Unique Aberrations in Intimal Sarcoma Identified by Next-Generation Sequencing as Potential Therapy Targets
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neuville, A.; Collin, F.; Bruneval, P.; Parrens, M.; Thivolet, F.; Gomez-Brouchet, A.; Terrier, P.; de Montpreville, V.T.; Le Gall, F.; Hostein, I.; et al. Intimal sarcoma is the most frequent primary cardiac sarcoma: Clinicopathologic and molecular retrospective analysis of 100 primary cardiac sarcomas. Am. J. Surg. Pathol. 2014, 38, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Dewaele, B.; Floris, G.; Finalet-Ferreiro, J.; Fletcher, C.D.; Coindre, J.M.; Guillou, L.; Hogendoorn, P.C.; Wozniak, A.; Vanspauwen, V.; Schöffski, P.; et al. Coactivated platelet-derived growth factor receptor {alpha} and epidermal growth factor receptor are potential therapeutic targets in intimal sarcoma. Cancer Res. 2010, 70, 7304–7314. [Google Scholar] [CrossRef] [PubMed]
- Bode-Lesniewska, B.; Zhao, J.; Speel, E.J.; Biraima, A.M.; Turina, M.; Komminoth, P.; Heitz, P.U. Gains of 12q13–14 and overexpression of mdm2 are frequent findings in intimal sarcomas of the pulmonary artery. Virchows Arch. 2001, 438, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Maeda, D.; Yoshida, M.; Yoshida, A.; Kudo-Asabe, Y.; Nanjyo, H.; Izumi, C.; Yamamoto, F.; Inoue, M.; Shibata, H.; et al. Cardiac intimal sarcoma with PDGFRbeta mutation and co-amplification of PDGFRalpha and MDM2: An autopsy case analyzed by whole-exome sequencing. Virchows Arch. 2017, 471, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Van Dievel, J.; Sciot, R.; Delcroix, M.; Vandeweyer, R.O.; Debiec-Rychter, M.; Dewaele, B.; Cornillie, J.; Van Cann, T.; Meyns, B.; Schöffski, P. Single-Center Experience with Intimal Sarcoma, an Ultra-Orphan, Commonly Fatal Mesenchymal Malignancy. Oncol. Res. Treat. 2017, 40, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Sebenik, M.; Ricci, A., Jr.; DiPasquale, B.; Mody, K.; Pytel, P.; Jee, K.J.; Knuutila, S.; Scholes, J. Undifferentiated intimal sarcoma of large systemic blood vessels: Report of 14 cases with immunohistochemical profile and review of the literature. Am. J. Surg. Pathol. 2005, 29, 1184–1193. [Google Scholar] [CrossRef]
- Tajima, S.; Takanashi, Y.; Takahashi, T.; Neyatani, H. Intimal sarcoma of the abdominal aorta with platelet-derived growth factor receptor alpha overexpression and amplification in mural invasive cells and pulmonary metastatic cells but not in intimal spreading cells. Pathol. Int. 2015, 65, 426–431. [Google Scholar] [CrossRef]
- Zhang, H.; Macdonald, W.D.; Erickson-Johnson, M.; Wang, X.; Jenkins, R.B.; Oliveira, A.M. Cytogenetic and molecular cytogenetic findings of intimal sarcoma. Cancer Genet. Cytogenet. 2007, 179, 146–149. [Google Scholar] [CrossRef]
- Fukuda, W.; Morohashi, S.; Fukuda, I. Intimal sarcoma of the pulmonary artery—Diagnostic challenge. Acta Cardiol. 2011, 66, 539–541. [Google Scholar] [CrossRef]
- Anderson, M.B.; Kriett, J.M.; Kapelanski, D.P.; Tarazi, R.; Jamieson, S.W. Primary pulmonary artery sarcoma: A report of six cases. Ann. Thorac. Surg. 1995, 59, 1487–1490. [Google Scholar] [CrossRef]
- Blackmon, S.H.; Rice, D.C.; Correa, A.M.; Mehran, R.; Putnam, J.B.; Smythe, W.R.; Walkes, J.C.; Walsh, G.L.; Moran, C.; Singh, H.; et al. Management of primary pulmonary artery sarcomas. Ann. Thorac. Surg. 2009, 87, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Tamborini, E.; Casieri, P.; Miselli, F.; Orsenigo, M.; Negri, T.; Piacenza, C.; Stacchiotti, S.; Gronchi, A.; Pastorino, U.; Pierotti, M.A.; et al. Analysis of potential receptor tyrosine kinase targets in intimal and mural sarcomas. J. Pathol. 2007, 212, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Shehatha, J.; Saxena, P.; Clarke, B.; Dunning, J.; Konstantinov, I.E. Surgical management of extensive pulmonary artery sarcoma. Ann. Thorac. Surg. 2009, 87, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
- Nakahira, A.; Ogino, H.; Sasaki, H.; Katakami, N. Long-term survival of a pulmonary artery sarcoma produced by aggressive surgical resection and adjuvant chemoradiotherapy. Eur. J. Cardiothorac. Surg. 2007, 32, 388–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Roth, J.; Bode-Lesniewska, B.; Pfaltz, M.; Heitz, P.U.; Komminoth, P. Combined comparative genomic hybridization and genomic microarray for detection of gene amplifications in pulmonary artery intimal sarcomas and adrenocortical tumors. Genes Chromosomes Cancer 2002, 34, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Call, J.W.; Wang, Y.; Montoya, D.; Scherzer, N.J.; Heinrich, M.C. Survival in advanced GIST has improved over time and correlates with increased access to post-imatinib tyrosine kinase inhibitors: Results from Life Raft Group Registry. Clin. Sarcoma Res. 2019, 9, 019–0114. [Google Scholar]
- Pestana, R.C.; Groisberg, R.; Roszik, J.; Subbiah, V. Precision Oncology in Sarcomas: Divide and Conquer. JCO Precision Oncol. 2019, 1–16. [Google Scholar] [CrossRef]
- Groisberg, R.; Hong, D.S.; Holla, V.; Janku, F.; Piha-Paul, S.; Ravi, V.; Benjamin, R.; Kumar Patel, S.; Somaiah, N.; Conley, A.; et al. Clinical genomic profiling to identify actionable alterations for investigational therapies in patients with diverse sarcomas. Oncotarget 2017, 8, 39254–39267. [Google Scholar] [CrossRef]
- Bauer, T.M.; Gounder, M.M.; Weise, A.M.; Schwartz, G.K.; Carvajal, R.D.; Kumar, P.; Zernovak, O.; Beck, A.; Doyle, J.; Mendell-Harary, J.; et al. A phase 1 study of MDM2 inhibitor DS-3032b in patients with well/de-differentiated liposarcoma (WD/DD LPS), solid tumors (ST) and lymphomas (L). J. Clin. Oncol. 2018, 36, 11514. [Google Scholar] [CrossRef]
- Ardini, E.; Magnaghi, P.; Orsini, P.; Galvani, A.; Menichincheri, M. Anaplastic Lymphoma Kinase: Role in specific tumours, and development of small molecule inhibitors for cancer therapy. Cancer Lett. 2010, 299, 81–94. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Y.; Hamrick, H.E.; Duerksen-Hughes, P.J. ATM, ATR and DNA-PK: Initiators of the cellular genotoxic stress responses. Carcinogenesis 2003, 24, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- Adolphe, C.; Hetherington, R.; Ellis, T.; Wainwright, B. Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res 2006, 66, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Xiu, M.X.; Liu, Y.M. The role of oncogenic Notch2 signaling in cancer: A novel therapeutic target. Am. J. Cancer Res. 2019, 9, 837–854. [Google Scholar] [PubMed]
- Li, M.; Zhao, H.; Zhang, X.; Wood, L.D.; Anders, R.A.; Choti, M.A.; Pawlik, T.M.; Daniel, H.D.; Kannangai, R.; Offerhaus, G.J.; et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat. Genet. 2011, 43, 828–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Lin, W.; Bao, J.; Cai, Q.; Pan, X.; Bai, M.; Yuan, Y.; Shi, J.; Sun, Y.; Han, M.R.; et al. A Comprehensive cis-eQTL Analysis Revealed Target Genes in Breast Cancer Susceptibility Loci Identified in Genome-wide Association Studies. Am. J. Hum. Genet. 2018, 102, 890–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liu, B.; Connolly, I.D.; Kakusa, B.W.; Pan, W.; Nagpal, S.; Montgomery, S.B.; Hayden Gephart, M. Recurrently Mutated Genes Differ between Leptomeningeal and Solid Lung Cancer Brain Metastases. J. Thorac. Oncol. 2018, 13, 1022–1027. [Google Scholar] [CrossRef] [Green Version]
- AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017, 7, 818–831. [Google Scholar] [CrossRef] [Green Version]
- AACR GENIE Data Guide. Available online: https://www.aacr.org/Research/Research/Documents/20190713_GENIE_Data_Guide_6.1-public_final.pdf (accessed on 15 August 2019).
Patient | Cancer Type Detailed | Sample Type Detailed | Age at Seq Report | Sex | Primary Race | Ethnicity |
---|---|---|---|---|---|---|
Patient 1 | Intimal Sarcoma | Metastasis site unspecified | 26 | Male | Asian | Non-Spanish/non-Hispanic |
Patient 2 | Intimal Sarcoma | Primary tumor | 20 | Male | White | Non-Spanish/non-Hispanic |
Patient 3 | Intimal Sarcoma | Metastasis site unspecified | 42 | Male | White | Non-Spanish/non-Hispanic |
Patient 4 | Intimal Sarcoma | Primary tumor | 47 | Female | White | Non-Spanish/non-Hispanic |
Patient 5 | Intimal Sarcoma | Primary tumor | 46 | Female | Asian | Non-Spanish/non-Hispanic |
Patient 6 | Intimal Sarcoma | Primary tumor | 18 | Female | White | Spanish/Hispanic |
Patient 7 | Intimal Sarcoma | Primary tumor | 34 | Male | White | Non-Spanish/non-Hispanic |
Patient 8 | Intimal Sarcoma | Primary tumor | 69 | Female | White | Non-Spanish/non-Hispanic |
Patient 9 | Intimal Sarcoma | Metastasis site unspecified | 76 | Female | White | Non-Spanish/non-Hispanic |
Patient 10 | Intimal Sarcoma | Primary tumor | 56 | Female | White | Non-Spanish/non-Hispanic |
Patient 11 | Intimal Sarcoma | Primary tumor | 46 | Male | White | Non-Spanish/non-Hispanic |
Patient 12 | Intimal Sarcoma | Primary tumor | 71 | Female | White | Non-Spanish/non-Hispanic |
Patient 13 | Intimal Sarcoma | Primary tumor | 49 | Female | Asian | Unknown |
Sample | Gene | Variant Classification | Mutation |
---|---|---|---|
Patient 1 | ASXL1 | Missense | D864E |
Patient 1 | ASXL1 | Missense | G1299R |
Patient 1 | GLI1 | Missense | R171Q |
Patient 1 | IDH2 | Missense | I153V |
Patient 1 | KDR | Splice Region | |
Patient 1 | MDM2 | Intron | |
Patient 1 | MYD88 | Silent | D247D |
Patient 1 | NF1 | Missense | L121V |
Patient 1 | RARA | Intron | |
Patient 1 | RET | Missense | M1009T |
Patient 1 | SETBP1 | Missense | P1526Q |
Patient 2 | ARHGEF12 | Missense | E186K |
Patient 2 | KDM5A | Missense | S1408N |
Patient 2 | TMEM127 | Missense | I188V |
Patient 2 | TOPBP1 | Missense | L1499P |
Patient 3 | ERBB4 | Missense | H893R |
Patient 5 | BARD1 | Missense | A502N |
Patient 5 | ERCC5 | Missense | S453C |
Patient 5 | SOX2 | Missense | A263E |
Patient 5 | TP53 | Missense | R273C |
Patient 5 | U2AF1 | Missense | G212A |
Patient 7 | ATR | Missense | D1568E |
Patient 7 | CDKN1A | Frame Shift Del | R140Qfs*56 |
Patient 7 | FAT1 | Missense | P1333L |
Patient 7 | PDGFRB | Missense | D850V |
Patient 7 | PTCH1 | Missense | L321I |
Patient 7 | RECQL4 | Missense | E37K |
Patient 8 | ALK | Missense | E1460Q |
Patient 8 | GATA1 | Missense | G165S |
Patient 8 | GRIN2A | Missense | R1309Q |
Patient 8 | INPP4A | Missense | P773S |
Patient 8 | JAK3 | Missense | W716R |
Patient 8 | NOTCH4 | Missense | A1439T |
Patient 8 | PAK7 | Frame Shift Del | P612Lfs*3 |
Patient 10 | PDGFRB | Missense | M772V |
Patient 11 | EIF1AX | Missense | G6R |
Patient 11 | ERCC2 | Missense | T49A |
Patient 11 | MDM4 | Missense | D173H |
Patient 11 | NSD1 | Nonsense | Q2274* |
Patient 11 | SETD2 | Frame Shift Del | V1070Lfs*44 |
Patient 12 | EP300 | Missense | S2404A |
Patient 12 | HGF | Frame Shift Ins | T4Gfs*39 |
Patient 13 | ATM | Intron |
Sample | Fusion | DNA Support | RNA Support | Frame | Comments |
---|---|---|---|---|---|
Patient 7 | PDE4DIP-NOTCH2 | yes | unknown | in frame | Note: The PDE4DIP (NM_022359)-NOTCH2 (NM_024408) rearrangement event is a deletion which results in the fusion of PDE4DIP exon 1 and NOTCH2 exons 27–34. Its functional significance is undetermined. |
Patient 10 | MRPS30-ARID2 | yes | unknown | unknown | ARID2 (NM_152641) rearrangement: t(5;12) (p12;q12) (chr5:g.44601610::chr12:g.46245800) Note: The ARID2 rearrangement is a translocation which results in the truncation of ARID2 exons 15–21. One of the breakpoints is within ARID2 exon15. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roszik, J.; Khan, A.; Conley, A.P.; Livingston, J.A.; Groisberg, R.; Ravi, V.; Carmagnani Pestana, R.; Sen, S.; Subbiah, V. Unique Aberrations in Intimal Sarcoma Identified by Next-Generation Sequencing as Potential Therapy Targets. Cancers 2019, 11, 1283. https://doi.org/10.3390/cancers11091283
Roszik J, Khan A, Conley AP, Livingston JA, Groisberg R, Ravi V, Carmagnani Pestana R, Sen S, Subbiah V. Unique Aberrations in Intimal Sarcoma Identified by Next-Generation Sequencing as Potential Therapy Targets. Cancers. 2019; 11(9):1283. https://doi.org/10.3390/cancers11091283
Chicago/Turabian StyleRoszik, Jason, Abir Khan, Anthony P. Conley, J. Andrew Livingston, Roman Groisberg, Vinod Ravi, Roberto Carmagnani Pestana, Shiraj Sen, and Vivek Subbiah. 2019. "Unique Aberrations in Intimal Sarcoma Identified by Next-Generation Sequencing as Potential Therapy Targets" Cancers 11, no. 9: 1283. https://doi.org/10.3390/cancers11091283
APA StyleRoszik, J., Khan, A., Conley, A. P., Livingston, J. A., Groisberg, R., Ravi, V., Carmagnani Pestana, R., Sen, S., & Subbiah, V. (2019). Unique Aberrations in Intimal Sarcoma Identified by Next-Generation Sequencing as Potential Therapy Targets. Cancers, 11(9), 1283. https://doi.org/10.3390/cancers11091283