Prognostic Impact of Melatonin Receptors MT1 and MT2 in Non-Small Cell Lung Cancer (NSCLC)
Abstract
:1. Introduction
2. Results
2.1. Immunoexpression of MT1 and MT2 in Relation to Clinico-Pathological Parameters of the Patients
2.1.1. MT1 Melatonin Receptor
2.1.2. MT2 Melatonin Receptor
2.2. Relations between MT1, MT2 (Protein and mRNA) Expression and Histology Subtype
2.3. Survival Analysis
3. Discussion
4. Materials and Methods
4.1. Tissue Samples
4.2. Construction of Tissue Microarrays (TMA)
4.3. TMA Immunohistochemistry (IHC)
4.4. Cell Lines
4.5. Evaluation of Immunohistochemical Reactions
4.6. Western Blot
4.7. Immunofluorescence (IF)
4.8. Real-Time PCR
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Bender, E. Epidemiology: The dominant malignancy. Nature 2014, 513, S2–S3. [Google Scholar] [CrossRef] [PubMed]
- Testa, U.; Castelli, G.; Pelosi, E. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers 2018, 10, 248. [Google Scholar] [CrossRef] [PubMed]
- Osmani, L.; Askin, F.; Gabrielson, E.; Li, Q.K. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin. Cancer Biol. 2018, 52, 103–109. [Google Scholar] [CrossRef]
- Alberg, A.J.; Brock, M.V.; Ford, J.G.; Samet, J.M.; Spivack, S.D. Epidemiology of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, e1S–e29S. [Google Scholar] [CrossRef]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Wang, J.; Zhang, T.; Yang, Y. Glypican-5 is a tumor suppressor in non-small cell lung cancer cells. Biochem. Biophys. Rep. 2016, 6, 108–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parent, M.; El-Zein, M.; Rousseau, M.C.; Pintos, J.; Siemiatycki, J. Night work and the risk of cancer among men. Am. J. Epidemiol. 2012, 176, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Shen, G.; Yin, S.; Xu, W.; Hu, B. Melatonin and tryptophan circadian profiles in patients with advanced non-small cell lung cancer. Adv. Ther. 2009, 26, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Ozguner, F.; Koyu, A.; Cesur, G. Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol. Ind. Health 2005, 21, 21–26. [Google Scholar] [CrossRef]
- Crinò, L.; Weder, W.; van Meerbeeck, J.; Felip, E.; Group, E.G.W. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2010, 21 (Suppl. 5), v103–v115. [Google Scholar] [CrossRef]
- Fan, L.L.; Sun, G.P.; Wei, W.; Wang, Z.G.; Ge, L.; Fu, W.Z.; Wang, H. Melatonin and doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines. World J. Gastroenterol. 2010, 16, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Masters, A.; Pandi-Perumal, S.R.; Seixas, A.; Girardin, J.L.; McFarlane, S.I. Melatonin, the Hormone of Darkness: From Sleep Promotion to Ebola Treatment. Brain Disord. Ther. 2014, 4. [Google Scholar] [CrossRef]
- Gurer-Orhan, H.; Suzen, S. Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: Antioxidant, prooxidant and inhibitor of bioactivation reactions. Curr. Med. Chem. 2015, 22, 490–499. [Google Scholar] [CrossRef]
- Pandi-Perumal, S.R.; BaHammam, A.S.; Brown, G.M.; Spence, D.W.; Bharti, V.K.; Kaur, C.; Hardeland, R.; Cardinali, D.P. Melatonin antioxidative defense: Therapeutical implications for aging and neurodegenerative processes. Neurotox. Res. 2013, 23, 267–300. [Google Scholar] [CrossRef]
- Reiter, R.J.; Rosales-Corral, S.A.; Tan, D.X.; Acuna-Castroviejo, D.; Qin, L.; Yang, S.F.; Xu, K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int. J. Mol. Sci. 2017, 18, 843. [Google Scholar] [CrossRef]
- Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016, 61, 253–278. [Google Scholar] [CrossRef]
- Mediavilla, M.D.; Sanchez-Barcelo, E.J.; Tan, D.X.; Manchester, L.; Reiter, R.J. Basic mechanisms involved in the anti-cancer effects of melatonin. Curr. Med. Chem. 2010, 17, 4462–4481. [Google Scholar] [CrossRef]
- Legros, C.; Devavry, S.; Caignard, S.; Tessier, C.; Delagrange, P.; Ouvry, C.; Boutin, J.A.; Nosjean, O. Melatonin MT₁ and MT₂ receptors display different molecular pharmacologies only in the G-protein coupled state. Br. J. Pharmacol. 2014, 171, 186–201. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Clough, S.J.; Hutchinson, A.J.; Adamah-Biassi, E.B.; Popovska-Gorevski, M.; Dubocovich, M.L. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 361–383. [Google Scholar] [CrossRef] [PubMed]
- Reppert, S.M.; Weaver, D.R.; Ebisawa, T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 1994, 13, 1177–1185. [Google Scholar] [CrossRef]
- Dubocovich, M.L.; Delagrange, P.; Krause, D.N.; Sugden, D.; Cardinali, D.P.; Olcese, J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol. Rev. 2010, 62, 343–380. [Google Scholar] [CrossRef] [PubMed]
- Danielczyk, K.; Dziegiel, P. The expression of MT1 melatonin receptor and Ki-67 antigen in melanoma malignum. Anticancer Res. 2009, 29, 3887–3895. [Google Scholar]
- Jablonska, K.; Pula, B.; Zemla, A.; Owczarek, T.; Wojnar, A.; Rys, J.; Ambicka, A.; Podhorska-Okolow, M.; Ugorski, M.; Dziegiel, P. Expression of melatonin receptor MT1 in cells of human invasive ductal breast carcinoma. J. Pineal Res. 2013, 54, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Jablonska, K.; Pula, B.; Zemla, A.; Kobierzycki, C.; Kedzia, W.; Nowak-Markwitz, E.; Spaczynski, M.; Zabel, M.; Podhorska-Okolow, M.; Dziegiel, P. Expression of the MT1 melatonin receptor in ovarian cancer cells. Int. J. Mol. Sci. 2014, 15, 23074–23089. [Google Scholar] [CrossRef] [PubMed]
- Zemła, A.; Grzegorek, I.; Dzięgiel, P.; Jabłońska, K. Melatonin Synergizes the Chemotherapeutic Effect of Cisplatin in Ovarian Cancer Cells Independently of MT1 Melatonin Receptors. In Vivo 2017, 31, 801–809. [Google Scholar]
- Lissoni, P.; Chilelli, M.; Villa, S.; Cerizza, L.; Tancini, G. Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: A randomized trial. J. Pineal Res. 2003, 35, 12–15. [Google Scholar] [CrossRef]
- Lissoni, P.; Barni, S.; Mandalà, M.; Ardizzoia, A.; Paolorossi, F.; Vaghi, M.; Longarini, R.; Malugani, F.; Tancini, G. Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur J. Cancer 1999, 35, 1688–1692. [Google Scholar] [CrossRef]
- Plaimee, P.; Weerapreeyakul, N.; Barusrux, S.; Johns, N.P. Melatonin potentiates cisplatin-induced apoptosis and cell cycle arrest in human lung adenocarcinoma cells. Cell Prolif 2015, 48, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Fic, M.; Podhorska-Okolow, M.; Dziegiel, P.; Gebarowska, E.; Wysocka, T.; Drag-Zalesinska, M.; Zabel, M. Effect of melatonin on cytotoxicity of doxorubicin toward selected cell lines (human keratinocytes, lung cancer cell line A-549, laryngeal cancer cell line Hep-2). In Vivo 2007, 21, 513–518. [Google Scholar] [PubMed]
- Lu, J.J.; Fu, L.; Tang, Z.; Zhang, C.; Qin, L.; Wang, J.; Yu, Z.; Shi, D.; Xiao, X.; Xie, F.; et al. Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget 2016, 7, 2985–3001. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Jeong, S.J.; Kim, B.; Yun, S.M.; Choi, D.Y.; Kim, S.H. Melatonin synergistically enhances cisplatin-induced apoptosis via the dephosphorylation of ERK/p90 ribosomal S6 kinase/heat shock protein 27 in SK-OV-3 cells. J. Pineal Res. 2012, 52, 244–252. [Google Scholar] [CrossRef]
- Vesnushkin, G.M.; Plotnikova, N.A.; Semenchenko, A.V.; Anisimov, V.N. [Melatonin inhibits urethane-induced carcinogenesis tumors in murine lung]. Vopr. Onkol. 2006, 52, 164–168. [Google Scholar]
- El-Sokkary, G.H.; Cuzzocrea, S.; Reiter, R.J. Effect of chronic nicotine administration on the rat lung and liver: Beneficial role of melatonin. Toxicology 2007, 239, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Pan, Y.; Yang, Y.; Di, S.; Jiang, S.; Ma, Z.; Li, T.; Zhang, Z.; Li, W.; Li, X.; et al. HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways. J. Pineal Res. 2015, 59, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Yun, M.; Kim, E.O.; Lee, D.; Kim, J.H.; Kim, J.; Lee, H.; Lee, J.; Kim, S.H. Melatonin sensitizes H1975 non-small-cell lung cancer cells harboring a T790M-targeted epidermal growth factor receptor mutation to the tyrosine kinase inhibitor gefitinib. Cell Physiol. Biochem. 2014, 34, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Steuer, C.E.; Ramalingam, S.S. Targeting EGFR in lung cancer: Lessons learned and future perspectives. Mol. Aspects Med. 2015, 45, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Sookprasert, A.; Johns, N.P.; Phunmanee, A.; Pongthai, P.; Cheawchanwattana, A.; Johns, J.; Konsil, J.; Plaimee, P.; Porasuphatana, S.; Jitpimolmard, S. Melatonin in patients with cancer receiving chemotherapy: A randomized, double-blind, placebo-controlled trial. Anticancer Res. 2014, 34, 7327–7337. [Google Scholar] [PubMed]
- Xi, S.C.; Tam, P.C.; Brown, G.M.; Pang, S.F.; Shiu, S.Y. Potential involvement of mt1 receptor and attenuated sex steroid-induced calcium influx in the direct anti-proliferative action of melatonin on androgen-responsive LNCaP human prostate cancer cells. J. Pineal Res. 2000, 29, 172–183. [Google Scholar] [CrossRef]
- Kontek, R.; Nowicka, H. The modulatory effect of melatonin on genotoxicity of irinotecan in healthy human lymphocytes and cancer cells. Drug Chem. Toxicol. 2013, 36, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yang, Y.; Fan, C.; Han, J.; Wang, D.; Di, S.; Hu, W.; Liu, D.; Li, X.; Reiter, R.J.; et al. Melatonin as a potential anticarcinogen for non-small-cell lung cancer. Oncotarget 2016, 7, 46768–46784. [Google Scholar] [CrossRef]
- Dillon, D.C.; Easley, S.E.; Asch, B.B.; Cheney, R.T.; Brydon, L.; Jockers, R.; Winston, J.S.; Brooks, J.S.; Hurd, T.; Asch, H.L. Differential expression of high-affinity melatonin receptors (MT1) in normal and malignant human breast tissue. Am. J. Clin. Pathol. 2002, 118, 451–458. [Google Scholar] [CrossRef]
- Sargazi, F.; Shokrzadeh, M.; Abediankenari, S.; Hoseini, S.V.; Nasrabadi, N.N.; Najafi, M.; Haghi-Aminjan, H.; Mirmajidi, S.H.; Ataee, R. Expression of MT1 receptor in patients with gastric adenocarcinoma and its relationship with clinicopathological features. Neuro Endocrinol. Lett. 2018, 39, 111–118. [Google Scholar]
- Nasrabadi, N.N.; Ataee, R.; Abediankenari, S.; Shokrzadeh, M.; Najafi, M.; Hoseini, S.V.; Jan, H.H. Expression of MT2 receptor in patients with gastric adenocarcinoma and its relationship with clinicopathological features. J. Gastrointest. Cancer 2014, 45, 54–60. [Google Scholar] [CrossRef]
- Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Potes, Y.; Shabeeb, D.; Musa, A. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci. 2019, 228, 228–241. [Google Scholar] [CrossRef]
- Mazzoccoli, G.; Carughi, S.; De Cata, A.; La Viola, M.; Vendemiale, G. Melatonin and cortisol serum levels in lung cancer patients at different stages of disease. Med. Sci. Monit. 2005, 11, CR284–CR288. [Google Scholar]
- Collaborators, G.T. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: A systematic analysis from the Global Burden of Disease Study 2015. Lancet 2017, 389, 1885–1906. [Google Scholar] [CrossRef]
- Unlu, M.; Fidan, F.; Sezer, M.; Tetik, L.; Sahin, O.; Esme, H.; Koken, T.; Serteser, M. Effects of melatonin on the oxidant/antioxidant status and lung histopathology in rabbits exposed to cigarette smoke. Respirology 2006, 11, 422–428. [Google Scholar] [CrossRef]
- Okazaki, I.; Ishikawa, S.; Ando, W.; Sohara, Y. Lung Adenocarcinoma in Never Smokers: Problems of Primary Prevention from Aspects of Susceptible Genes and Carcinogens. Anticancer Res. 2016, 36, 6207–6224. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Luo, D.; Yao, B.; Yang, D.M.; Lin, S.; Girard, L.; DeBerardinis, R.J.; Minna, J.D.; Xie, Y.; Xiao, G. Systematic Analysis of Gene Expression in Lung Adenocarcinoma and Squamous Cell Carcinoma with a Case Study of FAM83A and FAM83B. Cancers 2019, 11, 886. [Google Scholar] [CrossRef]
- Richtmann, S.; Wilkens, D.; Warth, A.; Lasitschka, F.; Winter, H.; Christopoulos, P.; Herth, F.J.F.; Muley, T.; Meister, M.; Schneider, M.A. FAM83A and FAM83B as Prognostic Biomarkers and Potential New Therapeutic Targets in NSCLC. Cancers 2019, 11, 652. [Google Scholar] [CrossRef]
- Slominski, A.; Fischer, T.W.; Zmijewski, M.A.; Wortsman, J.; Semak, I.; Zbytek, B.; Slominski, R.M.; Tobin, D.J. On the role of melatonin in skin physiology and pathology. Endocrine 2005, 27, 137–148. [Google Scholar] [CrossRef]
- Slominski, R.M.; Reiter, R.J.; Schlabritz-Loutsevitch, N.; Ostrom, R.S.; Slominski, A.T. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol. Cell Endocrinol. 2012, 351, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Han, Y.; Huang, L.; Li, Q.; Ma, D. Expression and Clinical Significance of TTF-1 and p63 in NSCLC. Zhongguo Fei Ai Za Zhi 2009, 12, 995–999. [Google Scholar] [CrossRef]
- Lin, F.Y.; Lin, C.W.; Yang, S.F.; Lee, W.J.; Lin, Y.W.; Lee, L.M.; Chang, J.L.; Weng, W.C.; Lin, C.H.; Chien, M.H. Interactions between environmental factors and melatonin receptor type 1A polymorphism in relation to oral cancer susceptibility and clinicopathologic development. PLoS ONE 2015, 10, e0121677. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, L.; Xie, H.; Dong, Z.; Wu, W.; Kong, J.; Chen, G.; Wu, C. Expression of p63, p40 and CK5/6 in small cell lung cancer. Zhonghua Bing Li Xue Za Zhi 2015, 44, 644–647. [Google Scholar]
- Kaelin, W. The p53 gene family. Oncogene 1999, 18, 7701–7705. [Google Scholar] [CrossRef] [Green Version]
- Santoro, R.; Mori, F.; Marani, M.; Grasso, G.; Cambria, A.; Blandino, G.; Muti, P.; Strano, S. Blockage of melatonin receptors impairs p53-mediated prevention of DNA damage accumulation. Carcinogenesis 2013, 34, 1051–1061. [Google Scholar] [CrossRef]
- Lee, S.M. Is EGFR expression important in non-small cell lung cancer? Thorax 2006, 61, 98–99. [Google Scholar] [CrossRef] [Green Version]
- Ohsaki, Y.; Tanno, S.; Fujita, Y.; Toyoshima, E.; Fujiuchi, S.; Nishigaki, Y.; Ishida, S.; Nagase, A.; Miyokawa, N.; Hirata, S.; et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol. Rep. 2000, 7, 603–607. [Google Scholar] [CrossRef]
- Lissoni, P.; Brivio, F.; Fumagalli, L.; Messina, G.; Vigoré, L.; Parolini, D.; Colciago, M.; Rovelli, F. Neuroimmunomodulation in medical oncology: Application of psychoneuroimmunology with subcutaneous low-dose IL-2 and the pineal hormone melatonin in patients with untreatable metastatic solid tumors. Anticancer Res. 2008, 28, 1377–1381. [Google Scholar]
- Lissoni, P.; Paolorossi, F.; Ardizzoia, A.; Barni, S.; Chilelli, M.; Mancuso, M.; Tancini, G.; Conti, A.; Maestroni, G.J. A randomized study of chemotherapy with cisplatin plus etoposide versus chemoendocrine therapy with cisplatin, etoposide and the pineal hormone melatonin as a first-line treatment of advanced non-small cell lung cancer patients in a poor clinical state. J. Pineal Res. 1997, 23, 15–19. [Google Scholar] [CrossRef]
- Shin, I.S.; Park, J.W.; Shin, N.R.; Jeon, C.M.; Kwon, O.K.; Kim, J.S.; Kim, J.C.; Oh, S.R.; Ahn, K.S. Melatonin reduces airway inflammation in ovalbumin-induced asthma. Immunobiology 2014, 219, 901–908. [Google Scholar] [CrossRef]
- Marseglia, L.; D’Angelo, G.; Manti, S.; Salpietro, C.; Arrigo, T.; Barberi, I.; Reiter, R.J.; Gitto, E. Melatonin and atopy: Role in atopic dermatitis and asthma. Int. J. Mol. Sci. 2014, 15, 13482–13493. [Google Scholar] [CrossRef]
- Song, N.; Kim, A.J.; Kim, H.J.; Jee, H.J.; Kim, M.; Yoo, Y.H.; Yun, J. Melatonin suppresses doxorubicin-induced premature senescence of A549 lung cancer cells by ameliorating mitochondrial dysfunction. J. Pineal Res. 2012, 53, 335–343. [Google Scholar] [CrossRef]
- Bonnefond, A.; Froguel, P. Disentangling the Role of Melatonin and its Receptor MTNR1B in Type 2 Diabetes: Still a Long Way to Go? Curr. Diab. Rep. 2017, 17, 122. [Google Scholar] [CrossRef]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef]
- Detterbeck, F.C.; Boffa, D.J.; Kim, A.W.; Tanoue, L.T. The Eighth Edition Lung Cancer Stage Classification. Chest 2017, 151, 193–203. [Google Scholar] [CrossRef]
- Remmele, W.; Stegner, H.E. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 1987, 8, 138–140. [Google Scholar]
- Atkins, D.; Reiffen, K.A.; Tegtmeier, C.L.; Winther, H.; Bonato, M.S.; Störkel, S. Immunohistochemical detection of EGFR in paraffin-embedded tumor tissues: Variation in staining intensity due to choice of fixative and storage time of tissue sections. J. Histochem. Cytochem. 2004, 52, 893–901. [Google Scholar] [CrossRef]
Parameter | Histology | Mean (SD) | Median |
---|---|---|---|
MT1 | Total | 6.2 (3.4) | 6 |
AC | 6 (3.6) | ||
SCC | 6.8 (3.3) | ||
MT2 | Total | 4.1 (3.1) | 3 |
AC | 2.9 (2.4) | ||
SCC | 5.5 (3.2) | ||
EGFR | Total | 0.7 (1) | 0 |
AC | 0.5 (0.9) | ||
SCC | 1 (1) | ||
p63 | Total | 2.1 (1.7) | 2 |
AC | 1 (1.2) | ||
SCC | 3.4 (1.2) | ||
TTF-1 | Total | 1.8 (1.6) | 1 |
AC | 2.9 (1.4) | ||
SCC | 0.9 (1.1) |
A | ||||||||
Overall Survival (OS) | ||||||||
Clinico-pathological Parameter | All | |||||||
Univariate | Multivariate | |||||||
p-value | HR | 95% HR CI | p-value | |||||
Gender (female vs male) | 0.0003 | 1.4899 | 1.1794–1.8823 | 0.0008 | ||||
Age (<60 vs ≥60) | 0.0018 | 1.4805 | 1.2176–1.8002 | 0.00008 | ||||
Tumor size (pT1 vs pT2–T4) | <0.0001 | 1.401 | 1.1054–1.8243 | 0.0061 | ||||
Lymph nodes (pN- vs pN+) | <0.0001 | 1.5495 | 1.2324–1.9483 | 0.0002 | ||||
Stage (I vs II-IV) | <0.0001 | 1.3223 | 1.1138–1.7246 | 0.0039 | ||||
Smoking (no vs yes) | 0.0365 | 1.1872 | 0.893–1.5783 | 0.2274 | ||||
Melatonin receptor MT1 (low vs high) | 0.3927 | - | - | - | ||||
Melatonin receptor MT2 (low vs high) | 0.0049 | 0.8069 | 0.6628–0.9823 | 0.0324 | ||||
p63 (<25% vs ≥25%) | 0.0449 | 0.7873 | 0.646–0.9596 | 0.0018 | ||||
B | ||||||||
Overall Survival (OS) | ||||||||
Clinico-pathological Parameter | Non-Smoking Patients | Smoking Patients | ||||||
Univariate | Multivariate | Univariate | Multivariate | |||||
p-value | HR | 95% HR CI | p-value | p-value | HR | 95% HR CI | p-value | |
Gender (female vs male) | 0.03 | 1.62 | 0.925–2.8427 | 0.0914 | 0.0199 | 1.3478 | 1.0454–1.7376 | 0.0212 |
Age (<60 vs ≥60) | 0.2212 | - | - | - | 0.0113 | 1.4436 | 1.1704–1.7805 | 0.0006 |
Tumor size (pT1 vs pT2–T4) | 0.0888 | - | - | - | <0.0001 | 1.4534 | 1.1085–1.9058 | 0.0068 |
Lymph nodes (pN- vs pN+) | 0.0942 | - | - | - | <0.0001 | 1.6264 | 1.2732–2.0777 | 0.0001 |
Stage (I vs II–IV) | 0.0024 | 2.2151 | 1.2262–4.0016 | 0.0084 | <0.0001 | 1.2265 | 0.9227–1.6303 | 0.1597 |
Smoking (no vs yes) | - | - | - | - | - | - | - | - |
Melatonin receptor MT1 (low vs high) | 0.3062 | - | - | - | 0.5774 | - | - | - |
Melatonin receptor MT2 (low vs high) | 0.2244 | - | - | - | 0.0043 | 0.7524 | 0.6166–0.9181 | 0.0051 |
p63 (<25% vs ≥25%) | 0.1854 | - | - | - | 0.0631 | - | - | - |
C | ||||||||
Overall Survival (OS) | ||||||||
Clinico-pathological Parameter | Adenocarcinoma (AC) | Squamous Cell Carcinoma (SCC) | ||||||
Univariate | Multivariate | Univariate | Multivariate | |||||
p-value | HR | 95% HR C | p-value | p-value | HR | 95% HR C | p-value | |
Gender (female vs male) | 0.0018 | 1.608 | 1.1378–2.2724 | 0.0071 | 0.2972 | - | - | - |
Tumor size (pT1 vs pT2–T4) | 0.0093 | 1.5116 | 1.0256–2.2281 | 0.0368 | 0.0029 | 1.5846 | 1.0448–2.4032 | 0.0303 |
Lymph nodes (pN- vs pN+) | <0.0001 | 1.8762 | 1.2851–2.7393 | 0.001 | 0.0199 | 1.301 | 0.9127–1.9094 | 0.1402 |
Malignancy grade (G1 vs G2-G3) | 0.5698 | - | - | - | 0.0364 | 1.4314 | 0.9783–2.094 | 0.0647 |
Stage (I vs II–IV) | <0.0001 | 1.2001 | 0.7749–1.8586 | 0.41368 | 0.0038 | 1.1052 | 0.721–1.6942 | 0.6461 |
Smoking (no vs yes) | 0.0248 | 1.4481 | 0.9169–2.2968 | 0.1112 | 0.5221 | - | - | - |
Melatonin receptor MT1 (low vs high) | 0.1514 | - | - | - | 0.5196 | - | - | - |
Melatonin receptor MT2 (low vs high) | 0.2937 | - | - | - | 0.077 | - | - | - |
EGFR (low vs high) | 0.0357 | 1.4349 | 1.0523–1.9565 | 0.0225 | 0.8002 | - | - | - |
Total | Adenocarcinoma (AC) | Squamous Cell Carcinoma (SCC) | ||||
---|---|---|---|---|---|---|
Characteristics | N = 786 | % | N = 307 | % | N = 324 | % |
Age | ||||||
≤50 | 38 | 4.8 | 20 | 6.5 | 9 | 2.8 |
>50 | 749 | 95.2 | 287 | 93.5 | 315 | 97.2 |
Gender | ||||||
Male | 574 | 73 | 199 | 64.8 | 264 | 81.5 |
Female | 212 | 27 | 108 | 35.2 | 60 | 18.5 |
Tumor grade | ||||||
G1 | 43 | 5.5 | 28 | 9.1 | 10 | 3.1 |
G2 | 572 | 72.8 | 204 | 66.4 | 258 | 79.6 |
G3 | 138 | 17.6 | 72 | 23.5 | 53 | 16.4 |
G4 | 0 | 0 | 0 | 0 | 0 | 0 |
N/A | 33 | 4.2 | 3 | 1 | 3 | 0.9 |
Tumor size | ||||||
pT1 | 208 | 26.5 | 78 | 25.4 | 86 | 26.5 |
pT2 | 341 | 43.4 | 175 | 57 | 141 | 43.5 |
pT3 | 156 | 19.8 | 51 | 16.6 | 66 | 20.4 |
pT4 | 81 | 10.3 | 3 | 1 | 31 | 9.6 |
Lymph nodes | ||||||
pN0 | 521 | 66.3 | 193 | 62.9 | 215 | 66.4 |
pN1 | 144 | 18.3 | 46 | 15 | 77 | 23.7 |
pN2 | 121 | 15.4 | 68 | 22.1 | 32 | 9.9 |
Metastases | ||||||
M0 | 780 | 99.2 | 303 | 98.7 | 323 | 99.7 |
M1 | 6 | 0.8 | 4 | 1.3 | 1 | 0.3 |
Stage | ||||||
I | 295 | 37.5 | 117 | 38.1 | 121 | 37.3 |
II | 263 | 33.5 | 86 | 28 | 124 | 38.3 |
III | 221 | 28.1 | 101 | 32.9 | 78 | 24.1 |
IV | 7 | 0.9 | 3 | 1 | 1 | 0.3 |
Smoking status | ||||||
Neg. | 121 | 15.4 | 53 | 17.3 | 27 | 8.3 |
Pos. | 665 | 84.6 | 254 | 82.7 | 297 | 91.7 |
Living in the city | ||||||
Neg. | 731 | 93 | 288 | 93.8 | 299 | 92.3 |
Pos. | 55 | 7 | 19 | 6.2 | 25 | 7.7 |
Distal Metastases | ||||||
Absent | 786 | 100 | 307 | 100 | 324 | 100 |
Present | 0 | 0 | 0 | 0 | 0 | 0 |
p63 | ||||||
Neg. | 205 | 26.1 | 134 | 43.6 | 18 | 5.6 |
Pos. | 571 | 72.6 | 169 | 55.1 | 304 | 93.8 |
N/A | 10 | 1.3 | 4 | 1.3 | 2 | 0.6 |
TTF-1 | ||||||
Neg. | 220 | 28 | 30 | 9.8 | 134 | 41.4 |
Pos. | 556 | 70.7 | 271 | 88.2 | 187 | 57.7 |
N/A | 10 | 1.3 | 6 | 2 | 3 | 0.9 |
EGFR | ||||||
Neg. | 469 | 59.7 | 220 | 71.7 | 143 | 44.1 |
Pos. | 317 | 40.3 | 87 | 28.3 | 181 | 55.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jablonska, K.; Nowinska, K.; Piotrowska, A.; Partynska, A.; Katnik, E.; Pawelczyk, K.; Kmiecik, A.; Glatzel-Plucinska, N.; Podhorska-Okolow, M.; Dziegiel, P. Prognostic Impact of Melatonin Receptors MT1 and MT2 in Non-Small Cell Lung Cancer (NSCLC). Cancers 2019, 11, 1001. https://doi.org/10.3390/cancers11071001
Jablonska K, Nowinska K, Piotrowska A, Partynska A, Katnik E, Pawelczyk K, Kmiecik A, Glatzel-Plucinska N, Podhorska-Okolow M, Dziegiel P. Prognostic Impact of Melatonin Receptors MT1 and MT2 in Non-Small Cell Lung Cancer (NSCLC). Cancers. 2019; 11(7):1001. https://doi.org/10.3390/cancers11071001
Chicago/Turabian StyleJablonska, Karolina, Katarzyna Nowinska, Aleksandra Piotrowska, Aleksandra Partynska, Ewa Katnik, Konrad Pawelczyk, Alicja Kmiecik, Natalia Glatzel-Plucinska, Marzenna Podhorska-Okolow, and Piotr Dziegiel. 2019. "Prognostic Impact of Melatonin Receptors MT1 and MT2 in Non-Small Cell Lung Cancer (NSCLC)" Cancers 11, no. 7: 1001. https://doi.org/10.3390/cancers11071001
APA StyleJablonska, K., Nowinska, K., Piotrowska, A., Partynska, A., Katnik, E., Pawelczyk, K., Kmiecik, A., Glatzel-Plucinska, N., Podhorska-Okolow, M., & Dziegiel, P. (2019). Prognostic Impact of Melatonin Receptors MT1 and MT2 in Non-Small Cell Lung Cancer (NSCLC). Cancers, 11(7), 1001. https://doi.org/10.3390/cancers11071001