholar] [PubMed]
- Park, K.; Chang, S.A.; Kim, H.K.; Park, H.E.; Na, S.H.; Kim, Y.J.; Sohn, D.W.; Oh, B.H.; Park, Y.B. Normal ranges and physiological changes of midwall fractional shortening in healthy korean population. Korean Circ. J. 2010, 40, 587–592. [Google Scholar] [PubMed]
- Krzesinski, P.; Uzieblo-Zyczkowska, B.; Gielerak, G.; Stanczyk, A.; Kurpaska, M.; Piotrowicz, K. Global longitudinal two-dimensional systolic strain is associated with hemodynamic alterations in arterial hypertension. J. Am. Soc. Hypertens. JASH 2015, 9, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Mayet, J.; Ariff, B.; Wasan, B.; Chapman, N.; Shahi, M.; Senior, R.; Foale, R.A.; Thom, S.A. Midwall myocardial shortening in athletic left ventricular hypertrophy. Int. J. Cardiol. 2002, 86, 233–238. [Google Scholar] [PubMed]
- Kouzu, H.; Yuda, S.; Muranaka, A.; Doi, T.; Yamamoto, H.; Shimoshige, S.; Hase, M.; Hashimoto, A.; Saitoh, S.; Tsuchihashi, K.; et al. Left ventricular hypertrophy causes different changes in longitudinal, radial, and circumferential mechanics in patients with hypertension: A two-dimensional speckle tracking study. J. Am. Soc. Echocardiogr. 2011, 24, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Ishizu, T.; Seo, Y.; Kameda, Y.; Kawamura, R.; Kimura, T.; Shimojo, N.; Xu, D.; Murakoshi, N.; Aonuma, K. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease. Hypertension 2014, 63, 500–506. [Google Scholar] [PubMed]
- Galetta, F.; Franzoni, F.; Bernini, G.; Poupak, F.; Carpi, A.; Cini, G.; Tocchini, L.; Antonelli, A.; Santoro, G. Cardiovascular complications in patients with pheochromocytoma: A mini-review. Biomed. Pharm. 2010, 64, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.D.; Grignolo, A.; Kuhn, C.M.; Schanberg, S.M. Hypertension and cardiovascular hypertrophy during chronic catecholamine infusion in rats. Life Sci. 1983, 33, 169–180. [Google Scholar] [PubMed]
- Ferreira, V.M.; Marcelino, M.; Piechnik, S.K.; Marini, C.; Karamitsos, T.D.; Ntusi, N.A.; Francis, J.M.; Robson, M.D.; Arnold, J.R.; Mihai, R.; et al. Pheochromocytoma Is Characterized by Catecholamine-Mediated Myocarditis, Focal and Diffuse Myocardial Fibrosis, and Myocardial Dysfunction. J. Am. Coll. Cardiol. 2016, 67, 2364–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Miguel, V.; Arias, A.; Paissan, A.; de Arenaza, D.P.; Pietrani, M.; Jurado, A.; Jaén, A.; Day, P.F. Catecholamine-induced myocarditis in pheochromocytoma. Circulation 2014, 129, 1348–1349. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; Rees, P.S.; Prasad, S.; Poole-Wilson, P.A.; Harding, S.E. Stress (Takotsubo) cardiomyopathy—A novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat. Clin. Pract. Cardiovasc. Med. 2008, 5, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.L.; Chen, P.C.; Lee, C.C.; Chua, S.K. Adrenal pheochromocytoma presenting with Takotsubo-pattern cardiomyopathy and acute heart failure: A case report and literature review. Medicine 2016, 95, e4846. [Google Scholar] [CrossRef] [PubMed]
- Tafreshi, S.; Naqvi, S.Y.; Thomas, S. Extra-adrenal pheochromocytoma presenting as inverse takotsubo-pattern cardiomyopathy treated with surgical resection. BMJ Case Rep. 2018, 11, e226384. [Google Scholar] [PubMed]
- Brilakis, E.S.; Young, W.F., Jr.; Wilson, J.W.; Thompson, G.B.; Munger, T.M. Reversible catecholamine-induced cardiomyopathy in a heart transplant candidate without persistent or paroxysmal hypertension. J. Heart Lung Transplant. 1999, 18, 376–380. [Google Scholar] [CrossRef]
- Thavendiranathan, P.; Poulin, F.; Lim, K.D.; Plana, J.C.; Woo, A.; Marwick, T.H. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: A systematic review. J. Am. Coll. Cardiol. 2014, 63, 2751–2768. [Google Scholar] [PubMed]
- Turnbull, D.M.; Johnston, D.G.; Alberti, K.G.; Hall, R. Hormonal and metabolic studies in a patient with a pheochromocytoma. J. Clin. Endocrinol. Metab. 1980, 51, 930–933. [Google Scholar] [PubMed]
- Holland, D.J.; Marwick, T.H.; Haluska, B.A.; Leano, R.; Hordern, M.D.; Hare, J.L.; Fang, Z.Y.; Prins, J.B.; Stanton, T. Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart 2015, 101, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Hoogslag, G.E.; Abou, R.; Joyce, E.; Boden, H.; Kamperidis, V.; Regeer, M.V.; van Rosendael, P.J.; Schalij, M.J.; Bax, J.J.; Marsan, N.A.; et al. Comparison of Changes in Global Longitudinal Peak Systolic Strain After ST-Segment Elevation Myocardial Infarction in Patients With Versus Without Diabetes Mellitus. Am. J. Cardiol. 2015, 116, 1334–1339. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Nam, B.H.; Wilson, P.W.; Wolf, P.A.; Levy, D.; Polak, J.F.; D’agostino, R.B.; O’donnell, C.J. Association of C-reactive protein with carotid atherosclerosis in men and women: The Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1662–1667. [Google Scholar] [CrossRef] [PubMed]
- Magyar, M.T.; Szikszai, Z.; Balla, J.; Valikovics, A.; Kappelmayer, J.; Imre, S.; Balla, G.; Jeney, V.; Csiba, L.; Bereczki, D. Early-onset carotid atherosclerosis is associated with increased intima-media thickness and elevated serum levels of inflammatory markers. Stroke J. Cereb. Circ. 2003, 34, 58–63. [Google Scholar] [CrossRef]
- Zelinka, T.; Petrák, O.; Štrauch, B.; Holaj, R.; Kvasnička, J.; Mazoch, J.; Pacak, K.; Widimský, J., Jr. Elevated inflammation markers in pheochromocytoma compared to other forms of hypertension. Neuroimmunomodulation 2007, 14, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, F.; Corredor, C.; Fletcher, N.; Tritapepe, L.; Lorini, F.L.; Arcadipane, A.; Vieillard-Baron, A.; Cecconi, M. Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: A systematic review and meta-analysis. Crit. Care 2018, 22, 183. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Boehm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 2013, 31, 1281–1357. [Google Scholar] [CrossRef] [PubMed]
- Force IDFCGT. Global Guideline for Type 2 Diabetes: Recommendations for standard, comprehensive, and minimal care. Diabet. Med. 2006, 23, 579–593. [Google Scholar]
- Graham, I.; Atar, D.; Borch-Johnsen, K.; Boysen, G.; Burell, G.; Cifkova, R.; Dallongeville, J.; De Backer, G.; Ebrahim, S.; Gjelsvik, B.; et al. European guidelines on cardiovascular disease prevention in clinical practice: Executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine societies and by invited experts). Eur. Heart J. 2007, 28, 2375–2414. [Google Scholar] [PubMed]
- Lenders, J.W.; Eisenhofer, G.; Armando, I.; Keiser, H.R.; Goldstein, D.S.; Kopin, I.J. Determination of metanephrines in plasma by liquid chromatography with electrochemical detection. Clin. Chem. 1993, 39, 97–103. [Google Scholar] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I.; Reichek, N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [PubMed]
- Mor-Avi, V.; Lang, R.M.; Badano, L.P.; Belohlavek, M.; Cardim, N.M.; Derumeaux, G.; Galderisi, M.; Marwick, T.; Nagueh, S.F.; Sengupta, P.P.; et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur. J. Echocardiogr. 2011, 12, 167–205. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Daraban, A.M.; Unlu, S.; Thomas, J.D.; Badano, L.P.; Voigt, J.U. Head-to-Head Comparison of Global Longitudinal Strain Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study. J. Am. Soc. Echocardiogr. 2015, 28, 1171–1181.e2. [Google Scholar] [CrossRef] [PubMed]
Clinical Characteristic | PHEO (n = 17) | EH (n = 18) | p-Value |
---|---|---|---|
Age (years) | 50 ± 11 | 49 ± 6 | NS |
Gender: F/M (% female) | 10/7 (58%) | 9/9 (50%) | NS |
Height (cm) | 170 ± 8 | 173 ± 7 | NS |
Weight (kg) | 82 ± 14 | 88 ± 11 | NS |
Body mass index (kg/m2) | 29 ± 5 | 30 ± 4 | NS |
Systolic office BP (mmHg) | 141 ± 13 | 140 ± 8 | NS |
Diastolic office BP (mmHg) | 88 ± 6 | 89 ± 5 | NS |
Heart Rate office (BPM) | 81 ± 9 | 74 ± 8 | NS |
24 h ABPM systolic BP (mmHg) | 127 ± 9 | 132 ± 8 | NS |
24 h ABPM diastolic BP (mmHg) | 76 ± 7 | 80 ± 5 | NS |
24 h ABPM Heart Rate (BPM) | 77 ± 10 | 71 ± 6 | NS |
Number of used antihypertensive drugs | 1.5 ± 1.1 | 3.6 ± 1.4 | <0.001 |
Manifestation of symptoms (years) | 5.8 ± 3.4 | 6.7 ± 3.6 | NS |
Antihypertensive, Antidiabetic and Lipid-Lowering Drugs | PHEO (n = 17) | EH (n = 18) | p-Value |
---|---|---|---|
Diuretics [n (%)] | 3 (18) | 10 (56) | <0.05 |
β-blockers [n (%)] | 3 (18) | 11 (61) | <0.01 |
Calcium channel blockers [n (%)] | 5 (29) | 14 (78) | <0.01 |
Angiotensin-converting enzyme inhibitors [n (%)] | 5 (29) | 10 (56) | NS |
Angiotensin receptor blockers [n (%)] | 2 (12) | 7 (39) | NS |
α-blockers [n (%)] | 4 (24) | 2 (11) | NS |
Central agonists [n (%)] | 3 (18) | 6 (33) | NS |
Aldosterone antagonists [n (%)] | 1 (6) | 4 (22) | NS |
Statins [n (%)] | 7 (41) | 7 (39) | NS |
Insulin [n (%)] | 2 (12) | 0 (0) | NS |
Oral antidiabetic drugs [n (%)] | 3 (18) | 0 (0) | NS |
Laboratory Data | PHEO (n = 17) | EH (n = 18) | p-Value |
---|---|---|---|
Plasma creatinine (µmol/L) | 69 ± 12 | 75 ± 12 | NS |
Creatinine clearance (mL/min) | 135 ± 34 | 119 ± 25 | NS |
Plasma cholesterol (mmol/L) | 4.4 ± 0.5 | 4.8 ± 0.5 | NS |
HDL cholesterol (mmol/L) | 1.5 ± 0.3 | 1.5 ± 0.3 | NS |
LDL cholesterol (mmol/L) | 2.4 ± 0.5 | 2.5 ± 0.5 | NS |
Triglycerides (mmol/L) | 1.2 ± 0.5 | 1.4 ± 0.5 | NS |
Fasting plasma glucose (mmol/L) | 6.0 ± 0.9 | 5.2 ± 0.5 | <0.05 |
Plasma metanephrines (nmol/L) | 4.87 ± 4.30 | 0.16 ± 0.09 | <0.01 |
Plasma normetanephrines (nmol/L) | 13.65 ± 13.80 | 0.27 ± 0.12 | <0.05 |
Echocardiographic Parameters | PHEO (n = 17) | EH (n = 18) | p-Value |
---|---|---|---|
IVS (mm) | 9.7 ± 1.6 | 9.6 ± 1.1 | NS |
LVED (mm) | 49.6 ± 4.7 | 49.3 ± 3.1 | NS |
LVES (mm) | 30.3 ± 2.6 | 29.1 ± 2.9 | NS |
PWT (mm) | 9.6 ± 1.6 | 9.8 ± 1.1 | NS |
RWT | 0.39 ± 0.05 | 0.40 ± 0.05 | NS |
LA (mm) | 38.2 ± 5.1 | 37.0 ± 2.9 | NS |
LVMi/BSA (g/m2) | 91.2 ± 23.3 | 86.4 ± 16.2 | NS |
LVMi (g/m2.7) | 42.2 ± 12.1 | 40.3 ± 9.1 | NS |
LVEF | 0.69 ± 0.04 | 0.71 ± 0.05 | NS |
E/A | 1.04 ± 0.30 | 1.06 ± 0.25 | NS |
E/e’ | 8.5 ± 1.9 | 8.9 ± 1.6 | NS |
Longitudinal Strain Parameters | PHEO (n = 17) | EH (n = 18) | p-Value |
---|---|---|---|
Global LS (%) | −14.8 ± 1.5 | −17.8 ± 1.7 | <0.001 |
Basal LV LS (%) | −14.8 ± 2.1 | −17.3 ± 2.3 | <0.05 |
Mid-ventricular LV LS (%) | −15.7 ± 1.9 | −18.9 ± 2.1 | <0.001 |
Apical LV LS (%) | −16.1 ± 2.6 | −19.9 ± 3.9 | <0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kvasnička, J.; Zelinka, T.; Petrák, O.; Rosa, J.; Štrauch, B.; Krátká, Z.; Indra, T.; Markvartová, A.; Widimský, J., Jr.; Holaj, R. Catecholamines Induce Left Ventricular Subclinical Systolic Dysfunction: A Speckle-Tracking Echocardiography Study. Cancers 2019, 11, 318. https://doi.org/10.3390/cancers11030318
Kvasnička J, Zelinka T, Petrák O, Rosa J, Štrauch B, Krátká Z, Indra T, Markvartová A, Widimský J Jr., Holaj R. Catecholamines Induce Left Ventricular Subclinical Systolic Dysfunction: A Speckle-Tracking Echocardiography Study. Cancers. 2019; 11(3):318. https://doi.org/10.3390/cancers11030318
Chicago/Turabian StyleKvasnička, Jan, Tomáš Zelinka, Ondřej Petrák, Ján Rosa, Branislav Štrauch, Zuzana Krátká, Tomáš Indra, Alice Markvartová, Jiří Widimský, Jr., and Robert Holaj. 2019. "Catecholamines Induce Left Ventricular Subclinical Systolic Dysfunction: A Speckle-Tracking Echocardiography Study" Cancers 11, no. 3: 318. https://doi.org/10.3390/cancers11030318
APA StyleKvasnička, J., Zelinka, T., Petrák, O., Rosa, J., Štrauch, B., Krátká, Z., Indra, T., Markvartová, A., Widimský, J., Jr., & Holaj, R. (2019). Catecholamines Induce Left Ventricular Subclinical Systolic Dysfunction: A Speckle-Tracking Echocardiography Study. Cancers, 11(3), 318. https://doi.org/10.3390/cancers11030318