State of the Art of Natural Killer Cell Imaging: A Systematic Review
Abstract
:1. Introduction
NK Imaging: Implications for Immunotherapy
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Search Methods for Identification of Studies
2.4. Data Extraction and Management
2.5. Risk Assessment of Bias in Included Studies
3. Results and Discussion
3.1. Data Synthesis
3.2. Optical Imaging
3.3. Magnetic Resonance Imaging
3.4. Nuclear Medicine Imaging
3.5. Future Perspectives
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Animals/Patients selection | Index test | Reference standard | Flow and timing | |||||
---|---|---|---|---|---|---|---|---|
Was a consecutive or random sample patients enrolled? | Were the inclusion/exclusions criteria properly defined? | Were NK cells properly isolated? | Can the labeling method synthesis be a source of bias? (QCs, SA) | Were the index test results interpreted without knowledge of the results of the reference standard? | Were further in vitro, ex vivo tests performed to support main results? | Is the used reference standard appropriate for the study? | Was there an appropriate interval between index tests and reference standard? | Did all patients receive a reference standard? |
Could the selection of patients have introduced bias? | Could the conduct or interpretation of the index test have introduced bias? | Could the reference standard or its interpretation have introduced bias? | Did all patients receive the same reference standard? |
References
- Salavoura, K.; Kolialexi, A.; Tsangaris, G.; Mavrou, A. Development of cancer in patients with primary immunodeficiencies. Anticancer. Res. 2008, 28, 1263–1269. [Google Scholar] [PubMed]
- Mueller, B.U.; Pizzo, P.A. Cancer in children with primary or secondary immunodeficiencies. J. Pediatr. 1995, 126, 1–10. [Google Scholar] [CrossRef]
- Beatty, G.L.; Gladney, W.L. Immune Escape Mechanisms as a Guide for Cancer Immunotherapy. Clin. Cancer. Res. 2015, 15, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Herberman, R.B.; Nunn, M.E.; Lavrin, D.H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int. J. Cancer. 1975, 16, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, R.; Klein, E.; Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 1975, 5, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Coca, S.; Perez-Piqueras, J.; Martinez, D.; Colmenarejo, A.; Saez, M.A.; Vallejo, C.; Martos, J.A.; Moreno, M. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer. 1997, 79, 2320–2328. [Google Scholar] [CrossRef]
- Ishigami, S.; Natsugoe, S.; Tokuda, K.; Nakajo, A.; Che, X.; Iwashige, H.; Aridome, K.; Hokita, S.; Aikou, T. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 2000, 88, 577–583. [Google Scholar] [CrossRef]
- Zeelen, C.; Paus, C.; Draper, D.; Heskamp, S.; Signore, A.; Galli, F.; Griessinger, C.M.; Aarntzen, E.H. In vivo imaging of tumor-infiltrating immune cells: Implications for cancer immunotherapy. Q. J. Nucl. Med. Mol. Imaging. 2018, 62, 56–77. [Google Scholar] [CrossRef]
- Vaquer, S.; Jorda, J.; de la Osa, L.E.; de los Heros, A.J.; Lopez-Garcia, N.; de Mon, A.M. Clinical implications of natural killer (NK) cytotoxicity in patients with squamous cell carcinoma of the uterine cervix. Gynecol. Oncol. 1990, 36, 90–92. [Google Scholar] [CrossRef]
- Ochoa, M.C.; Minute, L.; Rodriguez, I.; Garasa, S.; Perez-Ruiz, E.; Inogés, S.; Melero, I.; Berraondo, P. Antibody-dependent cell cytotoxicity: Immunotherapy strategies enhancing effector NK cells. Immunol. Cell Biol. 2017, 95, 347–355. [Google Scholar] [CrossRef]
- Souza-Fonseca-Guimaraes, F.; Cursons, J.; Huntington, N.D. The Emergence of Natural Killer Cells as a Major Target in Cancer Immunotherapy. Trends Immunol. 2019, 40, 142–158. [Google Scholar] [CrossRef] [PubMed]
- Ames, E.; Murphy, W.J. Advantages and Clinical Applications of Natural Killer Cells in Cancer Immunotherapy. Cancer Immunol. Immunother. 2014, 63, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Chen, Y.; Xiao, W.; Sun, R.; Tian, Z. NK cell-based immunotherapy for malignant diseases. Cell. Mol. Immunol. 2013, 10, 230–252. [Google Scholar] [CrossRef]
- McKay, K.; Moore, P.C.; Smoller, B.R.; Hiatt, K.M. Association between natural killer cells and regression in melanocytic lesions. Hum Pathol. 2011, 42, 1960–1964. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Wolf, I.G.; Finke, S.; Trojaneck, B.; Denkena, A.; Lefterova, P.; Schwella, N.; Heuft, H.G.; Prange, G.; Korte, M.; Takeya, M.; et al. Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. Br. J. Cancer. 1999, 81, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Konjevic, G.; Mirjacic Martinovic, K.; Vuletic, A.; Babovic, N. In vitro IL-2 or IFN-alpha-induced NKG2D and CD161 NK cell receptor expression indicates novel aspects of NK cell activation in metastatic melanoma patients. Melanoma Res. 2010, 20, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Dahlberg, C.I.; Sarhan, D.; Chrobok, M.; Duru, A.D.; Alici, E. Natural Killer Cell-Based Therapies Targeting Cancer: Possible Strategies to Gain and Sustain Anti-Tumor Activity. Front. Immunol. 2015, 6, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, T.; Wynberg, J.; Srinivasan, R.; Becknell, B.; McCoy, J.P.; Takahashi, Y.; Suffredini, D.A.; Linehan, W.M.; Caligiuri, M.A.; Childs, R.W. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 2004, 104, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Reiners, K.S.; Kessler, J.; Sauer, M.; Rothe, A.; Hansen, H.F.; Reusch, U.; Hucke, C.; Köhl, U.; Dürkop, H.; Engert, A.; et al. Rescue of impaired NK cell activity in Hodgkin lymphoma with bispecific antibodies in vitro and in patients. Mol Ther. 2013, 21, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Simonetta, F.; Alvarez, M.; Negrin, R.S. Natural Killer Cells in Graft-versus-Host-Disease after Allogeneic Hematopoietic Cell Transplantation. Front. Immunol. 2017, 8, 465. [Google Scholar] [CrossRef] [PubMed]
- Dolstra, H.; Roeven, M.W.H.; Spanholtz, J.; Hangalapura, B.; Tordoir, M.; Maas, F.; Leenders, M.; Bohme, F.; Kok, N.; Trilsbeek, C.; et al. A Phase I study of allogeneic Natural Killer Cell Therapy generated from cord blood hematopoietic stem and progenitor cells in elderly acute myeloid leukemia patients. Blood 2015, 126, 1357. [Google Scholar]
- Granzin, M.; Wagner, J.; Köhl, U.; Cerwenka, A.; Huppert, V.; Ullrich, E. Shaping of Natural Killer cell antitumor activity by ex vivo cultivation. Front Immunol. 2017, 8, 458. [Google Scholar] [CrossRef] [PubMed]
- Alderson, K.L.; Sondel, P.M. Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J. Biomed. Biotechnol. 2011, 2011, 379123. [Google Scholar] [CrossRef] [PubMed]
- Woll, P.S.; Martin, C.H.; Miller, J.S.; Kaufman, D.S. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J. Immunol. 2005, 175, 5095–5103. [Google Scholar] [CrossRef] [PubMed]
- Hermanson, D.L.; Bendzick, L.; Pribyl, L.; McCullar, V.; Vogel, R.I.; Miller, J.S.; Geller, M.A.; Kaufman, D.S. Induced Pluripotent Stem Cell-Derived Natural Killer Cells for Treatment of Ovarian Cancer. Stem Cells. 2016, 34, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Tam, Y.K.; Maki, G.; Miyagawa, B.; Hennemann, B.; Tonn, T.; Klingemann, H.G. Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. Hum. Gene Ther. 1999, 10, 1359–1373. [Google Scholar] [CrossRef]
- Boyiadzis, M.; Agha, M.; Redner, R.L.; Sehgal, A.; Im, A.; Hou, J.; Farah, R.; Dorritie, K.A.; Raptis, A.; Lim, S.H.; et al. Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy 2017, 19, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Tam, Y.K.; Martinson, J.A.; Doligosa, K.; Klingemann, H.G. Ex vivo expansion of the highly cytotoxic human natural killer-92 cell-line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy. Cytotherapy 2003, 5, 259–272. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, J.; Jiang, W.; Chen, Y.; Tian, Z. Natural killer cell lines in tumor immunotherapy. Front. Med. 2012, 6, 56–66. [Google Scholar] [CrossRef]
- Klingemann, H.; Boissel, L.; Toneguzzo, F. Natural Killer Cells for Immunotherapy—Advantages of the NK-92 Cell Line over Blood NK Cells. Front. Immunol. 2016, 7, 91. [Google Scholar] [CrossRef]
- Miller, J.S.; Tessmer-Tuck, J.; Blake, N.; Lund, J.; Scott, A.; Blazar, B.R.; Orchard, P.J. Endogenous IL2 production by natural killer cells maintains cytotoxic and proliferative capacity following retroviral-mediated gene transfer. Exp. Hematol. 1997, 25, 1140–1148. [Google Scholar] [PubMed]
- Kim, H.W.; Kim, J.E.; Hwang, M.H.; Jeon, H.Y.; Lee, S.W.; Lee, J.; Zeon, S.K.; Ahn, B.C. Enhancement of Natural Killer Cell Cytotoxicity by Sodium/Iodide Symporter Gene-Mediated Radioiodine Pretreatment in Breast Cancer Cells. PLoS ONE 2013, 8, e70194. [Google Scholar] [CrossRef] [PubMed]
- Michen, S.; Temme, A. Genetically engineered natural killer cells as a means for adoptive tumor immunotherapy. Crit. Rev. Immunol. 2016, 36, 329–347. [Google Scholar] [CrossRef] [PubMed]
- Talebian, L.; Fischer, D.A.; Wu, J.; Channon, J.Y.; Sentman, C.L.; Ernstoff, M.S.; Meehan, K.R. The natural killer-activating receptor, NKG2D, on CD3+CD8+ T cells plays a critical role in identifying and killing autologous myeloma cells. Transfusion 2014, 54, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, U.N.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, 143–152. [Google Scholar] [CrossRef]
- Aide, N.; Hicks, R.J.; Le Tourneau, C.; Lheureux, S.; Fanti, S.; Lopci, E. FDG PET/CT for assessing tumor response to immunotherapy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 238. [Google Scholar] [CrossRef]
- Signore, A.; Lauri, C.; Auletta, S.; Anzola, K.; Galli, F.; Casali, M.; Versari, A.; Glaudemans, A.W.J.M. Immuno-Imaging to Predict Treatment Response in Infection, Inflammation and Oncology. J. Clin. Med. 2019, 14, 8. [Google Scholar] [CrossRef]
- Grimaldi, S.; Terroir, M.; Caramella, C. Advances in oncological treatment: Limitations of RECIST 1.1 criteria. Q. J. Nucl. Med. Mol. Imaging 2018, 62, 129–139. [Google Scholar] [CrossRef]
- Lee, H.W.; Gangadaran, P.; Kalimuthu, S.; Ahn, B.C. Advances in Molecular Imaging Strategies for In Vivo Tracking of Immune Cells. BioMed. Res. Int. 2016, 10. [Google Scholar] [CrossRef]
- Gangadaran, P.; Ahn, B.C. Molecular Imaging: A Useful Tool for the Development of Natural Killer Cell-Based Immunotherapies. Front. Immunol. 2017, 8, 1090. [Google Scholar] [CrossRef]
- Ottobrini, L.; Martelli, C.; Trabattoni, D.L.; Clerici, M.; Lucignani, G. In vivo imaging of immune cell trafficking in cancer. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 949–968. [Google Scholar] [CrossRef] [PubMed]
- Galli, F.; Histed, S.; Aras, O. NK cell imaging by in vitro and in vivo labelling approaches. Q. J. Nucl. Med. Mol. Imaging 2014, 58, 276–283. [Google Scholar] [PubMed]
- Jha, P.; Golovko, D.; Bains, S.; Hostetter, D.; Meier, R.; Wendland, M.F.; Daldrup-Link, H.E. Monitoring of NK-Cell Immunotherapy using non-invasive Imaging Modalities. Cancer Res. 2010, 70, 6109–6113. [Google Scholar] [CrossRef] [PubMed]
- Sadikot, R.T.; Blackwell, T.S. Bioluminescence Imaging. Proc. Am. Thorac. Soc. 2005, 2, 537–540. [Google Scholar] [CrossRef]
- Badr, C.E. Bioluminescence imaging: Basics and practical limitations. Methods Mol. Biol. 2014, 1098, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Sta Maria, N.S.; Barnes, S.R.; Jacobs, R.E. In Vivo Monitoring of Natural Killer Cell Trafficking During Tumor Immunotherapy. Magn. Reson. Insights 2014, 7, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Ntziachristos, V.; Bremer, C.; Weissleder, R. Fluorescence imaging with near-infrared light: New technological advances that enable in vivo molecular imaging. Eur. Radiol. 2003, 13, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Masedunskas, A.; Milberg, O.; Porat-Shliom, N.; Sramkova, M.; Wigand, T.; Amornphimoltham, P.; Weigert, R. Intravital microscopy. A practical guide on imaging intracellular structures in live animals. Bioarchitecture 2012, 2, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Heymann, F.; Niemietz, P.M.; Peusquens, J.; Ergen, C.; Kohlhepp, M.; Mossanen, J.C.; Schneider, C.; Vogt, M.; Tolba, R.H.; Trautwein, C.; et al. Long term intravital multiphoton microscopy imaging of immune cells in healthy and diseased liver using CXCR6.Gfp reporter mice. J. Vis. Exp. 2015, 97, e52607. [Google Scholar] [CrossRef] [PubMed]
- Mace, E.M.; Orange, J.S. High- and Super-Resolution Microscopy Imaging of the NK Cell Immunological Synapse. Methods Mol. Biol. 2016, 1441, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Brilot, F.; Strowig, T.; Roberts, S.M.; Arrey, F.; Munz, C. NK cell survival mediated through the regulatory synapse with human DCs requires IL-15Ralpha. J. Clin. Invest. 2007, 117, 3316–3329. [Google Scholar] [CrossRef] [PubMed]
- Beuneu, H.; Deguine, J.; Breart, B.; Mandelboim, O.; Di Santo, J.P.; Bousso, P. Dynamic behavior of NK cells during activation in lymph nodes. Blood 2009, 114, 3227–3234. [Google Scholar] [CrossRef] [PubMed]
- Hengerer, A.; Grimm, J. Molecular magnetic resonance imaging. Biomed. Imaging Interv. J. 2006, 2, e8. [Google Scholar] [CrossRef] [PubMed]
- Schick, F. Whole-body MRI at high field: Technical limits and clinical potential. Eur. Radiol. 2005, 15, 946–959. [Google Scholar] [CrossRef] [PubMed]
- Rahmim, A.; Zaidi, H. PET versus SPECT: Strengths, limitations and challenges. Nucl. Med. Commun. 2008, 29, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Roca, M.; de Vries, E.F.J.; Jamar, F.; Israel, O.; Signore, A. Guidelines for the labelling of leucocytes with 111In-oxine. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 835–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, E.F.J.; Roca, M.; Jamar, F.; Israel, O.; Signore, A. Guidelines for the labelling of leucocytes with 99mTc-HMPAO. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 842–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapovalova, M.; Pyper, S.R.; Moriarity, B.S.; LeBeau, A.M. The Molecular Imaging of Natural Killer Cells. Mol. Imaging 2018, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Tavri, S.; Jha, P.; Meier, R.; Henning, T.D.; Müller, T.; Hostetter, D.; Knopp, C.; Johansson, M.; Reinhart, V.; Boddington, S.; et al. Optical imaging of cellular immunotherapy against prostate cancer. Mol. Imaging. 2009, 8, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.T.; Cho, M.Y.; Noh, Y.W.; Chung, J.W.; Chung, B.H. Near-infrared emitting fluorescent nanocrystals-labelled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy. Nanotechnology 2009, 20, 475102. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.S.; Shin, J.H.; Ren, G.; Park, M.J.; Cheng, K.; Chen, X.; Wu, J.C.; Sunwoo, J.B.; Chenga, Z. The manipulation of natural killer cells to target tumor sites using magnetic nanoparticles. Biomaterials 2012, 33, 5584–5592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uong, T.N.T.; Lee, K.H.; Ahn, S.J.; Kim, K.W.; Min, J.J.; Hyun, H.; Yoon, M.S. Real-Time Tracking of Ex Vivo-Expanded Natural Killer Cells Toward Human Triple-Negative Breast Cancers. Front. Immunol. 2018, 9, 825. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kang, T.H.; Yoo, W.; Kong, K.; Cho, D.; Kim, J.; Kwon, E.S.; Kim, S. An Antibody Designed to Improve Adoptive NK-Cell Therapy Inhibits Pancreatic Cancer Progression in a Murine Model. Cancer Immunol. Res. 2019, 7, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Meier, R.; Golovko, D.; Tavri, S.; Henning, T.D.; Knopp, C.; Piontek, G.; Rudelius, M.; Heinrich, P.; Wels, W.S.; Daldrup-Link, H. Depicting adoptive immunotherapy for prostate cancer in an animal model with magnetic resonance imaging. Magn. Reson. Med. 2011, 65, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Mallett, C.L.; McFadden, C.; Chen, Y.; Foster, P.J. Migration of iron-labelled KHYG-1 natural killer cells to subcutaneous tumors in nude mice, as detected by magnetic resonance imaging. Cytotherapy 2012, 14, 743–751. [Google Scholar] [CrossRef]
- Sheu, A.Y.; Zhang, Z.; Omary, R.A.; Larson, A.C. MRI-monitored transcatheter intra-arterial delivery of SPIO-labelled natural killer cells to hepatocellular carcinoma: Preclinical studies in a rodent model. Invest. Radiol. 2013, 48, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Daldrup-Link, H.E.; Meier, R.; Rudelius, M.; Piontek, G.; Piert, M.; Metz, S.; Settles, M.; Uherek, C.; Wels, W.; Schlegel, J.; et al. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur. Radiol. 2005, 15, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Gordon, A.; Zheng, L.; Li, W.; Guo, Y.; Sun, J.; Zhang, G.; Han, G.; Larson, A.C.; Zhang, Z. Clinically applicable magnetic-labeling of natural killer cells for MRI of transcatheter delivery to liver tumors: Preclinical validation for clinical translation. Nanomedicine 2015, 10, 1761–1774. [Google Scholar] [CrossRef]
- Somanchi, S.S.; Kennis, B.A.; Gopalakrishnan, V.; Lee, D.A.; Bankson, J.A. In Vivo 19F-Magnetic Resonance Imaging of Adoptively Transferred NK Cells. Methods Mol. Biol. 2016, 1441, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Bouchlaka, M.N.; Ludwig, K.D.; Gordon, J.W.; Kutz, M.P.; Bednarz, B.P.; Fain, S.B.; Capitini, C.M. 19F-MRI for monitoring human NK cells in vivo. Oncoimmunology 2016, 5, e1143996. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Wang, X.; Zheng, L.; Lyu, T.; Figini, M.; Wang, B.; Procissi, D.; Shangguan, J.; Sun, C.; Pan, L.; et al. MRI-guided interventional natural killer cell delivery for liver tumor treatment. Cancer Med. 2018, 7, 1860–1869. [Google Scholar] [CrossRef] [PubMed]
- Hercend, T.; Farace, F.; Baume, D.; Charpentier, F.; Droz, J.P.; Triebel, F.; Escudier, B. Immunotherapy with lymphokine-activated natural killer cells and recombinant interleukin-2: A feasibility trial in metastatic renal cell carcinoma. J. Biol. Response Mod. 1990, 9, 546–555. [Google Scholar]
- Brand, J.M.; Meller, B.; Von Hof, K.; Luhm, J.; Bähre, M.; Kirchner, H.; Frohn, C. Kinetics and organ distribution of allogeneic natural killer lymphocytes transfused into patients suffering from renal cell carcinoma. Stem Cells Dev. 2004, 13, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Meller, B.; Frohn, C.; Brand, J.M.; Lauer, I.; Schelper, L.F.; von Hof, K.; Kirchner, H.; Richter, E.; Baehre, M. Monitoring of a new approach of immunotherapy with allogenic (111) In-labelled NK cells in patients with renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Matera, L.; Galetto, A.; Bello, M.; Baiocco, C.; Chiappino, I.; Castellano, G.; Stacchini, A.; Satolli, M.A.; Mele, M.; Sandrucci, S.; et al. In vivo migration of labelled autologous natural killer cells to liver metastases in patients with colon carcinoma. J. Transl. Med. 2006, 4, 49. [Google Scholar] [CrossRef] [PubMed]
- Galli, F.; Rapisarda, A.S.; Stabile, H.; Malviya, G.; Manni, I.; Bonanno, E.; Piaggio, G.; Gismondi, A.; Santoni, A.; Signore, A. In vivo imaging of natural killer cell trafficking in tumors. J. Nucl. Med. 2015, 56, 1575–1580. [Google Scholar] [CrossRef]
- Melder, R.J.; Brownell, A.L.; Shoup, T.M.; Brownell, G.L.; Jain, R.K. Imaging of activated natural killer cells in mice by positron emission tomography: Preferential uptake in tumors. Cancer Res. 1993, 53, 5867–5871. [Google Scholar]
- Melder, R.J.; Elmaleh, D.; Brownell, A.L.; Brownell, G.L.; Jain, R.K. A method for labeling cells for positron emission tomography (PET) studies. J. Immunol. Methods 1994, 175, 79–87. [Google Scholar] [CrossRef]
- Meier, R.; Piert, M.; Piontek, G.; Rudelius, M.; Oostendorp, R.A.; Senekowitsch-Schmidtke, R.; Henning, T.D.; Wels, W.S.; Uherek, C.; Rummeny, E.J.; et al. Tracking of [18F] FDG labelled natural killer cells to HER2/neu-positive tumors. Nucl. Med. Biol. 2008, 35, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Suck, G.; Branch, D.R.; Smyth, M.J.; Miller, R.G.; Vergidis, J.; Fahim, S.; Keating, A. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity. Exp. Hematol. 2005, 33, 1160–1171. [Google Scholar] [CrossRef] [PubMed]
- Pozzilli, P.; Signore, A.; Pozzilli, C. Detrimental effect of indium-111 on humanlymphocytes. J. Nucl. Med. 1984, 25, 830. [Google Scholar] [PubMed]
- Kircher, M.F.; Gambhir, S.S.; Grimm, J. Noninvasive cell-tracking methods. Nat. Rev. Clin. Oncol. 2011, 8, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Panelli, M.C.; White, R.; Foster, M.; Martin, B.; Wang, E.; Smith, K.; Marincola, F.M. Forecasting the cytokine storm following systemic interleukin (IL)-2 administration. J. Transl. Med. 2004, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Ji, T.; Lang, J.; Ning, B.; Qi, F.; Wang, H.; Zhang, Y.; Zhao, R.; Yang, X.; Zhang, L.; Li, W.; et al. Enhanced Natural Killer Cell Immunotherapy by Rationally Assembling Fc Fragments of Antibodies onto Tumor Membranes. Adv. Mater. 2019, 31, e1804395. [Google Scholar] [CrossRef]
- Scheerens, H.; Malong, A.; Bassett, K.; Boyd, Z.; Gupta, V.; Harris, J.; Mesick, C.; Simnett, S.; Stevens, H.; Gilbert, H.; et al. Current status of companion and complementary diagnostics: Strategic considerations for development and launch. Clin. Transl. Sci. 2017, 10, 84–92. [Google Scholar] [CrossRef]
- Emens, L.A. It’s TIME for a biomarker-driven approach to cancer immunotherapy. J Immunother. Cancer. 2016, 4, 43. [Google Scholar] [CrossRef]
- Jørgensen, J.T. Companion diagnostic assays for PD-1/PD-L1 checkpoint inhibitors in NSCLC. Expert Rev. Mol. Diagn. 2016, 16, 131–133. [Google Scholar] [CrossRef]
- Sottile, R.; Tannazi, M.; Johansson, M.H.; Cristiani, C.M.; Calabró, L.; Ventura, V.; Cutaia, O.; Chiarucci, C.; Covre, A.; Garofalo, C.; et al. NK- and T-cell subsets in malignant mesothelioma patients: Baseline pattern and changes in the context of anti-CTLA-4 therapy. Int. J. Cancer 2019. (Epub ahead of print). [Google Scholar] [CrossRef]
Heading | Modality | Advantages | Disadvantages | References |
---|---|---|---|---|
Optical imaging | MI | Visualization of NK cell processes and interactions; time-lapse imaging | Photobleaching, phototoxicity; diffraction limit of light; no translational potential for in-vivo imaging | [48,49,50,51,52] |
BLI | Short acquisition time; high sensitivity (100 cells); high signal-to-noise ratio (no background signal) | No translational potential for in-vivo imaging; diffraction and absorption of light by tissues; immunogenicity or gene silencing; erroneous readouts; signal quantification; half-life and stability of enzymes; limited penetration depth (3 cm) | [44,45] | |
FLI | Low cost; radiation free; easy labeling method; real-time | Tissue autofluorescence and absorption; limited penetration depth (1 cm); poor spatial resolution (photon scattering); limited quantification | [46,47] | |
Nuclear medicine imaging | PET | High sensitivity and specificity; no depth limit; clinically applicable; quantitative | Ionizing radiation exposure; expensive; relatively low spatial resolution 5 mm; no standardized NK cell labeling method | [55,56,57] |
SPECT | High sensitivity and specificity; no depth limit; clinically applicable; cell tracking at late time points | Ionizing radiation exposure; expensive; long scan times; relatively low spatial resolution 10 mm; no standardized NK cell labeling method | [55,56,57] | |
Magnetic Resonance Imaging | MRI | High resolution (more than 0.1 mm); no ionizing radiation exposure; clinically applicable; possible quantification (indirect) | Lower sensitivity than PET/SPECT; high costs; contrast agents interference with NK cells; long scan times | [53,54] |
Technique | Paper [Ref.] | Modality | Cell type | Labeling agent | Subject | Disease/Model | Purpose |
---|---|---|---|---|---|---|---|
Optical | Tavri, S., 2009 [61] | OI | NK-92/NK-92-scFv(MOC31)-zeta | DiD (C67H103CIN2O3S; 1,19-dioctadecyl-3,3,39,39 tetramethylindodicarbocyanine) | Rat | Prostate cancer | Tracking |
Lim, Y.T., 2009 [62] | OI | NK-92MI | CD56 Ab-Quantum Dots (QD705) | Mouse | Malignant melanoma | Tumor targeting and therapeutic efficacy | |
Jang, E., 2012 [63] | MRI | NK-92MI | Fe3O4/SiO2 nanoparticles | Mouse | B cell lymphoma | Tumor targeting | |
Uong, T.N.T., 2018 [64] | OI | Human NK | ESNF13 | Mouse | Triple-negative breast cancer | Real time tracking and tumor targeting | |
Lee, J., 2019 [65] | OI | Human NK | DiR (1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindotricarbocyanine Iodide) | Mouse | Pancreatic ductal adenocarcinoma | Efficacy of NK-cell -recruiting protein-conjugated antibody (NRP-body) | |
Magnetic Resonance | Meier, R., 2011 [66] | MRI | NK-92/NK-92-scFv(MOC31)-zeta | Ferumoxides | Mouse | Prostate cancer | Tumor targeting |
Mallett, C.L., 2012 [67] | MRI | KHYG-1 | MoldayION Rhodamine B | Mouse | Prostate cancer | Tumor targeting with intravenous, intraperitoneal, subcutaneous injection | |
Sheu, A.Y., 2013 [68] | MRI | NK-92MI | SPION | Rat | Hepatocellular carcinoma | Tumor targeting | |
Daldrup-Link, H.E., 2005 [69] | MRI | NK-92/NK-92-scFv(FRP5)-zeta | Ferumoxides/Ferucarbotran | Mouse | HER2/neu-positive mammary tumors | Tumor targeting | |
Li K., 2015 [70] | MRI | NK-92MI | Heparin-protamine-ferumoxytol nancomplex | Rat | Hepatocellular carcinoma | Tracking and tumor targeting | |
Somanchi, S.S., 2016 [71] | MRI | Human NK | fluorine-19 | Mouse | Brain tumor | Biodistribution, homing and persistence | |
Bouchlaka, M.N., 2016 [72] | MRI | Human NK | fluorine-19 | Mouse | Neuroblastoma, melanoma and B cell lymphoma | Tracking and tumor targeting | |
Su, Z., 2018 [73] | MRI | Mouse NK (LNK) | Ferumoxytol (Feraheme®) | Rat | Hepatocellular carcinoma | Tumor targeting and therapeutic efficacy | |
Nuclear Medicine | Hercend, T., 1990 [74] | NM (γ- camera) | Lymphokine-activated natural killer (LANAK) | 111In-oxine | Human | Metastatic renal cell cancer | Biodistribution |
Brand, J.M., 2004 [75] | NM (γ- camera) | Allogenic human NK | 111In-oxine | Human | Metastatic renal cell cancer | Biodistribution and tumor targeting | |
Meller, B., 2004 [76] | NM (γ- camera) | Allogenic human NK | 111In-oxine | Human | Metastatic renal cell cancer | Tumor targeting | |
Matera, L., 2006 [77] | NM (γ- camera) | Adherent NK cell (A-NK) | 111In-oxine | Human | Colon carcinoma | Difference in tumor targeting with intravenous or intra-arterial injection | |
Galli, F., 2015 [78] | NM (γ- camera) | Allogenic human NK | 99mTc-anti-CD56 mAb | Mouse | Anaplastic thyroid cancer | Tracking and tumor targeting | |
Melder, R.J., 1993 [79] | NM (PET) | Murine activated NK (ANK) | [11C]methyl iodide | Mouse | FSaII Fibrosarcoma | Biodistribution and tumor targeting | |
Melder, R.J., 1994 [80] | NM (PET) | Murine activated NK (ANK) | [18F]FDG; [11C]methyl iodide | Mouse | None | Biodistribution | |
Meier, R., 2008 [81] | NM (PET) | NK-92/NK-92-scFv(FRP5)-zeta | [18F]FDG | Mouse | HER2/neu-positive mammary tumors | Tracking |
Technique | Paper | Risk of Bias | Applicability Concerns | |||||
---|---|---|---|---|---|---|---|---|
Subject Selection | Index Test | Reference Standard | Flow and Timing | Subject Selection | Index Test | Reference Standard | ||
Optical | Tavri, S., 2009 [61] | |||||||
Lim, Y.T., 2009 [62] | ||||||||
Jang, E.S., 2012 [63] | ||||||||
Uong, T.N.T., 2018 [64] | ||||||||
Lee, J., 2019 [65] | ||||||||
Magnetic Resonance | Meier, R., 2011 [66] | |||||||
Mallett, C.L., 2012 [67] | ||||||||
Sheu, A.Y., 2013 [68] | ||||||||
Daldrup-Link, H.E., 2005 [69] | ||||||||
Li, K., 2015 [70] | ||||||||
Somanchi, S.S., 2016 [71] | ||||||||
Bouchlaka, M.N., 2016 [72] | ||||||||
Su, Z., 2018 [73] | ||||||||
Nuclear Medicine | Hercend, T., 1990 [74] | |||||||
Brand, J.M., 2004 [75] | ||||||||
Meller, B., 2004 [76] | ||||||||
Matera, L., 2006 [77] | ||||||||
Galli, F., 2015 [78] | ||||||||
Melder, R.J., 1993 [79] | ||||||||
Melder, R.J., 1994 [80] | ||||||||
Meier, R., 2008 [81] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varani, M.; Auletta, S.; Signore, A.; Galli, F. State of the Art of Natural Killer Cell Imaging: A Systematic Review. Cancers 2019, 11, 967. https://doi.org/10.3390/cancers11070967
Varani M, Auletta S, Signore A, Galli F. State of the Art of Natural Killer Cell Imaging: A Systematic Review. Cancers. 2019; 11(7):967. https://doi.org/10.3390/cancers11070967
Chicago/Turabian StyleVarani, Michela, Sveva Auletta, Alberto Signore, and Filippo Galli. 2019. "State of the Art of Natural Killer Cell Imaging: A Systematic Review" Cancers 11, no. 7: 967. https://doi.org/10.3390/cancers11070967
APA StyleVarani, M., Auletta, S., Signore, A., & Galli, F. (2019). State of the Art of Natural Killer Cell Imaging: A Systematic Review. Cancers, 11(7), 967. https://doi.org/10.3390/cancers11070967