Machine-Learning-Based Prediction of Treatment Outcomes Using MR Imaging-Derived Quantitative Tumor Information in Patients with Sinonasal Squamous Cell Carcinomas: A Preliminary Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. MR Imaging Protocol
4.2.1. Conventional MR Imaging Acquisition
4.2.2. ASL Acquisition
4.2.3. DWI Acquisition
4.3. Data Analysis
4.3.1. ROI Delineation
4.3.2. Analysis of Fs-T2WI for Morphological and Intratumoral Data
4.3.3. ASL and DWI Analysis
4.4. Determination of the Clinical Outcome
4.5. Statistical Analysis Based on Machine Learning Algorithm
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wong, S.J.; Harari, P.M.; Garden, A.S.; Schwartz, M.; Bellm, L.; Chen, A.; Curran, W.J.; Murphy, B.A.; Ang, K.K. Longitudinal Oncology Registry of Head and Neck Carcinoma (LORHAN): Analysis of chemoradiation treatment approaches in the United States. Cancer 2011, 117, 1679–1686. [Google Scholar] [CrossRef] [PubMed]
- Homma, A.; Sakashita, T.; Yoshida, D.; Onimaru, R.; Tsuchiya, K.; Suzuki, F.; Yasuda, K.; Hatakeyama, H.; Furusawa, J.; Mizumachi, T.; et al. Superselective intra-arterial cisplatin infusion and concomitant radiotherapy for maxillary sinus cancer. Br. J. Cancer 2013, 109, 2980–2986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Popovtzer, A.; Li, D.; Chepeha, D.B.; Moyer, J.S.; Prince, M.E.; Worden, F.; Teknos, T.; Bradford, C.; Mukherji, S.K.; et al. Early prediction of outcome in advanced head-and-neck cancer based on tumor blood volume alterations during therapy: A prospective study. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 1287–1290. [Google Scholar] [CrossRef] [PubMed]
- Fujima, N.; Yoshida, D.; Sakashita, T.; Homma, A.; Tsukahara, A.; Tha, K.K.; Kudo, K.; Shirato, H. Usefulness of Pseudocontinuous Arterial Spin-Labeling for the Assessment of Patients with Head and Neck Squamous Cell Carcinoma by Measuring Tumor Blood Flow in the Pretreatment and Early Treatment Period. Am. J. Neuroradiol. 2016, 37, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, I.; Steffen, I.G.; Wedel, F.; Lougovski, A.; Marnitz, S.; Derlin, T.; Amthauer, H.; Buchert, R.; Hofheinz, F.; Brenner, W. Asphericity of pretherapeutic tumour FDG uptake provides independent prognostic value in head-and-neck cancer. Eur. Radiol. 2014, 24, 2077–2087. [Google Scholar] [CrossRef] [PubMed]
- Buch, K.; Fujita, A.; Li, B.; Kawashima, Y.; Qureshi, M.M.; Sakai, O. Using Texture Analysis to Determine Human Papillomavirus Status of Oropharyngeal Squamous Cell Carcinomas on CT. Am. J. Neuroradiol. 2015, 36, 1343–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujima, N.; Kudo, K.; Tsukahara, A.; Yoshida, D.; Sakashita, T.; Homma, A.; Tha, K.K.; Shirato, H. Measurement of tumor blood flow in head and neck squamous cell carcinoma by pseudo-continuous arterial spin labeling: Comparison with dynamic contrast-enhanced MRI. J. Magn. Reson. Imaging 2015, 41, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Fujima, N.; Yoshida, D.; Sakashita, T.; Homma, A.; Tsukahara, A.; Shimizu, Y.; Tha, K.K.; Kudo, K.; Shirato, H. Prediction of the treatment outcome using intravoxel incoherent motion and diffusional kurtosis imaging in nasal or sinonasal squamous cell carcinoma patients. Eur. Radiol. 2017, 27, 956–965. [Google Scholar] [CrossRef]
- Surov, A.; Stumpp, P.; Meyer, H.J.; Gawlitza, M.; Hohn, A.K.; Boehm, A.; Sabri, O.; Kahn, T.; Purz, S. Simultaneous (18)F-FDG-PET/MRI: Associations between diffusion, glucose metabolism and histopathological parameters in patients with head and neck squamous cell carcinoma. Oral Oncol. 2016, 58, 14–20. [Google Scholar] [CrossRef]
- Swartz, J.E.; Driessen, J.P.; van Kempen, P.M.W.; de Bree, R.; Janssen, L.M.; Pameijer, F.A.; Terhaard, C.H.J.; Philippens, M.E.P.; Willems, S. Influence of tumor and microenvironment characteristics on diffusion-weighted imaging in oropharyngeal carcinoma: A pilot study. Oral Oncol. 2018, 77, 9–15. [Google Scholar] [CrossRef]
- Meyer, H.J.; Leifels, L.; Hamerla, G.; Höhn, A.K.; Surov, A. ADC-histogram analysis in head and neck squamous cell carcinoma. Associations with different histopathological features including expression of EGFR, VEGF, HIF-1α, Her 2 and p53. A preliminary study. Magn. Reson. Imaging 2018, 54, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Surov, A.; Meyer, H.J.; Winter, K.; Richter, C.; Hoehn, A.K. Histogram analysis parameters of apparent diffusion coefficient reflect tumor cellularity and proliferation activity in head and neck squamous cell carcinoma. Oncotarget 2018, 9, 23599–23607. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.J.; Leifels, L.; Hamerla, G.; Höhn, A.K.; Surov, A. Associations between Histogram Analysis Parameters Derived from DCE-MRI and Histopathological Features including Expression of EGFR, p16, VEGF, Hif1-alpha, and p53 in HNSCC. Contrast Media Mol. Imaging 2019, 2019, 5081909. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.J.; Leifels, L.; Hamerla, G.; Höhn, A.K.; Surov, A. Histogram Analysis Parameters Derived from Conventional T1- and T2-Weighted Images Can Predict Different Histopathological Features Including Expression of Ki67, EGFR, VEGF, HIF-1α, and p53 and Cell Count in Head and Neck Squamous Cell Carcinoma. Mol. Imaging Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Grönroos, T.J.; Lehtiö, K.; Söderström, K.O.; Kronqvist, P.; Laine, J.; Eskola, O.; Viljanen, T.; Grénman, R.; Solin, O.; Minn, H. Hypoxia, blood flow and metabolism in squamous-cell carcinoma of the head and neck: Correlations between multiple immunohistochemical parameters and PET. BMC Cancer 2014, 14, 876. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, G.B.; Vogelius, I.R.; Rasmussen, J.H.; Schumaker, L.; Ioffe, O.; Cullen, K.; Fischer, B.M.; Therkildsen, M.H.; Specht, L.; Bentzen, S.M. Immunohistochemical biomarkers and FDG uptake on PET/CT in head and neck squamous cell carcinoma. Acta Oncol. 2015, 54, 1408–1415. [Google Scholar] [CrossRef] [Green Version]
- Surov, A.; Meyer, H.J.; Wienke, A. Can Imaging Parameters Provide Information Regarding Histopathology in Head and Neck Squamous Cell Carcinoma? A Meta-Analysis. Transl. Oncol. 2018, 11, 498–503. [Google Scholar] [CrossRef]
- Surov, A.; Meyer, H.J.; Höhn, A.K.; Winter, K.; Sabri, O.; Purz, S. Associations between 18F-FDG-PET and complex histopathological parameters including tumor cell count and expression of KI 67, EGFR, VEGF, HIF-1α and p53 in head and neck squamous cell carcinoma. Mol. Imaging Biol. 2019, 21, 368–374. [Google Scholar] [CrossRef]
- Zhao, K.; Yang, S.Y.; Zhou, S.H.; Dong, M.J.; Bao, Y.Y.; Yao, H.T. Fluorodeoxyglucose uptake in laryngeal carcinoma is associated with the expression of glucose transporter-1 and hypoxia-inducible-factor-1α and the phosphoinositide 3-kinase/protein kinase B pathway. Oncol. Lett. 2014, 7, 984–990. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, W.; Zheng, D.; Zhong, J.; Liu, X.; Yue, Q.; Liu, M.; Xiao, Y.; Chen, W.; Chan, Q.; et al. Diffusion kurtosis imaging predicts neoadjuvant chemotherapy responses within 4 days in advanced nasopharyngeal carcinoma patients. J. Magn. Reson. Imaging 2015, 42, 1354–1361. [Google Scholar] [CrossRef]
- Paudyal, R.; Oh, J.H.; Riaz, N.; Venigalla, P.; Li, J.; Hatzoglou, V.; Leeman, J.; Nunez, D.A.; Lu, Y.; Deasy, J.O.; et al. Intravoxel incoherent motion diffusion-weighted MRI during chemoradiation therapy to characterize and monitor treatment response in human papillomavirus head and neck squamous cell carcinoma. J. Magn. Reson. Imaging 2017, 45, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Noij, D.P.; Martens, R.M.; Marcus, J.T.; de Bree, R.; Leemans, C.R.; Castelijns, J.A.; de Jong, M.C.; de Graaf, P. Intravoxel incoherent motion magnetic resonance imaging in head and neck cancer: A systematic review of the diagnostic and prognostic value. Oral Oncol. 2017, 68, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Fujima, N.; Hirata, K.; Shiga, T.; Yasuda, K.; Onimaru, R.; Tsuchiya, K.; Kano, S.; Mizumachi, T.; Homma, A.; Kudo, K.; et al. Semi-quantitative analysis of pre-treatment morphological and intratumoral characteristics using (18)F-fluorodeoxyglucose positron-emission tomography as predictors of treatment outcome in nasal and paranasal squamous cell carcinoma. Quant. Imaging Med. Surg. 2018, 8, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Parmar, C.; Grossmann, P.; Rietveld, D.; Rietbergen, M.M.; Lambin, P.; Aerts, H.J. Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer. Front. Oncol. 2015, 5, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leger, S.; Zwanenburg, A.; Pilz, K.; Lohaus, F.; Linge, A.; Zophel, K.; Kotzerke, J.; Schreiber, A.; Tinhofer, I.; Budach, V.; et al. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci. Rep. 2017, 7, 13206. [Google Scholar] [CrossRef]
- Kuno, H.; Qureshi, M.M.; Chapman, M.N.; Li, B.; Andreu-Arasa, V.C.; Onoue, K.; Truong, M.T.; Sakai, O. CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy. Am. J. Neuroradiol. 2017, 38, 2334–2340. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.M.; Fang, Y.H.; Chang, J.T.; Huang, C.G.; Tsan, D.L.; Ng, S.H.; Wang, H.M.; Lin, C.Y.; Liao, C.T.; Yen, T.C. Textural features of pretreatment 18F-FDG PET/CT images: Prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2013, 54, 1703–1709. [Google Scholar] [CrossRef]
- Newbold, K.; Castellano, I.; Charles-Edwards, E.; Mears, D.; Sohaib, A.; Leach, M.; Rhys-Evans, P.; Clarke, P.; Fisher, C.; Harrington, K.; et al. An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 29–37. [Google Scholar] [CrossRef]
- Donaldson, S.B.; Betts, G.; Bonington, S.C.; Homer, J.J.; Slevin, N.J.; Kershaw, L.E.; Valentine, H.; West, C.M.; Buckley, D.L. Perfusion estimated with rapid dynamic contrast-enhanced magnetic resonance imaging correlates inversely with vascular endothelial growth factor expression and pimonidazole staining in head-and-neck cancer: A pilot study. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1176–1183. [Google Scholar] [CrossRef]
- King, A.D.; Thoeny, H.C. Functional MRI for the prediction of treatment response in head and neck squamous cell carcinoma: Potential and limitations. Cancer Imaging 2016, 16, 23. [Google Scholar] [CrossRef]
- Chawla, S.; Kim, S.; Dougherty, L.; Wang, S.; Loevner, L.A.; Quon, H.; Poptani, H. Pretreatment diffusion-weighted and dynamic contrast-enhanced MRI for prediction of local treatment response in squamous cell carcinomas of the head and neck. Am. J. Roentgenol. 2013, 200, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Jethanandani, A.; Lin, T.A.; Volpe, S.; Elhalawani, H.; Mohamed, A.S.R.; Yang, P.; Fuller, C.D. Exploring Applications of Radiomics in Magnetic Resonance Imaging of Head and Neck Cancer: A Systematic Review. Front. Oncol. 2018, 8, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; He, L.; Yuan, C.; Huang, Y.; Liu, Z.; Liang, C. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Eur. J. Radiol. 2018, 98, 100–106. [Google Scholar] [CrossRef]
- Zhang, B.; He, X.; Ouyang, F.; Gu, D.; Dong, Y.; Zhang, L.; Mo, X.; Huang, W.; Tian, J.; Zhang, S. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett. 2017, 403, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Tian, J.; Dong, D.; Gu, D.; Dong, Y.; Zhang, L.; Lian, Z.; Liu, J.; Luo, X.; Pei, S.; et al. Radiomics Features of Multiparametric MRI as Novel Prognostic Factors in Advanced Nasopharyngeal Carcinoma. Clin. Cancer Res. 2017, 23, 4259–4269. [Google Scholar] [CrossRef] [PubMed]
- Vujasinovic, T.; Pribic, J.; Kanjer, K.; Milosevic, N.T.; Tomasevic, Z.; Milovanovic, Z.; Nikolic-Vukosavljevic, D.; Radulovic, M. Gray-Level Co-Occurrence Matrix Texture Analysis of Breast Tumor Images in Prognosis of Distant Metastasis Risk. Microsc. Microanal. 2015, 21, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Fujima, N.; Homma, A.; Harada, T.; Shimizu, Y.; Tha, K.K.; Kano, S.; Mizumachi, T.; Li, R.; Kudo, K.; Shirato, H. The utility of MRI histogram and texture analysis for the prediction of histological diagnosis in head and neck malignancies. Cancer Imaging 2019, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Fujima, N.; Sakashita, T.; Homma, A.; Shimizu, Y.; Yoshida, A.; Harada, T.; Tha, K.K.; Kudo, K.; Shirato, H. Advanced diffusion models in head and neck squamous cell carcinoma patients: Goodness of fit, relationships among diffusion parameters and comparison with dynamic contrast-enhanced perfusion. Magn. Reson. Imaging 2017, 36, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Zhang, X.; Tian, Q.; Wang, H.; Cui, L.B.; Li, S.; Tang, X.; Li, B.; Dolz, J.; Ayed, I.B.; et al. Quantitative Identification of Nonmuscle-Invasive and Muscle-Invasive Bladder Carcinomas: A Multiparametric MRI Radiomics Analysis. J. Magn. Reson. Imaging 2018. [Google Scholar] [CrossRef]
Treatment Outcome | ||||
---|---|---|---|---|
Local Control | Local Failure | |||
Patients’ Characteristics (no. of patients) | T-stage | T1 | 0 | 0 |
T2 | 1 | 0 | ||
T3 | 10 | 3 | ||
T4 | 11 | 11 | ||
N-stage | N0 | 18 | 12 | |
N1 | 2 | 0 | ||
N2 | 2 | 2 | ||
N3 | 0 | 0 | ||
Morphological Parameters | Tumor volume (mL) | 25.3 ± 16.5 | 34.3 ± 28.6 | |
Surface area (cm2) | 50.4 ± 18.7 | 69.6 ± 29.7 | ||
Sphericity | 0.71 ± 0.08 | 0.61 ± 0.11 | ||
Intratumoral Characteristics Parameters | Relative mean signal | 3.8 ± 0.6 | 3.4 ± 0.6 | |
Coefficient of variance | 0.12 ± 0.02 | 0.14 ± 0.04 | ||
Contrast | 35.1 ± 6 | 41.3 ± 8.6 | ||
Correlation | 0.84 ± 0.02 | 0.86 ± 0.03 | ||
Energy (×10−3) | 1.5 ± 0.3 | 1.2 ± 0.4 | ||
Homogeneity | 0.28 ± 0.03 | 0.26 ± 0.03 | ||
Perfusion Parameters | Absolute TBF (mL/100g/min) | 156.7 ± 32.9 | 133.7 ± 29.3 | |
Relative TBF | 7.47 ± 0.83 | 6.25 ± 1.22 | ||
Diffusion Parameters | ADC (×10−3 mm2/s) | 0.91 ± 0.1 | 0.87 ± 0.13 | |
f (×102 %) | 0.16 ± 0.05 | 0.16 ± 0.07 | ||
D* (×10−3 mm2/s) | 19.5 ± 7.5 | 16.7 ± 5.7 | ||
D (×10−3 mm2/s) | 0.75 ± 0.06 | 0.73 ± 0.09 | ||
K | 0.73 ± 0.07 | 0.76 ± 0.08 | ||
Dk (×10−3 mm2/s) | 1.24 ± 0.14 | 1.22 ± 0.19 | ||
alpha (α) | 0.69 ± 0.07 | 0.67 ± 0.08 | ||
DDC (×10−3 mm2/s) | 1.14 ± 0.12 | 1.12 ± 0.17 | ||
f1 (×102 %) | 0.14 ± 0.04 | 0.13 ± 0.04 | ||
f2 (×102 %) | 0.23 ± 0.04 | 0.25 ± 0.05 | ||
f3 (×102 %) | 0.62 ± 0.06 | 0.61 ± 0.08 | ||
D1 (×10−3 mm2/s) | 32.9 ± 7.8 | 28.1 ± 6.5 | ||
D2 (×10−3 mm2/s) | 1.03 ± 0.16 | 0.92 ± 0.15 | ||
D3 (×10−3 mm2/s) | 0.64 ± 0.07 | 0.62 ± 0.1 |
Set No. | Sensitivity | Specificity | PPV | NPV | Accuracy |
---|---|---|---|---|---|
1 | 1 | 0.92 | 0.95 | 1 | 0.97 |
Top 5 ranked variables: Sphericity, Relative TBF, Contrast, D2, f | |||||
2 | 1 | 1 | 1 | 1 | 1 |
Top 5 ranked variables: Relative TBF, Sphericity, Contrast, T-stage, Tumor volume | |||||
3 | 1 | 0.85 | 0.9 | 1 | 0.94 |
Top 5 ranked variables: Relative TBF, Contrast, Sphericity, Tumor volume, f | |||||
4 | 0.95 | 0.78 | 0.91 | 0.9 | 0.91 |
Top 5 ranked variables: Relative TBF, Sphericity, D2, Energy, Contrast | |||||
5 | 1 | 1 | 1 | 1 | 1 |
Top 5 ranked variables: Sphericity, Relative TBF, D2, Contrast, Tumor volume | |||||
6 | 1 | 0.85 | 0.9 | 1 | 0.94 |
Top 5 ranked variables: Relative TBF, Sphericity, f, Contrast, Energy | |||||
7 | 1 | 0.92 | 0.95 | 1 | 0.97 |
Top 5 ranked variables: Sphericity, Relative TBF, Contrast, Tumor volume, ADC | |||||
8 | 0.94 | 0.93 | 0.94 | 0.93 | 0.94 |
Top 5 ranked variables: Relative TBF, Sphericity, Contrast, D2, Tumor volume | |||||
9 | 0.95 | 0.9 | 0.95 | 0.9 | 0.94 |
Top 5 ranked variables: Relative TBF, Sphericity, D2, Contrast, Tumor volume | |||||
Average | 0.98 | 0.91 | 0.94 | 0.97 | 0.96 |
Number of Patients | |
---|---|
Age | |
Range | 43–73 |
Median | 59 |
Average | 58.7 |
Gender | |
Male | 28 |
Female | 8 |
Primary tumor site | |
Nasal cavity | 6 |
Paranasal sinus | 30 |
T-stage | |
T1 | 0 |
T2 | 1 |
T3 | 13 |
T4a | 17 |
T4b | 5 |
N-stage | |
N0 | 30 |
N1 | 2 |
N2 | 4 |
N3 | 0 |
Smoking status | |
Tabacco smokers | 31 |
Packs-years | |
Range | 2–161 |
Median | 34 |
Average | 40.4 |
Alcohol use | |
Occasional or non-drinker | 10 |
Moderate use | 6 |
Heavy use | 20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujima, N.; Shimizu, Y.; Yoshida, D.; Kano, S.; Mizumachi, T.; Homma, A.; Yasuda, K.; Onimaru, R.; Sakai, O.; Kudo, K.; et al. Machine-Learning-Based Prediction of Treatment Outcomes Using MR Imaging-Derived Quantitative Tumor Information in Patients with Sinonasal Squamous Cell Carcinomas: A Preliminary Study. Cancers 2019, 11, 800. https://doi.org/10.3390/cancers11060800
Fujima N, Shimizu Y, Yoshida D, Kano S, Mizumachi T, Homma A, Yasuda K, Onimaru R, Sakai O, Kudo K, et al. Machine-Learning-Based Prediction of Treatment Outcomes Using MR Imaging-Derived Quantitative Tumor Information in Patients with Sinonasal Squamous Cell Carcinomas: A Preliminary Study. Cancers. 2019; 11(6):800. https://doi.org/10.3390/cancers11060800
Chicago/Turabian StyleFujima, Noriyuki, Yukie Shimizu, Daisuke Yoshida, Satoshi Kano, Takatsugu Mizumachi, Akihiro Homma, Koichi Yasuda, Rikiya Onimaru, Osamu Sakai, Kohsuke Kudo, and et al. 2019. "Machine-Learning-Based Prediction of Treatment Outcomes Using MR Imaging-Derived Quantitative Tumor Information in Patients with Sinonasal Squamous Cell Carcinomas: A Preliminary Study" Cancers 11, no. 6: 800. https://doi.org/10.3390/cancers11060800
APA StyleFujima, N., Shimizu, Y., Yoshida, D., Kano, S., Mizumachi, T., Homma, A., Yasuda, K., Onimaru, R., Sakai, O., Kudo, K., & Shirato, H. (2019). Machine-Learning-Based Prediction of Treatment Outcomes Using MR Imaging-Derived Quantitative Tumor Information in Patients with Sinonasal Squamous Cell Carcinomas: A Preliminary Study. Cancers, 11(6), 800. https://doi.org/10.3390/cancers11060800