Early Colorectal Cancers Provide New Evidence for a Lynch Syndrome-to-CMMRD Phenotypic Continuum
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Ethics
Appendix A.2. LS Diagnosis
Appendix A.3. CMMRD Diagnosis
Appendix A.4. Minigene Assays
Appendix A.5. Germline and Ex Vivo MSI
Appendix A.6. Methylation Tolerance Assays
Appendix A.7. Exome Sequencing (WES)
Appendix A.8. Modifier Effect on Age
Appendix A.9. Polygenic Risk Score (PRS)
Appendix A.10. Somatic WES
References
- Lynch, H.T.; De La Chapelle, A. Hereditary Colorectal Cancer. N. Engl. J. Med. 2003, 348, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, K.; Kratz, C.P.; Vasen, H.F.; Caron, O.; Colas, C.; Entz-Werle, N.; Gerdes, A.M.; Goldberg, Y.; Ilencikova, D.; Muleris, M.; et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: Suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J. Med. Genet. 2014, 51, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, K.; Beilken, A.; Nustede, R.; Ripperger, T.; Lamottke, B.; Ure, B.; Steinmann, D.; Reineke-Plaass, T.; Lehmann, U.; Zschocke, J.; et al. A novel germline POLE mutation causes an early onset cancer prone syndrome mimicking constitutional mismatch repair deficiency. Fam. Cancer 2017, 16, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, J.; Skytte, A.-B.; Sunde, L.; Lim, D.H.; Arends, M.J.; Happerfield, L.; Frayling, I.M.; Van Minkelen, R.; Woodward, E.R.; Tischkowitz, M.D.; et al. Multilocus Inherited Neoplasia Alleles Syndrome. JAMA Oncol. 2016, 2, 373–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, G.; Ge, Y.; Gu, D.; Du, M.; Chu, H.; Chen, J.; Zhang, Z.; Wang, M. Functional annotation of colorectal cancer susceptibility loci identifies MLH1 rs1800734 associated with MSI patients. Gut 2016, 65, 1227–1228. [Google Scholar] [CrossRef] [PubMed]
- Savio, A.J.; Bapat, B. Modulation of transcription factor binding and epigenetic regulation of the MLH1 CpG island and shore by polymorphism rs1800734 in colorectal cancer. Epigenetics 2017, 12, 441–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zecevic, M.; Amos, C.I.; Gu, X.; Campos, I.M.; Jones, J.S.; Lynch, P.M.; Rodriguez-Bigas, M.A.; Frazier, M.L. IGF1 Gene Polymorphism and Risk for Hereditary Nonpolyposis Colorectal Cancer. J. Natl. Cancer Inst. 2006, 98, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Comstock, C.E.; Augello, M.A.; Benito, R.P.; Karch, J.; Tran, T.H.; Utama, F.E.; Tindall, E.A.; Wang, Y.; Burd, C.J.; Groh, E.M.; et al. Cyclin D1 splice variants: Polymorphism, risk, and isoform specific regulation in prostate cancer. Clin. Cancer Res. 2009, 15, 5338–5349. [Google Scholar] [CrossRef]
- Pagano, M.; Theodoras, A.M.; Tam, S.W.; Draetta, G.F. Cyclin D1-mediated inhibition of repair and replicative DNA synthesis in human fibroblasts. Genes Dev. 1994, 8, 1627–1639. [Google Scholar] [CrossRef]
- Abulí, A.; Fernández-Rozadilla, C.; Alonso-Espinaco, V.; Muñoz, J.; Gonzalo, V.; Bessa, X.; González, D.; Clofent, J.; Cubiella, J.; Morillas, J.D.; et al. Case-control study for colorectal cancer genetic susceptibility in EPICOLON: Previously identified variants and mucins. BMC Cancer 2011, 11, 339. [Google Scholar]
- Bonilla, C.; Lefevre, J.H.; Winney, B.; Johnstone, E.; Tonks, S.; Colas, C.; Day, T.; Hutnik, K.; Boumertit, A.; Midgley, R.; et al. Cyclin D1 rare variants in UK multiple adenoma and early-onset colorectal cancer patients. J. Hum. Genet. 2011, 56, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Le Marchand, L.; Wilkens, L.R.; Kolonel, L.N.; Henderson, B.E. The MTHFR C677T Polymorphism and Colorectal Cancer: The Multiethnic Cohort Study. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1198–1203. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J.; Figueiredo, J.C.; Lee, W.; Poynter, J.N.; Conti, D.; Duggan, D.J.; Campbell, P.T.; Newcomb, P.; Martinez, M.E.; Hopper, J.L.; et al. Genetic Variability in the MTHFR gene and colorectal cancer risk using the Colorectal Cancer Family Registry. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 89–100. [Google Scholar] [CrossRef] [PubMed]
- de Voer, R.M.; Hahn, M.M.; Weren, R.D.; Mensenkamp, A.R.; Gilissen, C.; van Zelst-Stams, W.A.; Spruijt, L.; Kets, C.M.; Zhang, J.; Venselaar, H.; et al. Identification of Novel Candidate Genes for Early-Onset Colorectal Cancer Susceptibility. PLoS Genet. 2016, 12, e1005880. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Jurado, C.; Franch-Expósito, S.; Muñoz, J.; Ocaña, T.; Carballal, S.; López-Cerón, M.; Cuatrecasas, M.; Vila-Casadesús, M.; Lozano, J.J.; Serra, E.; et al. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer. Eur. J. Hum. Genet. 2016, 24, 1501–1505. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, S.; Borg, A.; Kristoffersson, U.; Nilbert, M.; Wiebe, T.; Olsson, H. Higher occurrence of childhood cancer in families with germline mutations in BRCA2, MMR and CDKN2A genes. Fam. Cancer 2008, 7, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gay, M.; Vila-Casadesus, M.; Franch-Expósito, S.; Hernández-Illán, E.; Lozano, J.J.; Castellví-Bel, S. Mutational Signatures in Cancer (MuSiCa): A web application to implement mutational signatures analysis in cancer samples. BMC Bioinform. 2018, 19, 224. [Google Scholar]
- Donald, N.; Malik, S.; McGuire, J.L.; Monahan, K.J. The association of low penetrance genetic risk modifiers with colorectal cancer in lynch syndrome patients: A systematic review and meta-analysis. Fam. Cancer 2018, 17, 43–52. [Google Scholar] [CrossRef]
- Houlle, S.; Charbonnier, F.; Houivet, E.; Tinat, J.; Buisine, M.-P.; Caron, O.; Bénichou, J.; Baert-Desurmont, S.; Frebourg, T. Evaluation of Lynch syndrome modifier genes in 748 MMR mutation carriers. Eur. J. Hum. Genet. 2011, 19, 887–892. [Google Scholar] [CrossRef]
- Ryan, K.J.; Cooper, T.A. Muscle-specific splicing enhancers regulate inclusion of the cardiac troponin T alternative exon in embryonic skeletal muscle. Mol. Cell. Biol. 1996, 16, 4014–4023. [Google Scholar] [CrossRef] [Green Version]
- Ingham, D.; Diggle, C.P.; Berry, I.; Bristow, C.A.; Hayward, B.E.; Rahman, N.; Markham, A.F.; Sheridan, E.G.; Bonthron, D.T.; Carr, I.M. Simple Detection of Germline Microsatellite Instability for Diagnosis of Constitutional Mismatch Repair Cancer Syndrome. Hum. Mutat. 2013, 34, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Bodo, S.; Colas, C.; Buhard, O.; Collura, A.; Tinat, J.; Lavoine, N.; Guilloux, A.; Chalastanis, A.; Lafitte, P.; Coulet, F.; et al. Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents. Gastroenterology 2015, 149, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, K.; Schulz, M.H.; Long, Q.; Apweiler, R.; Ning, Z. Pindel: A pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 2009, 25, 2865–2871. [Google Scholar] [CrossRef] [PubMed]
- Raineri, E.; Ferretti, L.; Esteve-Codina, A.; Nevado, B.; Heath, S.; Perez-Enciso, M. SNP calling by sequencing pooled samples. BMC Bioinform. 2012, 13, 239. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang le, L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Dopazo, J.; Amadoz, A.; Bleda, M.; Garcia-Alonso, L.; Alemán, A.; Garcia-Garcia, F.; Rodríguez, J.A.; Daub, J.T.; Muntané, G.; Rueda, A.; et al. 267 Spanish Exomes Reveal Population-Specific Differences in Disease-Related Genetic Variation. Mol. Biol. Evol. 2016, 33, 1205–1218. [Google Scholar] [CrossRef] [Green Version]
- Dudbridge, F. Power and Predictive Accuracy of Polygenic Risk Scores. PLoS Genet. 2013, 9, e1003348. [Google Scholar] [CrossRef]
- Allgäuer, M.; Budczies, J.; Christopoulos, P.; Endris, V.; Lier, A.; Rempel, E.; Volckmar, A.-L.; Kirchner, M.; Von Winterfeld, M.; Leichsenring, J.; et al. Implementing tumor mutational burden (TMB) analysis in routine diagnostics—A primer for molecular pathologists and clinicians. Transl. Lung Cancer Res. 2018, 7, 703–715. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Stratton, M.R. Mutational signatures: The patterns of somatic mutations hidden in cancer genomes. Curr. Opin. Genet. Dev. 2014, 24, 52–60. [Google Scholar] [CrossRef] [PubMed]
Chromosome: Position | Reference Allele | Alternative Allele | Genotype | Gene | Variant | Location | HGMD | Automated InterVar | dbSNP ID | gnomAD NFE | CADD Phred | DANN Score | GERP++ Score | Interpro Domain |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1:11852412 | G | A | het | MTHFR | NM_005957:c.1555C>T, | exonic | - | Uncertain significance | rs45496998 | 0 | 34 | 0.999 | 4.19 | - |
p. (R519C) | ||||||||||||||
2:120639370 | A | G | het | PTPN4 | NM_002830:c.A377G, | exonic | - | Uncertain significance | NA | 0 | 6.13 | 0.998 | 5.41 | - |
p. (Y126C) | ||||||||||||||
3:37034946 | G | A | hom | MLH1 | NM_000249:c.-93G>A * | UTR5 | DFP | - | rs1800734 | 0.222 | - | |||
9:97876996 | C | T | het | FANCC | NM_000136:c.1073-4G>A | splicing/intronic | - | - | rs147695697 | 0 | - | - | - | - |
11:69462910 | G | A | het | CCND1 | NM_053056:c.723G>A, p.(P241P) | exonic | DFP | Benign | rs9344 | 0.465 | - | - | - | - |
12:102813337 | C | T | het | IGF1 | NM_000618:c.352G>A, | exonic | - | Likely pathogenic | rs151098426 | 0.001 | 24.1 | 0.998 | 5.85 | Insulin, conserved site |
p. (A118T) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Rozadilla, C.; Alvarez-Barona, M.; Schamschula, E.; Bodo, S.; Lopez-Novo, A.; Dacal, A.; Calviño-Costas, C.; Lancho, A.; Amigo, J.; Bello, X.; et al. Early Colorectal Cancers Provide New Evidence for a Lynch Syndrome-to-CMMRD Phenotypic Continuum. Cancers 2019, 11, 1081. https://doi.org/10.3390/cancers11081081
Fernández-Rozadilla C, Alvarez-Barona M, Schamschula E, Bodo S, Lopez-Novo A, Dacal A, Calviño-Costas C, Lancho A, Amigo J, Bello X, et al. Early Colorectal Cancers Provide New Evidence for a Lynch Syndrome-to-CMMRD Phenotypic Continuum. Cancers. 2019; 11(8):1081. https://doi.org/10.3390/cancers11081081
Chicago/Turabian StyleFernández-Rozadilla, Ceres, Miriam Alvarez-Barona, Esther Schamschula, Sahra Bodo, Anael Lopez-Novo, Andres Dacal, Consuelo Calviño-Costas, Angel Lancho, Jorge Amigo, Xabier Bello, and et al. 2019. "Early Colorectal Cancers Provide New Evidence for a Lynch Syndrome-to-CMMRD Phenotypic Continuum" Cancers 11, no. 8: 1081. https://doi.org/10.3390/cancers11081081
APA StyleFernández-Rozadilla, C., Alvarez-Barona, M., Schamschula, E., Bodo, S., Lopez-Novo, A., Dacal, A., Calviño-Costas, C., Lancho, A., Amigo, J., Bello, X., Cameselle-Teijeiro, J. M., Carracedo, A., Colas, C., Muleris, M., Wimmer, K., & Ruiz-Ponte, C. (2019). Early Colorectal Cancers Provide New Evidence for a Lynch Syndrome-to-CMMRD Phenotypic Continuum. Cancers, 11(8), 1081. https://doi.org/10.3390/cancers11081081