Improving the Brain Delivery of Chemotherapeutic Drugs in Childhood Brain Tumors
Abstract
:1. Introduction
2. Physical Protection of the Brain: Meninges and CSF
3. Biochemical Protection of the Brain: Blood Brain Barrier (BBB)
4. Failed Approaches
4.1. BBB Disruption (BBBD): Osmotic and Bradykinin Receptor-Mediated BBBD
4.2. Intra-Arterial Chemotherapy (IA)
4.3. Intracavitary Chemotherapy
5. Invasive Drug Delivery Directly in the CSF: Intrathecal Chemotherapy (IT)
5.1. Intraventricular Injection
5.2. Intralumbar Injection
5.3. Pharmacokinetics and Toxicity of Standard Agents for IT Administration
5.3.1. MTX
5.3.2. Cytosine Arabinoside (Ara-C) and DepoCyt
5.3.3. Corticosteroids
5.3.4. Thiotepa
5.3.5. Investigational Agents for IT Administration
6. Future Directions
6.1. Intranasal (INas) Drug Delivery
6.2. Focused Ultrasound (FUS)—Mediated Drug Delivery
6.3. Convection Enhanced Delivery (CED)
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Burdach, S.E.G.; Westhoff, M.-A.; Steinhauser, M.F.; Debatin, K.-M. Precision medicine in pediatric oncology. Mol. Cell. Pediatr. 2018, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, A.E.; Gilbert, E.S.; Zandstra, R. The increasing incidence of central nervous system leukemia in children (Children’s Cancer Study Group A). Cancer 1970, 26, 404–409. [Google Scholar] [CrossRef]
- AIEOP-BFM ALL 2009. Protocol for the Diagnosis and Treatment of Childhood ALL; Version 1.1; University Hospital Schleswig-Holstein: Kiel, Germany, 2010. [Google Scholar]
- Bührer, C.; Henze, G.; Hofmann, J.; Reiter, A.; Schellong, G.; Riehm, H. Central Nervous System Relapse Prevention in 1165 Standard-Risk Children with Acute Lymphoblastic Leukemia in Five BFM Trials. Haematol. Blood Transfus. 1990, 33, 500–503. [Google Scholar] [PubMed]
- Schrappe, M.; Reiter, A.; Henze, G.; Niemeyer, C.; Bode, U.; Kuhl, J.; Gadner, H.; Havers, W.; Plüss, H.; Kornhuber, B.; et al. Prevention of CNS recurrence in childhood ALL: Results with reduced radiotherapy combined with CNS-directed chemotherapy in four consecutive ALL-BFM trials. Klinische Pädiatrie 1998, 210, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.Z.; Berg, S.; Blaney, S.M. Intrathecal chemotherapy. Crit. Rev. Oncol. Hematol. 2001, 37, 227–236. [Google Scholar] [CrossRef]
- Sakka, L.; Chazal, J. The meninges, an anatomical point of view. Morphologie 2005, 89, 35–42. [Google Scholar] [CrossRef]
- Weller, R. Microscopic morphology and histology of the human meninges. Morphologie 2005, 89, 22–34. [Google Scholar] [CrossRef]
- Sakka, L.; Coll, G.; Chazal, J. Anatomy and physiology of cerebrospinal fluid. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2011, 128, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Gur, R.E.; Mozley, P.D.; Resnick, S.M.; Shtasel, D.; Kohn, M.; Zimmerman, R.; Herman, G.; Atlas, S.; Grossman, R.; Erwin, R. Magnetic Resonance Imaging in Schizophrenia. I. Volumetric Analysis of Brain and Cerebrospinal Fluid. Arch. Gen. Psychiatry 1991, 48, 407. [Google Scholar] [CrossRef]
- Huff, T.; Dulebohn, S.C. Neuroanatomy, Cerebrospinal Fluid; StatPearls: Treasure Island, FL, USA, 2017. [Google Scholar]
- Miyajima, M.; Arai, H. Evaluation of the Production and Absorption of Cerebrospinal Fluid. Neurol. Medico-Chir. 2015, 55, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, C.; Lindvall-Axelsson, M.; Owman, C. Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res. Rev. 1992, 17, 109–138. [Google Scholar] [CrossRef]
- Johanson, E.C.; Duncan, A.J.; Klinge, P.M.; Brinker, T.; Stopa, E.G.; Silverberg, G.D. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cereb. Fluid Res. 2008, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Wright, B.L.C.; Lai, J.T.F.; Sinclair, A.J. Cerebrospinal fluid and lumbar puncture: A practical review. J. Neurol. 2012, 259, 1530–1545. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRX 2005, 2, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Ballabh, P.; Braun, A.; Nedergaard, M. The blood-brain barrier: An overview: Structure, regulation, and clinical implications. Neurobiol. Dis. 2004, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Saunders, N.R.; Liddelow, S.A.; Dziegielewska, K.M. Barrier Mechanisms in the Developing Brain. Front. Pharmacol. 2012, 3, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghersi-Egea, J.-F.; Saudrais, E.; Strazielle, N. Barriers to Drug Distribution into the Perinatal and Postnatal Brain. Pharm. Res. 2018, 35, 84. [Google Scholar] [CrossRef]
- Ek, C.J.; Dziegielewska, K.M.; Habgood, M.D.; Saunders, N.R. Barriers in the developing brain and Neurotoxicology. NeuroToxicology 2012, 33, 586–604. [Google Scholar] [CrossRef]
- Dyrna, F.; Hanske, S.; Krueger, M.; Bechmann, I. The blood-brain barrier. J. Neuroimmune Pharmacol. 2013, 8, 763–773. [Google Scholar] [CrossRef]
- Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef]
- Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Begley, D.J.; Brightman, M.W. Structural and functional aspects of the blood-brain barrier. Prog. Drug Res. 2003, 61, 39–78. [Google Scholar]
- Abbott, N.J. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis. 2013, 36, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Qosa, H.; Miller, D.S.; Pasinelli, P.; Trotti, D. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res. 2015, 1628, 298–316. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.S. Regulation of ABC transporters blood-brain barrier: The good, the bad, and the ugly. Adv. Cancer Res. 2015, 125, 43–70. [Google Scholar]
- Fardel, O.; Lecureur, V.; Guillouzo, A. The P-glycoprotein multidrug transporter. Gen. Pharmacol. Vasc. Syst. 1996, 27, 1283–1291. [Google Scholar] [CrossRef]
- Dallas, S.; Miller, D.S.; Bendayan, R. Multidrug Resistance-Associated Proteins: Expression and Function in the Central Nervous System. Pharmacol. Rev. 2006, 58, 140–161. [Google Scholar] [CrossRef] [Green Version]
- Rankovic, Z. CNS drug design: Balancing physicochemical properties fir optimal brain exposure. J. Med. Chem. 2015, 58, 2584–2608. [Google Scholar] [CrossRef] [PubMed]
- Blakeley, J.O.; Olson, J.; Grossman, S.A.; He, X.; Weingart, J.; Supko, J.G. New Approaches to Brain Tumor Therapy (NABTT) Consortium. Effect of blood brain barrier permeability in recurrent high-grade gliomas on the intratumoral pharmacokinetics of methotrexate: A microdialysis study. J. Neurooncol. 2009, 91, 51–58. [Google Scholar] [CrossRef]
- Iorio, A.L.; Da Ros, M.; Fantappiè, O.; Lucchesi, M.; Facchini, L.; Stival, A.; Becciani, S.; Guidi, M.; Favre, C.; De Martino, M.; et al. Blood-Brain Barrier and Breast Cancer Resistance Protein: A Limit to the Therapy of CNS Tumors and Neurodegenerative Diseases. Anti Cancer Agents Med. Chem. 2016, 16, 810–815. [Google Scholar] [Green Version]
- Schumacher, U.; Mollgard, K. The multidrug-resistance P-glycoprotein (Pgp, MDR1) is an early marker of blood-brain barrier development in the microvessels of the developing human brain. Histochem. Cell Biol. 1997, 108, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Ek, C.J.; Wong, A.; Liddelow, S.A.; Johansson, P.A.; Dziegielewska, K.M.; Saunders, N.R. Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat. Toxicol. Lett. 2010, 197, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Abbott, N.J.; Friedman, A. Overview and introduction: The blood–brain barrier in health and disease. Epilepsia 2012, 53, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Muldoon, L.L.; Soussain, C.; Jahnke, K.; Johanson, C.; Siegal, T.; Smith, Q.R.; Hall, W.A.; Hynynen, K.; Senter, P.D.; Peereboom, D.M.; et al. Chemotherapy Delivery Issues in Central Nervous System Malignancy: A Reality Check. J. Clin. Oncol. 2007, 25, 2295–2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orthmann, A.; Fichtner, I.; Zeisig, R. Improving the transport of chemotherapeutic drugs across the blood–brain barrier. Expert Rev. Clin. Pharmacol. 2011, 4, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Dallas, S.; Hong, M.; Bendayan, R. Drug transporters in the central nervous system: Brain barriers and brain parenchyma considerations. Pharmacol. Rev. 2001, 53, 569–596. [Google Scholar] [CrossRef] [PubMed]
- Van Tellingen, O.; Yetkin-Arik, B.; De Gooijer, M.; Wesseling, P.; Würdinger, T.; De Vries, H. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat. 2015, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, S.; Hori, M.; Klatzo, I. Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am. J. Physiol. Content 1972, 223, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Siegal, T.; Rubinstein, R.; Bokstein, F.; Schwartz, A.; Lossos, A.; Shalom, E.; Chisin, R.; Gomori, J.M. In vivo assessment of the window of barrier opening after osmotic blood—Brain barrier disruption in humans. J. Neurosurg. 2000, 92, 599–605. [Google Scholar] [CrossRef]
- Gumerlock, M.; Belshe, B.; Madsen, R.; Watts, C. Osmotic blood-brain barrier disruption and chemotherapy in the treatment of high grade malignant glioma: Patient series and literature review. J. Neuro-Oncol. 1992, 12, 33–46. [Google Scholar] [CrossRef]
- Doolittle, N.D.; Miner, M.E.; Hall, W.A.; Siegal, T.; Hanson, E.J.; Osztie, E.; McAllister, L.D.; Bubalo, J.S.; Kraemer, D.F.; Fortin, D.; et al. Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of patients with malignant brain tumors. Cancer 2000, 88, 637–647. [Google Scholar] [CrossRef]
- Hall, W.A.; Doolittle, N.D.; Daman, M.; Bruns, P.K.; Muldoon, L.; Fortin, D.; Neuwelt, E.A. Osmotic blood-brain barrier disruption chemotherapy for diffuse pontine gliomas. J. Neurooncol. 2006, 77, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Emerich, D.F.; Dean, R.L.; Osborn, C.; Bartus, R.T. The development of the bradykinin agonist labradimil as a means to increase the permeability of the blood-brain barrier: From concept to clinical evaluation. Clin. Pharmacokinet. 2001, 40, 105–123. [Google Scholar] [CrossRef] [PubMed]
- Bartus, R.T.; Snodgrass, P.; Dean, R.L.; Kordower, J.H.; Emerich, D.F. Evidence that Cereport’s ability to increase permeability of rat gliomas is dependent upon extent of tumor growth: Implications for treating newly emerging tumor colonies. Exp. Neurol. 2000, 161, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Thomas, H.D.; Lind, M.J.; Ford, J.; Bleehen, N.; Calvert, A.H.; Boddy, A.V. Pharmacokinetics of carboplatin administered in combination with the bradykinin agonist Cereport (RMP-7) for the treatment of brain tumours. Cancer Chemother. Pharmacol. 2000, 45, 284–290. [Google Scholar] [CrossRef]
- Raymond, J.J.; Robertson, D.M.; Dinsdale, H.B. Pharmacological Modification of Bradykinin Induced Breakdown of the Blood-brain Barrier. Can. J. Neurol. Sci. 1986, 13, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Warren, K.; Jakacki, R.; Widemann, B.; Aikin, A.; Libucha, M.; Packer, R.; Vezina, G.; Reaman, G.; Shaw, D.; Krailo, M.; et al. Phase II trial of intravenous lobradimil and carboplatin in childhood brain tumors: A report from the Children’s Oncology Group. Cancer Chemother. Pharmacol. 2006, 58, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, J.-K.; Riina, H.; Shin, B.; Moliterno, J.; Hofstetter, C.; Boockvar, J. Intra-Arterial Chemotherapy for Malignant Gliomas: A Critical Analysis. Interv. Neuroradiol. 2011, 17, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Liapi, E.; Geschwind, J.F. Intra-arterial therapies for hepatocellular carcinoma: Where do we stand? Ann. Surg. Oncol. 2010, 17, 1234–1246. [Google Scholar] [CrossRef]
- Shields, C.L.; Shields, A.J. Retinoblastoma management: Advances in enucleation, intravenous chemoreduction, and intra-arterial chemotherapy. Curr. Opin. Ophthalmol. 2010, 21, 203–212. [Google Scholar] [CrossRef]
- Eckman, W.W.; Patlak, C.S.; Fenstermacher, J.D. A critical evaluation of the principles governing the advantages of intra-arterial infusions. J. Pharmacokinet. Biopharm. 1974, 2, 257–285. [Google Scholar] [CrossRef] [PubMed]
- Newton, H.B. Intra-arterial chemotherapy of primary brain tumors. Curr. Treat. Options Oncol. 2005, 6, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wu, Q.; Mo, L.; Nassi, M. Intra-Arterial Chemotherapy Is Not Superior to Intravenous Chemotherapy for Malignant Gliomas: A Systematic Review and Meta-Analysis. Eur. Neurol. 2013, 70, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Brem, H.; Mahaley, M.S., Jr.; Vick, N.A.; Black, K.L.; Schold, S.C., Jr.; Burger, P.C.; Friedman, A.H.; Ciric, I.S.; Eller, T.W.; Cozzens, J.W.; et al. Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J. Neurosurg. 1991, 74, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Brem, H.; Piantadosi, S.; Burger, P.; Walker, M.; Selker, R.; Vick, N.; Black, K.; Sisti, M.; Brem, S.; Mohr, G.; et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 1995, 345, 1008–1012. [Google Scholar] [CrossRef]
- Valtonen, S.; Timonen, U.; Toivanen, P.; Kalimo, H.; Kivipelto, L.; Heiskanen, O.; Unsgaard, G.; Kuurne, T. Interstitial Chemotherapy with Carmustine-loaded Polymers for High-grade Gliomas: A Randomized Double-blind Study. Neurosurgery 1997, 41, 44–49. [Google Scholar] [CrossRef]
- Westphal, M.; Hilt, D.C.; Bortey, E.; Delavault, P.; Olivares, R.; Warnke, P.C.; Whittle, I.R.; Jääskeläinen, J.; Ram, Z. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003, 5, 79–88. [Google Scholar] [CrossRef]
- Nagpal, S. The Role of BCNU Polymer Wafers (Gliadel) in the Treatment of Malignant Glioma. Neurosurg. Clin. N. Am. 2012, 23, 289–295. [Google Scholar] [CrossRef]
- Xing, W.-K.; Shao, C.; Qi, Z.-Y.; Yang, C.; Wang, Z. The role of Gliadel wafers in the treatment of newly diagnosed GBM: A meta-analysis. Drug Des. Dev. Ther. 2015, 9, 3341–3348. [Google Scholar]
- Kleinberg, L.R.; Weingart, J.; Bürger, P.; Carson, K.; Grossman, S.A.; Li, K.; Olivi, A.; Wharam, M.D.; Brem, H. Clinical Course and Pathologic Findings after Gliadel® and Radiotherapy for Newly Diagnosed Malignant Glioma: Implications for Patient Management. Cancer Investig. 2004, 22, 1–9. [Google Scholar] [CrossRef]
- Sardi, I.; Sanzo, M.; Giordano, F.; Sandri, A.; Mussa, F.; Donati, P.; Genitori, L. Intracavitary chemotherapy (Gliadel®) and oral low-dose etoposide for recurrent anaplastic ependymoma. Oncol. Rep. 2008, 19, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, A.; Conter, V.; Milani, M.; Biagi, E.; Lazzareschi, I.; Sparano, P.; Riccardi, R. Intrathecal Chemotherapy with Antineoplastic Agents in Children. Pediatr. Drugs 2001, 3, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Poplack, D.G.; Horowitz, M.E.; Bleyer, W.A. Pharmacology of Antineoplastic Agents in Cerebrospinal Fluid. In Neurobiology of Cerebrospinal Fluid 1; Springer: Berlin/Heidelberg, Germany, 1980; Volume 1, pp. 561–578. [Google Scholar]
- Olmos-Jiménez, R.; Espuny-Miró, A.; Cárceles Rodríguez, C.; Díaz-Carrasco, M.S. Practical aspects of the use of intrathecal chemotherapy. Farm. Hosp. 2017, 41, 105–129. [Google Scholar] [PubMed]
- Ommaya, A.K. Implantable Devices for Chronic Access and Drug Delivery to the Central Nervous System. Cancer Drug Deliv. 1984, 1, 169–179. [Google Scholar] [CrossRef] [PubMed]
- BCCA Protocol Summary for Solid Tumours Using Intrathecal Methotrexate and/or Thiotepa and/or Cytarabine. BC Cancer 2015. Available online: http://www.bccancer.bc.ca/NR/rdonlyres/42271735B80E435B9F01E11FB1320EF2/14239/MOIT_1Jul05.pdf (accessed on 1 May 1999).
- Bleyer, W.A.; Poplack, D.G. Intraventricular versus intralumbar methotrexate for central-nervous-system leukemia: Prolonged remission with the ommaya reservoir. Med. Pediatr. Oncol. 1979, 6, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Blasberg, R.G.; Patlak, C.; Fenstermacher, J.D. Intrathecal chemotherapy: Brain tissue profiles after ventriculocisternal perfusion. J. Pharmacol. Exp. Ther. 1975, 195, 73–83. [Google Scholar]
- Peyrl, A.; Chocholous, M.; Azizi, A.A.; Czech, T.; Dorfer, C.; Mitteregger, D.; Gojo, J.; Minichmayr, E.; Slavc, I. Safety of Ommaya reservoirs in children with brain tumors: A 20-year experience with 5472 intraventricular drug administrations in 98 patients. J. Neuro Oncol. 2014, 120, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Gerber, N.; Muller, A.; Bellut, D.; Bozinov, O.; Berger, C.; Grotzer, M. Ventricular Catheter Systems with Subcutaneous Reservoirs (Ommaya Reservoirs) in Pediatric Patients with Brain Tumors: Infections and Other Complications. Neuropediatrics 2015, 46, 401–409. [Google Scholar]
- Coccia, P.; Ruggiero, A.; Attinà, G.; Lazzareschi, I.; Maurizi, P.; Riccardi, R. The lumbar puncture in pediatric oncology. Pediatr. Med. Chir. 2006, 28, 73–78. [Google Scholar]
- Ellenby, M.S.; Tegtmeyer, K.; Lai, S.; Braner, D.A. Videos in clinical medicine. Lumbar puncture. N. Engl. J. Med. 2006, 355, e12. [Google Scholar] [CrossRef]
- Gil Luján, G.; Bautista, S.C.; Arenas, M.O.; Poy, M.J.C.; Albert, E.H. Dosage of drugs for cerebrospinal administration. Farm. Hosp. 2005, 29, 185–190. [Google Scholar] [CrossRef]
- Maurizi, P.; Russo, I.; Rizzo, D.; Chiaretti, A.; Coccia, P.; Attinà, G.; Ruggiero, A.; Riccardi, R. Safe lumbar puncture under analgo-sedation in children with acute lymphoblastic leukemia. Int. J. Clin. Oncol. 2014, 19, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Blaney, S.M.; Poplack, D.G.; Godwin, K.; McCully, C.L.; Murphy, R.; Balis, F.M. Effect of body position on ventricular CSF methotrexate concentration following intralumbar administration. J. Clin. Oncol. 1995, 13, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Schulga, P.; Grattan, R.; Napier, C.; Babiker, O.M. How to use… lumbar puncture in children. Arch. Dis. Child. Educ. Pract. Ed. 2015, 100, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, W.A.; Drake, J.C.; Chabner, B.A. Neurotoxicity and Elevated Cerebrospinal-Fluid Methotrexate Concentration in Meningeal Leukemia. N. Engl. J. Med. 1973, 289, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.V.; Esau, R.; Hamilton, D.; Fitzsimmons, B.; Pritchard, S. Intrathecal vincristine: An analysis of reasons for recurrent fatal chemotherapeutic error with recommendations for prevention. J. Pediatr. Hematol. 1998, 20, 587–590. [Google Scholar] [CrossRef]
- Qweider, M.; Gilsbach, J.M.; Rohde, V. Inadvertent intrathecal vincristine administration: A neurosurgical emergency. J. Neurosurg. Spine 2007, 6, 280–283. [Google Scholar] [CrossRef]
- Pongudom, S.; Chinthammitr, Y. Inadvertent intrathecal vincristine administration: Report of a fatal case despite cerebrospinal fluid lavage and a review of the literature. J. Med. Assoc. Thail. 2011, 94, 258–263. [Google Scholar]
- Bleyer, A.W. Clinical pharmacology of intrathecal methotrexate. II. An improved dosage regimen derived from age-related pharmacokinetics. Cancer Treat. Rep. 1977, 61, 1419–1425. [Google Scholar]
- Pinkel, D.; Woo, S. Prevention and treatment of meningeal leukemia in children. Blood 1994, 84, 355–366. [Google Scholar] [Green Version]
- Pullen, J.; Boyett, J.; Shuster, J.; Crist, W.; Land, V.; Frankel, L.; Iyer, R.; Backstrom, L.; Van Eys, J.; Harris, M. Extended triple intrathecal chemotherapy trial for prevention of CNS relapse in good-risk and poor-risk patients with B-progenitor acute lymphoblastic leukemia: A Pediatric Oncology Group study. J. Clin. Oncol. 1993, 11, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, W.; Poplack, D. Clinical Studies on the Central Nervous System Pharmacology of Methotrexate; Elsevier: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Bleyer, A.W.; Poplack, D.G.; Simon, R.M. “Concentration x time” methotrexate via a subcutaneous reservoir: A less toxic regimen for intraventricular chemotherapy of central nervous system neoplasms. Blood 1978, 51, 835–842. [Google Scholar] [PubMed]
- Moser, A.M.; Adamson, P.C.; Gillespie, A.J.; Poplack, D.G.; Balis, F.M. Intraventricular concentration times time (C x T) methotrexate and cytarabine for patients with recurrent meningeal leukemia and lymphoma. Cancer 1999, 85, 511–516. [Google Scholar] [CrossRef]
- Young, D.F.; Mehta, B.M.; Shapiro, W.R. Methotrexate: Distribution in Cerebrospinal Fluid after Intravenous, Ventricular and Lumbar Injections. N. Engl. J. Med. 1975, 293, 161–166. [Google Scholar]
- Ettinger, L.J.; Freeman, A.I.; Creaven, P.J. Intrathecal methotrexate overdose without neurotoxicity: Case report and literature review. Cancer 1978, 41, 1270–1273. [Google Scholar] [CrossRef]
- Kay, H.E.; Knapton, P.J.; O’Sullivan, J.P.; Wells, D.G.; Harris, R.F.; Innes, E.M.; Stuart, J.; Schwartz, F.C.; Thompson, E.N. Encephalopathy in acute leukemia associated with methotrexate therapy. Arch. Dis. Child. 1972, 47, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Norrell, H.; Wilson, C.B.; Slagel, D.E.; Clark, D.B. Leukoencephalopathy following the administration of methotrexate into the cerebrospinal fluid in the treatment of primary brain tumors. Cancer 1974, 33, 923–932. [Google Scholar] [CrossRef]
- Jakobson, Å.; Kreuger, A.; Mortimer, O.; Henningsson, S.; Seidel, H.; Moe, P. Cerebrospinal fluid exchange after intrathecal methotrexate overdose. A report of two cases. Acta Paediatr. 1992, 81, 359–361. [Google Scholar] [CrossRef]
- Lee, A.C.; Wong, K.W.; Fong, K.W.; So, K.T. Intrathecal methotrexate overdose. Acta Paediatr. 1997, 86, 434–437. [Google Scholar] [CrossRef]
- Riva, V.C.L.; Riva, L.; Conter, V.; Rizzari, C.; Jankovic, M.; Sala, A.; Milani, M. Successful treatment of intrathecal methotrexate overdose with folinic acid rescue: A case report. Acta Paediatr. 1999, 88, 780–782. [Google Scholar] [CrossRef]
- Adamson, P.C.; Balis, F.M.; McCully, C.L.; Godwin, K.S.; Bacher, J.D.; Walsh, T.J.; Poplack, D.G. Rescue of experimental intrathecal methotrexate overdose with carboxypeptidase-G2. J. Clin. Oncol. 1991, 9, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Olmos-Jiménez, R.; Díaz-Carrasco, M.S.; Galera-Miñarro, A.; Pascual-Gazquez, J.F.; Espuny-Miró, A. Evaluation of standardized triple intrathecal therapy toxicity in onco-hematological pediatric patients. Int. J. Clin. Pharm. 2017, 39, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Zimm, S.; Collins, J.M.; Miser, J.; Chatterji, D.; Poplack, D.G. Cytosine arabinoside cerebrospinal fluid kinetics. Clin. Pharmacol. Ther. 1984, 35, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.; Frei, E. Clinical pharmacology of 1-b-D-arabinofuranosyl cytosine. Clin. Pharm. Therap. 1971, 12, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Zighelboim, J.; Gale, R.P.; Wolff, L. Paraplegia following intrathecal cytosine arabinoside. Cancer 1979, 43, 83–85. [Google Scholar] [CrossRef]
- Russell, J.; Powles, R. Neuropathy due to cytosine arabinoside. Br. Med. J. 1974, 4, 652–653. [Google Scholar] [CrossRef]
- Kim, S.; Khatibi, S.; Howell, S.B.; McCully, C.; Balis, F.M.; Poplack, D.G. Prolongation of drug exposure in cerebrospinal fluid by encapsulation into DepoFoam. Cancer Res. 1993, 53, 1596–1598. [Google Scholar]
- Kim, S.; Chatelut, E.; Howell, S.B.; Cates, C.; Kormanik, A.P.; Chamberlain, M.C. Extended CSF cytarabine exposure following intrathecal administration of DTC 101. J. Clin. Oncol. 1993, 11, 2186–2193. [Google Scholar] [CrossRef]
- Bomgaars, L.; Geyer, J.; Franklin, J.; Dahl, G.; Park, J.; Winick, N.; Klenke, R.; Berg, S.; Blaney, S. Phase I Trial of Intrathecal Liposomal Cytarabine in Children with Neoplastic Meningitis. J. Clin. Oncol. 2004, 22, 3916–3921. [Google Scholar] [CrossRef]
- Chamberlain, M.C. Neurotoxicity of intra-CSF liposomal cytarabine (DepoCyt) administered for the treatment of leptomeningeal metastases: A retrospective case series. J. Neuro-Oncol. 2012, 109, 143–148. [Google Scholar] [CrossRef]
- Ortega, J.J.; Ribera, J.M.; Oriol, A.; Bastida, P.; González, M.E.; Calvo, C.; Egurbide, I.; Hernández Rivas, J.M.; Rivas, C.; Alcalá, A.; et al. Early and delayed consolidation chemotherapy significantly improves the outcome of children with intermediate risk acute lymphoblastic leukemia. Final results of the prospective randomized PETHEMA ALL-89 TRIAL. Haematologica 2001, 86, 586–595. [Google Scholar] [PubMed]
- Minard-Colin, V.; Auperin, A.; Pillon, M.; Burke, A.; Anderson, J.R.; Barkauskas, D.A.; Wheatley, K.; Delgado, R.; Alexander, S.; Uyttebroeck, A.; et al. Results of the randomized Intergroup trial Inter-B-NHL Ritux 2010 for children and adolescents with high-risk B-cell non-Hodgkin lymphoma (B-NHL) and mature acute leukemia (B-AL): Evaluation of rituximab (R) efficacy in addition to standard LMB chemotherapy (CT) regimen. J. Clin. Oncol. 2016, 34, 10507. [Google Scholar]
- Balis, F.M.; Lester, C.M.; Chrousos, G.P.; Heideman, R.L.; Poplack, D.G. Differences in cerebrospinal fluid penetration of corticosteroids: Possible relationship to the prevention of meningeal leukemia. J. Clin. Oncol. 1987, 5, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Patten, S.B.; Neutel, C. Corticosteroid-induced adverse psychiatric effects: Incidence, diagnosis and management. Drug Saf. 2000, 22, 111–122. [Google Scholar] [CrossRef]
- Fisher, P.G.; Kadan-Lottick, N.S.; Korones, D.N. Intrathecal Thiotepa: Reappraisal of an Established Therapy. J. Pediatr. Hematol. 2002, 24, 274–278. [Google Scholar] [CrossRef]
- Gutin, P.H.; Weiss, H.D.; Wiernik, P.H.; Walker, M.D. Intrathecal N,N′,N″-triethylenethiophosphoramide [thio-TEPA (NSC 6396)] in the treatment of malignant meningeal disease: Phase I-II study. Cancer 1976, 38, 1471–1475. [Google Scholar] [CrossRef]
- Gutin, P.H.; Levi, J.A.; Wiernik, P.H.; Walker, M.D. Treatment of malignant meningeal disease with intrathecal thioTEPA: A phase II study. Cancer Treat. Rep. 1977, 61, 885–887. [Google Scholar] [PubMed]
- Algarra, S.M.; Henriquez, I.; Rebollo, J.; Artieda, J. Severe polyneuropathy and motor loss after intrathecal thiotepa combination chemotherapy: Description of two cases. Anti-Cancer Drugs 1990, 1, 33–35. [Google Scholar] [CrossRef]
- Adamson, P.C.; Balis, F.M.; Arndt, A.C.; Holcenberg, J.S.; Narang, P.K.; Murphy, R.F.; Gillespie, A.J.; Poplack, D.G. Intrathecal 6-mercaptopurine: Preclinical pharmacology, phase I/II trial, and pharmacokinetic study. Cancer Res. 1991, 51, 6079–6083. [Google Scholar]
- Blaney, S.M.; Cole, D.E.; Godwin, K.; Sung, C.; Poplack, D.G.; Balis, F.M. Intrathecal administration of topotecan in nonhuman primates. Cancer Chemother. Pharmacol. 1995, 36, 121–124. [Google Scholar] [CrossRef]
- Baker, S.D.; Heideman, R.L.; Crom, W.R.; Kuttesch, J.F.; Gajjar, A.; Stewart, C.F. Cerebrospinal fluid pharmacokinetics and penetration of continuous infusion topotecan in children with central nervous system tumors. Cancer Chemother. Pharmacol. 1996, 37, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Potter, S.L.; Berg, S.; Ingle, A.M.; Krailo, M.; Adamson, P.C.; Blaney, S.M. Phase 2 clinical trial of intrathecal topotecan in children with refractory leptomeningeal leukemia: A Children’s Oncology Group trial (P9962). Pediatr. Blood Cancer 2012, 58, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Archer, G.E.; Sampson, J.H.; McLendon, R.E.; Friedman, A.H.; Colvin, O.M.; Rose, M.; Sands, H.; McCullough, W.; Fuchs, H.E.; Bigner, D.D.; et al. Intrathecal Busulfan Treatment of Human Neoplastic Meningitis in Athymic Nude Rats. J. Neuro-Oncol. 1999, 44, 233–241. [Google Scholar] [CrossRef]
- Gururangan, S.; Petros, W.P.; Poussaint, T.Y.; Hancock, M.L.; Phillips, P.C.; Friedman, H.S.; Bomgaars, L.; Blaney, S.M.; Kun, L.E.; Boyett, J.M. Phase I Trial of Intrathecal Spartaject Busulfan in Children with Neoplastic Meningitis: A Pediatric Brain Tumor Consortium Study (PBTC-004). Clin. Cancer Res. 2006, 12, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Mazur, L.; Opydo-Chanek, M.; Stojak, M.; Wojcieszek, K. Mafosfamide as a new anticancer agent: Preclinical investigations and clinical trials. Anticancer. Res. 2012, 32, 2783–2789. [Google Scholar] [PubMed]
- Slavc, I.; Schüller, E.; Czech, T.; Hainfellner, J.A.; Seidl, R.; Dieckmann, K. Intrathecal mafosfamide therapy for pediatric brain tumors with meningeal dissemination. J. Neuro-Oncol. 1998, 38, 213–218. [Google Scholar] [CrossRef]
- Blaney, S.M.; Kocak, M.; Gajjar, A.; Chintagumpala, M.; Merchant, T.; Kieran, M.; Pollack, I.F.; Gururangan, S.; Geyer, R.; Phillips, P.; et al. Pilot study of systemic and intrathecal mafosfamide followed by conformal radiation for infants with intracranial central nervous system tumors: A pediatric brain tumor consortium study (PBTC-001). J. Neuro-Oncol. 2012, 109, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C.; Johnston, S.K.; Van Horn, A.; Glantz, M.J. Recurrent lymphomatous meningitis treated with intra-CSF rituximab and liposomal ara-C. J. Neurooncol. 2009, 91, 271–277. [Google Scholar] [CrossRef]
- Pardeshi, C.V.; Belgamwar, V.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: An excellent platform for brain targeting. Expert Opin. Drug Deliv. 2013, 10, 957–972. [Google Scholar] [CrossRef]
- Hanson, L.R.; Frey, W.H. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008, 9, S5. [Google Scholar] [CrossRef]
- Serwer, L.P.; James, C.D. Challenges in drug delivery to tumors of the central nervous system: An overview of pharmacological and surgical considerations. Adv. Drug Deliv. Rev. 2012, 64, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Shingaki, T.; Hidalgo, I.J.; Furubayashi, T.; Katsumi, H.; Sakane, T.; Yamamoto, A.; Yamashita, S. The transnasal delivery of 5-fluorouracil to the rat brain is enhanced by acetazolamide (the inhibitor of the secretion of cerebrospinal fluid). Int. J. Pharm. 2009, 377, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Mittal, D.; Ali, A.; Md, S.; Baboota, S.; Sahni, J.K.; Ali, J. Insights into direct nose to brain delivery: Current status and future perspective. Drug Deliv. 2014, 21, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Etame, A.B.; Diaz, R.J.; Smith, C.A.; Mainprize, T.G.; Hynynen, K.; Rutka, J.T.; Kullervo, H.H. Focused ultrasound disruption of the blood-brain barrier: A new frontier for therapeutic delivery in molecular neurooncology. Neurosurg. Focus 2012, 32, E3. [Google Scholar] [CrossRef] [PubMed]
- Hynynen, K.; McDannold, N.; Vykhodtseva, N.; Jolesz, F.A. Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits. Radiology 2001, 220, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Burgess, A.; Shah, K.; Hough, O.; Hynynen, K. Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev. Neurother. 2015, 15, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Cheng, Y.; Song, Y.; Yang, Y.; Wang, F.; Liu, Y.; Wang, Z. Experimental Study on Targeted Methotrexate Delivery to the Rabbit Brain via Magnetic Resonance Imaging-Guided Focused Ultrasound. J. Ultrasound Med. 2009, 28, 871–880. [Google Scholar] [CrossRef]
- Park, J.; Zhang, Y.; Vykhodtseva, N.; Jolesz, F.A.; McDannold, N.J. The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound. J. Control. Release 2012, 162, 134–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvanitis, C.D.; Askoxylakis, V.; Guo, Y.; Datta, M.; Kloepper, J.; Ferraro, G.B.; Bernabeu, M.O.; Fukumura, D.; McDannold, N.; Jain, R.K. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood–tumor barrier disruption. Proc. Natl. Acad. Sci. USA 2018, 115, E8717–E8726. [Google Scholar] [CrossRef]
- Wang, F.; Cheng, Y.; Mei, J.; Song, Y.; Yang, Y.Q.; Liu, Y.; Wang, Z. Focused ultrasound microbubble destruction-mediated changes in blood-brain barrier permeability assessed by contrast-enhanced magnetic resonance imaging. J. Ultrasound. Med. 2009, 28, 1501–1509. [Google Scholar] [CrossRef]
- Liu, H.-L.; Hua, M.-Y.; Chen, P.-Y.; Chu, P.-C.; Pan, C.-H.; Yang, H.-W.; Huang, C.-Y.; Wang, J.-J.; Yen, T.-C.; Wei, K.-C. Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment. Radiology 2010, 255, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-L.; Fan, C.-H.; Ting, C.-Y.; Yeh, C.-K. Combining Microbubbles and Ultrasound for Drug Delivery to Brain Tumors: Current Progress and Overview. Theranostics 2014, 4, 432–444. [Google Scholar] [CrossRef]
- Mehta, A.M.; Sonabend, A.M.; Bruce, J.N. Convection-Enhanced Delivery. Neurotherapeutics 2017, 14, 358–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barua, N.U.; Gill, S.S.; Love, S. Convection-enhanced drug delivery to the brain: Therapeutic potential and neuropathological considerations. Brain Pathol. 2014, 24, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.; Tominaga, T. Convection-enhanced Delivery of Therapeutics for Malignant Gliomas. Neurol. Med. Chir. 2017, 57, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souweidane, M.M.; Kramer, K.; Pandit-Taskar, N.; Zhou, Z.; Haque, S.; Zanzonico, P.; Carrasquillo, A.J.; Lyashchenko, S.K.; Thakur, S.B.; Donzelli, M.; et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: A single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018, 19, 1040–1050. [Google Scholar] [CrossRef]
- Van Vuurden, D.G. Convection enhanced delivery: Chemosurgery in diffuse intrinsic pontine glioma. Lancet Oncol. 2018, 19, 1001–1003. [Google Scholar] [CrossRef]
Agent | CSF: Plasma Ratio (%) |
---|---|
Thiotepa | >95 |
Carmustine | >90 |
Cyclophosphamide | |
Total drug | 50 |
Active metabolite | 15 |
Cisplatinum | |
Free platinum | 40 |
Total platinum | <5 |
Ifosfamide | |
Total drug | 30 |
Active metabolite | 15 |
Carboplatinum | |
Free platinum | 30 |
Total platinum | <5 |
6-Mercaptopurine | 25 |
Cytarabine | 15 |
Desametasone | 15 |
Irinotecan | |
CPT–11 lactone | 14 |
SN–38 lactone | <8 |
Prednisolone | <10 |
Vinca alkaloids | 5 |
Topotecan | <5 |
Methotrexate | 3 |
L-asparaginase | Nd |
Anthracyclines | Nd |
D-Actinomycin | Nd |
Name of Drug and Structure | Chemical Formula | Properties | Indications for IT Use in Pediatric Oncology |
---|---|---|---|
Methotrexate (MTX) | C20H22N8O5 Molecular weight: 454.45 g/mol | MTX does not penetrate the BBB in therapeutic amounts when given orally or parenterally. High CSF concentrations of the drug may be achieved by IT administration. | Acute lymphoblastic leukemia (ALL) Advanced non-Hodgkin lymphomas (NHL) CNS leukemia and lymphoma (prophylaxis) |
Cytosine Arabinoside (Ara-C) | C9H13N3O5 Molecular weight: 243.22 g/mol | Only the use of high IV doses of Ara-C (>1 g/mq) produces significant CSF level of Ara-C above 1 micromol/L, with increased risk of neurotoxicity | Acute myeloid leukemia Acute lymphoblastic leukemia (ALL) CNS leukemia and lymphoma (prophylaxis) |
Hydrocortisone | C21H30O5 Molecular weight: 362.47 g/mol | Good penetration into the CSF compartment after IV infusion | CNS leukemia and lymphoma (prophylaxis) |
Thiotepa | C6H12N3PS Molecular Weight: 189.217 g/mol | Good penetration into the CSF compartment after IV infusion | Hematopoietic stem cell transplant (HSCT) for CNS malignancy |
Busulfan | C6H14O6S2 Molecular Weight: 246.30 g/mol | Good penetration into the CSF compartment after IV infusion | Leptomeningeal disease from recurrent or progressive primary brain tumors |
Topotecan | C23H23N3O5 Molecular Weight: 421.453 g/mol | Moderate penetration into the CSF (about 30%) after IV infusion | CNS leukemia or lymphoma, relapsed or refractory |
6-Mercaptopurine (6-MP) | C5H4N4S Molecular Weight: 152.175 g/mol | Poor penetration into the CSF compartment after IV infusion | Acute lymphoblastic leukemia Lymphoblastic lymphoma |
Mafosfamide | C9H19Cl2N2O5PS2 Molecular Weight: 401.269 g/mol | Phase I trials showed that IV administration is unacceptable due to severe local pain at the injection site, thus mafosfamide is used through IT route | Leptomeningeal disease from recurrent or progressive primary brain tumors |
Rituximab * | C6416H9874N1688O1987S44 Molecular Weight: 143859.7 g/mol | Poor penetration into the CSF compartment after IV infusion | Recurrent lymphomatous meningitis |
Age | Methotrexate (MTX) | Cytosine Arabinoside (Ara-C) | Hydrocortisone |
---|---|---|---|
≥1 year and <2 years | 8 | 16 | 8 |
≥2 years and <3 years | 10 | 20 | 10 |
≥3 years | 12 | 24 | 12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triarico, S.; Maurizi, P.; Mastrangelo, S.; Attinà, G.; Capozza, M.A.; Ruggiero, A. Improving the Brain Delivery of Chemotherapeutic Drugs in Childhood Brain Tumors. Cancers 2019, 11, 824. https://doi.org/10.3390/cancers11060824
Triarico S, Maurizi P, Mastrangelo S, Attinà G, Capozza MA, Ruggiero A. Improving the Brain Delivery of Chemotherapeutic Drugs in Childhood Brain Tumors. Cancers. 2019; 11(6):824. https://doi.org/10.3390/cancers11060824
Chicago/Turabian StyleTriarico, Silvia, Palma Maurizi, Stefano Mastrangelo, Giorgio Attinà, Michele Antonio Capozza, and Antonio Ruggiero. 2019. "Improving the Brain Delivery of Chemotherapeutic Drugs in Childhood Brain Tumors" Cancers 11, no. 6: 824. https://doi.org/10.3390/cancers11060824
APA StyleTriarico, S., Maurizi, P., Mastrangelo, S., Attinà, G., Capozza, M. A., & Ruggiero, A. (2019). Improving the Brain Delivery of Chemotherapeutic Drugs in Childhood Brain Tumors. Cancers, 11(6), 824. https://doi.org/10.3390/cancers11060824