Small-Molecule Inhibitors (SMIs) as an Effective Therapeutic Strategy for Endometrial Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Small-Molecule Inhibitors for Endometrial Cancer Therapy
2.1. Targeting PI3K/AKT/mTOR Pathway
2.1.1. mTOR Inhibitors
2.1.2. PI3K Inhibitors
2.1.3. Dual mTOR/PI3K Inhibitors
2.1.4. AKT Inhibitors
2.2. Targeting Receptor Tyrosine Kinases
2.2.1. EGFR Inhibitors
2.2.2. MAPK Inhibitors
2.2.3. Pan-RTK Inhibitors Targeting FGFR
2.2.4. Pan-RTK Inhibitors Targeting Angiogenesis (VEGFR)
2.2.5. Pan-RTK Inhibitors of Other Targets
2.3. Targeting DNA Damage Repair and Cell Cycle Progression
2.3.1. Poly ADP Ribose Polymerase (PARP) Inhibitors (PARPi)
2.3.2. New DDR Inhibitors (DDRi)
2.3.3. Cyclin-Dependent Kinase Inhibitors (CDKi)
2.4. Targeting DNA and Histone Modifiers
2.5. Targeting Immune Checkpoints
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokhman, J.V. Two pathogenetic types of endometrial carcinoma. Gynecol. Oncol. 1983, 15, 10–17. [Google Scholar] [CrossRef]
- Getz, G.; Gabriel, S.B.; Cibulskis, K.; Lander, E.; Sivachenko, A.; Sougnez, C.; Lawrence, M.; Kandoth, C.; Dooling, D.; Fulton, R.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef] [Green Version]
- León-Castillo, A.; Gilvazquez, E.; Nout, R.; Smit, V.T.H.B.M.; McAlpine, J.N.; McConechy, M.; Kommoss, S.; Brucker, S.Y.; Carlson, J.W.; Epstein, E.; et al. Clinicopathological and molecular characterisation of ‘multiple-classifier’ endometrial carcinomas. J. Pathol. 2020, 250, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Fleming, G.F. Systemic chemotherapy for uterine carcinoma: Metastatic and adjuvant. J. Clin. Oncol. 2007, 25, 2983–2990. [Google Scholar] [CrossRef]
- Lavanya, V.; Adil, M.; Ahmed, N.; Rishi, A.K.; Jamal, S. Small molecule inhibitors as emerging cancer therapeutics. Integr. Cancer Sci. Ther. 2014, 1, 39–46. [Google Scholar] [CrossRef]
- Hecht, J.L.; Mutter, G.L. Molecular and pathologic aspects of endometrial carcinogenesis. J. Clin. Oncol. 2006, 24, 4783–4791. [Google Scholar] [CrossRef]
- Remmerie, M.; Janssens, V. Targeted therapies in type II endometrial cancers: Too little, but not too late. Int. J. Mol. Sci. 2018, 19, 2380. [Google Scholar] [CrossRef] [Green Version]
- Barra, F.; Evangelisti, G.; Ferro Desideri, L.; Di Domenico, S.; Ferraioli, D.; Vellone, V.G.; De Cian, F.; Ferrero, S. Investigational PI3K/AKT/mTOR inhibitors in development for endometrial cancer. Expert Opin. Investig. Drugs 2019, 28, 131–142. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. MTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [Green Version]
- Slomovitz, B.M.; Lu, K.H.; Johnston, T.; Coleman, R.L.; Munsell, M.; Broaddus, R.R.; Walker, C.; Ramondetta, L.M.; Burke, T.W.; Gershenson, D.M.; et al. A phase 2 study of the oral mammalian target of rapamycin inhibitor, everolimus, in patients with recurrent endometrial carcinoma. Cancer 2010, 116, 5415–5419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray-Coquard, I.; Favier, L.; Weber, B.; Roemer-Becuwe, C.; Bougnoux, P.; Fabbro, M.; Floquet, A.; Joly, F.; Plantade, A.; Paraiso, D.; et al. Everolimus as second- or third-line treatment of advanced endometrial cancer: ENDORAD, a phase II trial of GINECO. Br. J. Cancer 2013, 108, 1771–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slomovitz, B.M.; Jiang, Y.; Yates, M.S.; Soliman, P.T.; Johnston, T.; Nowakowski, M.; Levenback, C.; Zhang, Q.; Ring, K.; Munsell, M.F.; et al. Phase II study of everolimus and letrozole in patients with recurrent endometrial carcinoma. J. Clin. Oncol. 2015, 33, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Soliman, P.T.; Westin, S.N.; Iglesias, D.A.; Fellman, B.M.; Yuan, Y.; Zhang, Q.; Yates, M.S.; Broaddus, R.R.; Slomovitz, B.M.; Lu, K.H.; et al. Everolimus, letrozole, and metformin in women with advanced or recurrent endometrioid endometrial cancer: A multi-center, single arm, phase II study. Clin. Cancer Res. 2020, 26, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Wheler, J.J.; Moulder, S.L.; Naing, A.; Janku, F.; Piha-Paul, S.A.; Falchook, G.S.; Zinner, R.; Tsimberidou, A.M.; Fu, S.; Hong, D.S.; et al. Anastrozole and everolimus in advanced gynecologic and breast malignancies: Activity and molecular alterations in the PI3K/AKT/mTOR pathway. Oncotarget 2014, 5, 3029–3038. [Google Scholar] [CrossRef]
- Oza, A.M.; Elit, L.; Tsao, M.S.; Kamel-Reid, S.; Biagi, J.; Provencher, D.M.; Gotlieb, W.H.; Hoskins, P.J.; Ghatage, P.; Tonkin, K.S.; et al. Phase II study of temsirolimus in women with recurrent or metastatic endometrial cancer: A trial of the NCIC Clinical Trials Group. J. Clin. Oncol. 2011, 29, 3278–3285. [Google Scholar] [CrossRef]
- Goodwin, R.A.; Jamal, R.; Tu, D.; Walsh, W.; Dancey, J.; Oza, A.M.; Elit, L.; Eisenhauer, E.A. Clinical and toxicity predictors of response and progression to temsirolimus in women with recurrent or metastatic endometrial cancer. Gynecol. Oncol. 2013, 131, 315–320. [Google Scholar] [CrossRef]
- Aghajanian, C.; Filiaci, V.; Dizon, D.S.; Carlson, J.W.; Powell, M.A.; Secord, A.A.; Tewari, K.S.; Bender, D.P.; O’Malley, D.M.; Stuckey, A.; et al. A phase II study of frontline paclitaxel/carboplatin/bevacizumab, paclitaxel/carboplatin/temsirolimus, or ixabepilone/carboplatin/bevacizumab in advanced/recurrent endometrial cancer. Gynecol. Oncol. 2018, 150, 274–281. [Google Scholar] [CrossRef]
- Fleming, G.F.; Filiaci, V.L.; Marzullo, B.; Zaino, R.J.; Davidson, S.A.; Pearl, M.; Makker, V.; Burke, J.J.; Zweizig, S.L.; Van Le, L.; et al. Temsirolimus with or without megestrol acetate and tamoxifen for endometrial cancer: A gynecologic oncology group study. Gynecol. Oncol. 2014, 132, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, E.A.; Brady, W.E.; Walker, J.L.; Rotmensch, J.; Zhou, X.C.; Kendrick, J.E.; Yamada, S.D.; Schilder, J.M.; Cohn, D.E.; Harrison, C.R.; et al. Phase II trial of combination bevacizumab and temsirolimus in the treatment of recurrent or persistent endometrial carcinoma: A Gynecologic Oncology Group study. Gynecol. Oncol. 2013, 129, 22–27. [Google Scholar] [CrossRef]
- Colombo, N.; McMeekin, D.S.; Schwartz, P.E.; Sessa, C.; Gehrig, P.A.; Holloway, R.; Braly, P.; Matei, D.; Morosky, A.; Dodion, P.F.; et al. Ridaforolimus as a single agent in advanced endometrial cancer: Results of a single-arm, phase 2 trial. Br. J. Cancer 2013, 108, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Tsoref, D.; Welch, S.; Lau, S.; Biagi, J.; Tonkin, K.; Martin, L.A.; Ellard, S.; Ghatage, P.; Elit, L.; MacKay, H.J.; et al. Phase II study of oral ridaforolimus in women with recurrent or metastatic endometrial cancer. Gynecol. Oncol. 2014, 135, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Oza, A.M.; Pignata, S.; Poveda, A.; McCormack, M.; Clamp, A.; Schwartz, B.; Cheng, J.; Li, X.; Campbell, K.; Dodion, P.; et al. Randomized phase II trial of ridaforolimus in advanced endometrial carcinoma. J. Clin. Oncol. 2015, 33, 3576–3582. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Liu, H.; Li, S.; Xu, H. Keratinocyte growth factor protects endometrial cells from oxygen glucose deprivation/re-oxygenation via activating Nrf2 signaling. Biochem. Biophys. Res. Commun. 2018, 501, 178–185. [Google Scholar] [CrossRef]
- English, D.P.; Roque, D.M.; Carrara, L.; Lopez, S.; Bellone, S.; Cocco, E.; Bortolomai, I.; Schwartz, P.E.; Rutherford, T.; Santin, A.D. HER2/neu gene amplification determines the sensitivity of uterine serous carcinoma cell lines to AZD8055, a novel dual mTORC1/2 inhibitor. Gynecol. Oncol. 2013, 131, 753–758. [Google Scholar] [CrossRef]
- Bendell, J.C.; Rodon, J.; Burris, H.A.; De Jonge, M.; Verweij, J.; Birle, D.; Demanse, D.; De Buck, S.S.; Ru, Q.C.; Peters, M.; et al. Phase I, dose-escalation study of BKM120, an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 2012, 30, 282–290. [Google Scholar] [CrossRef]
- Heudel, P.E.; Fabbro, M.; Roemer-Becuwe, C.; Kaminsky, M.C.; Arnaud, A.; Joly, F.; Roche-Forestier, S.; Meunier, J.; Foa, C.; You, B.; et al. Phase II study of the PI3K inhibitor BKM120 in patients with advanced or recurrent endometrial carcinoma: A stratified type I-type II study from the GINECO group. Br. J. Cancer 2017, 116, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Matulonis, U.; Vergote, I.; Backes, F.; Martin, L.P.; McMeekin, S.; Birrer, M.; Campana, F.; Xu, Y.; Egile, C.; Ghamande, S. Phase II study of the PI3K inhibitor pilaralisib (SAR245408; XL147) in patients with advanced or recurrent endometrial carcinoma. Gynecol. Oncol. 2015, 136, 246–253. [Google Scholar] [CrossRef]
- Wheler, J.; Mutch, D.; Lager, J.; Castell, C.; Liu, L.; Jiang, J.; Traynor, A.M. Phase I Dose-Escalation Study of Pilaralisib (SAR245408, XL147) in Combination with Paclitaxel and Carboplatin in Patients with Solid Tumors. Oncologist 2017, 22, 377. [Google Scholar] [CrossRef]
- Weigelt, B.; Warne, P.H.; Lambros, M.B.; Reis-Filho, J.S.; Downward, J. PI3K pathway dependencies in endometrioid endometrial cancer cell lines. Clin. Cancer Res. 2013, 19, 3533–3544. [Google Scholar] [CrossRef] [Green Version]
- Juric, D.; Rodon, J.; Tabernero, J.; Janku, F.; Burris, H.A.; Schellens, J.H.M.; Middleton, M.R.; Berlin, J.; Schuler, M.; Marta, G.M.; et al. Phosphatidylinositol 3-kinase a–selective inhibition with alpelisib (BYL719) in PIK3CA-altered solid tumors: Results from the first-in-human study. J. Clin. Oncol. 2018, 36, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Bendell, J.C.; Varghese, A.M.; Hyman, D.M.; Bauer, T.M.; Pant, S.; Callies, S.; Lin, J.; Martinez, R.; Wickremsinhe, E.; Fink, A.; et al. A first-in-human phase 1 study of LY3023414, an Oral PI3K/mTOR dual inhibitor, in patients with advanced cancer. Clin. Cancer Res. 2018, 24, 3253–3262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubinstein, M.M.; Hyman, D.M.; Caird, I.; Won, H.; Soldan, K.; Seier, K.; Iasonos, A.; Tew, W.P.; O’Cearbhaill, R.E.; Grisham, R.N.; et al. Phase 2 study of LY3023414 in patients with advanced endometrial cancer harboring activating mutations in the PI3K pathway. Cancer 2020, 126, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, K.-N.; Li, R.; Shao, R.; Chen, C. Activation of PI3K/Akt/mTOR Pathway and Dual Inhibitors of PI3K and mTOR in Endometrial Cancer. Curr. Med. Chem. 2014, 21, 3070–3080. [Google Scholar] [CrossRef]
- Schrauwen, S.; Depreeuw, J.; Coenegrachts, L.; Hermans, E.; Lambrechts, D.; Amant, F. Dual blockade of PI3K/AKT/mTOR (NVP-BEZ235) and Ras/Raf/MEK (AZD6244) pathways synergistically inhibit growth of primary endometrioid endometrial carcinoma cultures, whereas NVP-BEZ235 reduces tumor growth in the corresponding xenograft models. Gynecol. Oncol. 2015, 138, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Bendell, J.C.; Kurkjian, C.; Infante, J.R.; Bauer, T.M.; Burris, H.A.; Greco, F.A.; Shih, K.C.; Thompson, D.S.; Lane, C.M.; Finney, L.H.; et al. A phase 1 study of the sachet formulation of the oral dual PI3K/mTOR inhibitor BEZ235 given twice daily (BID) in patients with advanced solid tumors. Investig. New Drugs 2015, 33, 463–471. [Google Scholar] [CrossRef]
- Wise-Draper, T.M.; Moorthy, G.; Salkeni, M.A.; Karim, N.A.; Thomas, H.E.; Mercer, C.A.; Beg, M.S.; O’Gara, S.; Olowokure, O.; Fathallah, H.; et al. A Phase Ib Study of the Dual PI3K/mTOR Inhibitor Dactolisib (BEZ235) Combined with Everolimus in Patients with Advanced Solid Malignancies. Target. Oncol. 2017, 12, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Dolly, S.O.; Wagner, A.J.; Bendell, J.C.; Kindler, H.L.; Krug, L.M.; Seiwert, T.Y.; Zauderer, M.G.; Lolkema, M.P.; Apt, D.; Yeh, R.F.; et al. Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. 2016, 22, 2874–2884. [Google Scholar] [CrossRef] [Green Version]
- Makker, V.; Recio, F.O.; Ma, L.; Matulonis, U.A.; Lauchle, J.O.; Parmar, H.; Gilbert, H.N.; Ware, J.A.; Zhu, R.; Lu, S.; et al. A multicenter, single-arm, open-label, phase 2 study of apitolisib (GDC-0980) for the treatment of recurrent or persistent endometrial carcinoma (MAGGIE study). Cancer 2016, 122, 3519–3528. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Alsina, M.; Soares, H.P.; Braña, I.; Britten, C.D.; Del Conte, G.; Ezeh, P.; Houk, B.; Kern, K.A.; Leong, S.; et al. A Multi-Arm Phase I Study of the PI3K/mTOR Inhibitors PF-04691502 and Gedatolisib (PF-05212384) plus Irinotecan or the MEK Inhibitor PD-0325901 in Advanced Cancer. Target. Oncol. 2017, 12, 775–785. [Google Scholar] [CrossRef] [Green Version]
- Myers, A.P.; Konstantinopoulos, P.A.; Barry, W.T.; Luo, W.; Broaddus, R.R.; Makker, V.; Drapkin, R.; Liu, J.; Doyle, A.; Horowitz, N.S.; et al. Phase II, 2-stage, 2-arm, PIK3CA mutation stratified trial of MK-2206 in recurrent endometrial cancer. Int. J. Cancer 2020, 147, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.R.; Greenwood, H.; Dudley, P.; Crafter, C.; Yu, D.H.; Zhang, J.; Li, J.; Gao, B.; Ji, Q.; Maynard, J.; et al. Preclinical pharmacology of AZD5363, an inhibitor of AKT: Pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol. Cancer Ther. 2012, 11, 873–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerji, U.; Dean, E.J.; Alejandro Perez-Fidalgo, J.; Batist, G.; Bedard, P.L.; You, B.; Westin, S.N.; Kabos, P.; Garrett, M.D.; Tall, M.; et al. A phase i open-label study to identify a dosing regimen of the pan-akt inhibitor azd5363 for evaluation in solid tumors and in pik3ca-mutated breast and gynecologic cancers. Clin. Cancer Res. 2018, 24, 2050–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westin, S.; Litton, J.; Williams, R.; Soliman, P.; Frumovitz, M.; Schmeler, K.; Jazaeri, A.; Sood, A.; Lu, K.; Moulder, S.; et al. Phase I expansion of olaparib (PARP inhibitor) and AZD5363 (AKT inhibitor) in recurrent ovarian, endometrial and triple negative breast cancer. Ann. Oncol. 2017, 28, v130–v131. [Google Scholar] [CrossRef]
- Felip, I.; Moiola, C.P.; Megino-Luque, C.; Lopez-Gil, C.; Cabrera, S.; Solé-Sánchez, S.; Muñoz-Guardiola, P.; Megias-Roda, E.; Pérez-Montoyo, H.; Alfon, J.; et al. Therapeutic potential of the new TRIB3-mediated cell autophagy anticancer drug ABTL0812 in endometrial cancer. Gynecol. Oncol. 2019, 153, 425–435. [Google Scholar] [CrossRef]
- Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 2018, 17, 1–13. [Google Scholar] [CrossRef]
- Hubbard, S.R. Structural analysis of receptor tyrosine kinases. Prog. Biophys. Mol. Biol. 1999, 71, 343–358. [Google Scholar] [CrossRef]
- Soumerai, T.E.; Donoghue, M.T.A.; Bandlamudi, C.; Srinivasan, P.; Chang, M.T.; Zamarin, D.; Cadoo, K.A.; Grisham, R.N.; O’Cearbhaill, R.E.; Tew, W.P.; et al. Clinical utility of prospective molecular characterization in advanced endometrial cancer. Clin. Cancer Res. 2018, 24, 5939–5947. [Google Scholar] [CrossRef] [Green Version]
- Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V.; et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 2018, 173, 291–304.e6. [Google Scholar] [CrossRef] [Green Version]
- Wind, S.; Schnell, D.; Ebner, T.; Freiwald, M.; Stopfer, P. Clinical Pharmacokinetics and Pharmacodynamics of Afatinib. Clin. Pharmacokinet. 2017, 56, 235–250. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Ren, Y.; Wang, X.; Miao, D.; Lizaso, A.; Li, H.; Han-Zhang, H.; Qian, J.; Yang, H. Efficacy of afatinib in a HER2 amplification-positive endometrioid adenocarcinoma patient—A case report. OncoTargets Ther. 2019, 12, 5305–5309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, E.; Faivre, S.; Armand, J.P. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs 2000, 60, 15–23. [Google Scholar] [CrossRef]
- Oza, A.M.; Eisenhauer, E.A.; Elit, L.; Cutz, J.-C.; Sakurada, A.; Tsao, M.S.; Hoskins, P.J.; Biagi, J.; Ghatage, P.; Mazurka, J.; et al. Phase II study of erlotinib in recurrent or metastatic endometrial cancer: NCIC IND-148. J. Clin. Oncol. 2008, 26, 4319–4325. [Google Scholar] [CrossRef]
- Leslie, K.K.; Sill, M.W.; Fischer, E.; Darcy, K.M.; Mannel, R.S.; Tewari, K.S.; Hanjani, P.; Wilken, J.A.; Baron, A.T.; Godwin, A.K.; et al. A phase II evaluation of gefitinib in the treatment of persistent or recurrent endometrial cancer: A Gynecologic Oncology Group study. Gynecol. Oncol. 2013, 129, 486–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.H.; Dolder, C.R. Lapatinib: A novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann. Pharmacother. 2006, 40, 261–269. [Google Scholar] [CrossRef]
- Chu, Q.S.C.; Cianfrocca, M.E.; Goldstein, L.J.; Gale, M.; Murray, N.; Loftiss, J.; Arya, N.; Koch, K.M.; Pandite, L.; Fleming, R.A.; et al. A phase I and pharmacokinetic study of lapatinib in combination with letrozole in patients with advanced cancer. Clin. Cancer Res. 2008, 14, 4484–4490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, K.K.; Sill, M.W.; Lankes, H.A.; Fischer, E.G.; Godwin, A.K.; Gray, H.; Schilder, R.J.; Walker, J.L.; Tewari, K.; Hanjani, P.; et al. Lapatinib and potential prognostic value of EGFR mutations in a Gynecologic Oncology Group phase II trial of persistent or recurrent endometrial cancer. Gynecol. Oncol. 2012, 127, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, R.L.; Sill, M.W.; Thaker, P.H.; Bender, D.P.; Street, D.; McGuire, W.P.; Johnston, C.M.; Rotmensch, J. A phase II evaluation of selumetinib (AZD6244, ARRY-142886), a selective MEK-1/2 inhibitor in the treatment of recurrent or persistent endometrial cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol. 2015, 138, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Konecny, G.E.; Finkler, N.; Garcia, A.A.; Lorusso, D.; Lee, P.S.; Rocconi, R.P.; Fong, P.C.; Squires, M.; Mishra, K.; Upalawanna, A.; et al. Second-line dovitinib (TKI258) in patients with FGFR2-mutated or FGFR2-non-mutated advanced or metastatic endometrial cancer: A non-randomised, open-label, two-group, two-stage, phase 2 study. Lancet Oncol. 2015, 16, 686–694. [Google Scholar] [CrossRef] [Green Version]
- Powell, M.A.; Sill, M.W.; Goodfellow, P.J.; Benbrook, D.M.; Lankes, H.A.; Leslie, K.K.; Jeske, Y.; Mannel, R.S.; Spillman, M.A.; Lee, P.S.; et al. A phase II trial of brivanib in recurrent or persistent endometrial cancer: An NRG Oncology/Gynecologic Oncology Group Study. Gynecol. Oncol. 2014, 135, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Grülich, C. Cabozantinib: A MET, RET, and VEGFR2 tyrosine kinase inhibitor. Recent Results Cancer Res. 2014, 201, 207–214. [Google Scholar] [CrossRef]
- Dhani, N.C.; Hirte, H.W.; Wang, L.; Burnier, J.V.; Jain, A.; Butler, M.O.; Welch, S.; Fleming, G.F.; Hurteau, J.; Matsuo, K.; et al. Phase II Trial of Cabozantinib in Recurrent/Metastatic Endometrial Cancer: A Study of the Princess Margaret, Chicago, and California Consortia (NCI9322/PHL86). Clin. Cancer Res. 2020, 26, 2477–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wedge, S.R.; Kendrew, J.; Hennequin, L.F.; Valentine, P.J.; Barry, S.T.; Brave, S.R.; Smith, N.R.; James, N.H.; Dukes, M.; Curwen, J.O.; et al. AZD2171: A highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 2005, 65, 4389–4400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, D.; Sill, M.W.; Lankes, H.A.; Reyes, H.D.; Darus, C.J.; Delmore, J.E.; Rotmensch, J.; Gray, H.J.; Mannel, R.S.; Schilder, J.M.; et al. A phase II evaluation of cediranib in the treatment of recurrent or persistent endometrial cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol. 2015, 138, 507–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dizon, D.S.; Sill, M.W.; Schilder, J.M.; McGonigle, K.F.; Rahman, Z.; Miller, D.S.; Mutch, D.G.; Leslie, K.K. A phase II evaluation of nintedanib (BIBF-1120) in the treatment of recurrent or persistent endometrial cancer: An NRG Oncology/Gynecologic Oncology Group Study. Gynecol. Oncol. 2014, 135, 441–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castonguay, V.; Lheureux, S.; Welch, S.; MacKay, H.J.; Hirte, H.; Fleming, G.; Morgan, R.; Wang, L.; Blattler, C.; Ivy, P.S.; et al. A phase II trial of sunitinib in women with metastatic or recurrent endometrial carcinoma: A study of the Princess Margaret, Chicago and California Consortia. Gynecol. Oncol. 2014, 134, 274–280. [Google Scholar] [CrossRef]
- Glen, H.; Mason, S.; Patel, H.; Macleod, K.; Brunton, V.G. E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumor cell migration and invasion. BMC Cancer 2011, 11, 309. [Google Scholar] [CrossRef] [Green Version]
- Vergote, I.; Powell, M.A.; Teneriello, M.G.; Miller, D.S.; Garcia, A.A.; Mikheeva, O.N.; Bidzinski, M.; Cebotaru, C.L.; Dutcus, C.E.; Ren, M.; et al. Second-line lenvatinib in patients with recurrent endometrial cancer. Gynecol. Oncol. 2020, 156, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Makker, V.; Rasco, D.; Vogelzang, N.J.; Brose, M.S.; Cohn, A.L.; Mier, J.; Di Simone, C.; Hyman, D.M.; Stepan, D.E.; Dutcus, C.E.; et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: An interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019, 20, 711–718. [Google Scholar] [CrossRef]
- Steinberg, M. Dasatinib: A tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia. Clin. Ther. 2007, 29, 2289–2308. [Google Scholar] [CrossRef]
- Duska, L.R.; Petroni, G.R.; Lothamer, H.; Faust, W.; Beumer, J.H.; Christner, S.M.; Mills, A.M.; Fracasso, P.M.; Parsons, S.J. A window-of-opportunity clinical trial of dasatinib in women with newly diagnosed endometrial cancer. Cancer Chemother. Pharmacol. 2019, 83, 473–482. [Google Scholar] [CrossRef]
- Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 2017, 17, 93–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jonge, M.M.; Auguste, A.; Van Wijk, L.M.; Schouten, P.C.; Meijers, M.; Ter Haar, N.T.; Smit, V.T.H.B.M.; Nout, R.A.; Glaire, M.A.; Church, D.N.; et al. Frequent homologous recombination deficiency in high-grade endometrial carcinomas. Clin. Cancer Res. 2019, 25, 1087–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannone, G.; Tuninetti, V.; Ghisoni, E.; Genta, S.; Scotto, G.; Mittica, G.; Valabrega, G. Role of cyclin-dependent kinase inhibitors in endometrial cancer. Int. J. Mol. Sci. 2019, 20, 2353. [Google Scholar] [CrossRef] [Green Version]
- Minchom, A.; Aversa, C.; Lopez, J. Dancing with the DNA damage response: Next-generation anti-cancer therapeutic strategies. Ther. Adv. Med. Oncol. Rev. 2018, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, A.S.; Nichols, E.; Cimino-Mathews, A.; Peer, C.; Cao, L.; Lee, M.-J.; Kohn, E.C.; Annunziata, C.M.; Lipkowitz, S.; Trepel, J.B.; et al. A phase I study of the PD-L1 inhibitor, durvalumab, in combination with a PARP inhibitor, olaparib, and a VEGFR1-3 inhibitor, cediranib, in recurrent women’s cancers with biomarker analyses. J. Immunother. Cancer 2019, 7, 197. [Google Scholar] [CrossRef] [PubMed]
- Gourley, C.; Balmaña, J.; Ledermann, J.A.; Serra, V.; Dent, R.; Loibl, S.; Pujade-Lauraine, E.; Boulton, S.J. Moving from poly (ADP-ribose) polymerase inhibition to targeting DNA repair and DNA damage response in cancer therapy. J. Clin. Oncol. 2019, 37, 2257–2269. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.P.; Zhu, Y.L.; Ratner, E.S. Targeting cyclin-dependent kinases for treatment of gynecologic cancers. Front. Oncol. 2018, 8, 303. [Google Scholar] [CrossRef]
- Biancotto, C.; Frigè, G.; Minucci, S. Histone modification therapy of cancer. Adv. Genet. 2010, 70, 341–386. [Google Scholar] [CrossRef]
- Eskander, R.N. The Epigenetic Landscape in the Treatment of Gynecologic Malignancies. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 480–487. [Google Scholar]
- Bartosch, C.; Lopes, J.M.; Jerónimo, C. Epigenetics in endometrial carcinogenesis—Part 2: Histone modifications, chromatin remodeling and noncoding RNAs. Epigenomics 2017, 9, 873–892. [Google Scholar] [CrossRef] [PubMed]
- Ryan, Q.C.; Headlee, D.; Acharya, M.; Sparreboom, A.; Trepel, J.B.; Ye, J.; Figg, W.D.; Hwang, K.; Chung, E.J.; Murgo, A.; et al. Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J. Clin. Oncol. 2005, 23, 3912–3922. [Google Scholar] [CrossRef] [PubMed]
- Di Tucci, C.; Capone, C.; Galati, G.; Iacobelli, V.; Schiavi, M.C.; Di Donato, V.; Muzii, L.; Panici, P.B. Immunotherapy in endometrial cancer: New scenarios on the horizon. J. Gynecol. Oncol. 2019, 30, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Campo, J.M.; Birrer, M.; Davis, C.; Fujiwara, K.; Gollerkeri, A.; Gore, M.; Houk, B.; Lau, S.; Poveda, A.; González-Martín, A.; et al. A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer. Gynecol. Oncol. 2016, 142, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Bahleda, R.; Italiano, A.; Hierro, C.; Mita, A.; Cervantes, A.; Chan, N.; Awad, M.; Calvo, E.; Moreno, V.; Govindan, R.; et al. Multicenter phase I study of erdafitinib (JNJ-42756493), oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced or refractory solid tumors. Clin. Cancer Res. 2019, 25, 4888–4897. [Google Scholar] [CrossRef] [PubMed]
- Knowling, M.; Blackstein, M.; Tozer, R.; Bramwell, V.; Dancey, J.; Dore, N.; Matthews, S.; Eisenhauer, E. A phase II study of perifosine (D-21226) in patients with previously untreated metastatic or locally advanced soft tissue sarcoma: A National Cancer Institute of Canada Clinical Trials Group trial. Investig. New Drugs 2006, 24, 435–439. [Google Scholar] [CrossRef]
RTK | Mutation Frequency |
---|---|
FGFR2 | 12.80% |
KIT | 7.20% |
MET | 6.80% |
KDR | 6.30% |
PDGFRα | 6.00% |
ERBB2 | 5.10% |
EGFR | 4.90% |
PDGFRβ | 4.70% |
ABL1 | 3.90% |
BRAF | 3.80% |
BCR | 3.60% |
FLT1 | 6.90% |
FLT4 | 4.90% |
SRC | 1.40% |
Drug | Target | Phase | ClinicalTrials.gov Identifier | n | Patient Inclusion | Monotherapy or Combination Therapy | Previous Chemotherapy | CR (%) | PR (%) | SD (%) | Toxicity (as % of Patients Affected by Serious Adverse Events) | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PI3K/AKT/mTOR SMI | ||||||||||||
Everolimus | mTORC1 | II | NCT00087685 | 28 | Recurrent EEC | Monotherapy | Yes | 0 | 0 | 43 | 71.4 | [11] |
II | NCT00870337 | 44 | Metastatic EC | Monotherapy | Yes | 0 | 9 | 27 | 45 | [12]] | ||
II | NCT01068249 | 35 | Recurrent EC | Combination (Letrozole) | Yes | 26 | 6 | 9 | n/a | [13] | ||
II | NCT01797523 | 54 | EEC | Combination (Letrozole and Metformin) | Yes | 0 | 28 | 22 | n/a | [14] | ||
II | NCT01197170 | 50 | Advanced or metastatic EC | Combination (Anastrozole) | Yes | 4 | 6 | 24 | n/a | [15] | ||
Temsirolimus | mTORC1 | II | NCT00072176 | 60 (33 A; 27 B) | Advanced or metastatic EC | Monotherapy | No (A)/ Yes (B) | 0 | 14 (A); 4 (B) | 69 (A); 48 (B) | 33 | [16] |
II | NCT00977574 | 115 | Advanced or recurrent EC | Combination (Paclitaxel and Carboplatin) | No | n/a | n/a | n/a | 50.4 | [18] | ||
II | NCT00729586 | 50 | Advanced EC | Monotherapy (A)/Combination (Megestrol Acetate and Tamoxifen) (B) | Yes (58%)/ No (42%) | 4.8 (A); 0 (B) | 14.3 (A); 20 (B) | 61.9 (A); 70 (B) | 36 (A); 61.9 (B) | [19] | ||
II | NCT00723255 | 49 | Recurrent EC | Combination (Bevacizumab) | Yes | 2 | 22.4 | 46.9 | 63.3 | [20] | ||
Ridaforolimus | mTORC1 | II | NCT00122343 | 45 | Recurrent EC | Monotherapy | Yes | 0 | 11 | 18 | 51 | [21] |
II | NCT00770185 | 31 | Recurrent or metastatic EC | Monotherapy | No | 0 | 8.8 | 52.9 | n/a | [22] | ||
II | NCT00739830 | 130 | Recurrent or metastatic EC | Monotherapy | Yes | 0 | 0 | 35 | n/a | [23] | ||
Buparlisib | PI3K | II | NCT01397877 | 16 | Advanced or metastatic EC | Monotherapy | Yes | 0 | 0 | 25 | 75 | [27] |
Pilaralisib | PI3K | II | NCT01013324 | 67 | EC | Monotherapy | Yes | 3 | 3 | 37.3 | n/a | [28] |
I | NCT00756847 | 52 | Advanced EC | Combination (Paclitaxel and Carboplatin) | Yes | 0 | 13.5 | 42.3 | 48.3 | [29] | ||
Alpelisib | PI3K | IA | NCT01219699 | 134 | Advanced EC | Monotherapy | Yes | 0.9 | 6 | 52 | n/a | [31] |
LY3023414 | mTOR/PI3K | I | NCT01655225 | 38 | Advanced or metastatic EC | Monotherapy | Yes | 0 | 2,6 | 31.9 | n/a | [32] |
II | NCT02549989 | 28 | Advanced EC | Monotherapy | Yes | 0 | 14.3 | 35.7 | n/a | [33] | ||
BEZ235 | mTOR/PI3K | I | NCT01343498 | 33 | Advanced EC | Monotherapy | Yes | 0 | 0 | 45 | 39 | [36] |
IB | NCT01508104 | 19 | Advanced or metastatic EC | Combination (Everolimus) | Yes | 0 | 0 | 9 | n/a | [37] | ||
Apitolisib | mTOR/PI3K | I | NCT00854152 | 56 | Advanced EC | Monotherapy | Yes | 0 | 7 | 77 | n/a | [38] |
II | NCT01455493 | 56 | Recurrent EC | Monotherapy | Yes | 3.6 | 1.8 | 49.1 | n/a | [39] | ||
Gedatolisib | mTOR/PI3K | I | NCT01347866 | 81 | Advanced or metastatic EC | Combination (Irinotecan (A)/PD-0325901 (B)) | Yes | 0 | 4.5 (A); 11(B) | n/a | 29 | [40] |
II | NCT01420081 | 38 | Recurrent EC | Monotherapy | Yes | 0 | 16 | 37 | 40 | [84] | ||
MK2206 | AKT | II | NCT01307631 | 5 | High-grade EC | Monotherapy | Yes | 0 | 0 | 80 | 37.8 | [41] |
Capivasertib | AKT | I | NCT01226316 | 90 | Advanced EC | Monotherapy | Yes | 0 | 0 | 7 | 62 | [43] |
Receptor Tyrosine Kinase SMI | ||||||||||||
Selumetinib | MEK1,2 | II | NCT01011933 | 54 | EC | Monotherapy | Yes | 2 | 4 | 26 | 64 | [58] |
Erdafitinib | FGFR1,2,3,4, RET, CSF1, PDGFRα,β, KIT, VEGFR2 | I | NCT01703481 | 188 | EC | Monotherapy | Yes | --- | 11 | 16 | 64 | [85] |
Dabrafenib | BRAF, RAF1, SIK1, NEK11, LIMK1 | I | NCT01954043 | 23 | EC | Combination (Rabeprazole and Rifampin) | Yes | n/a | n/a | n/a | n/a | * |
Anlotinib | VEGFR2,3 | I/II | NCT02558348 | 12 | EC | Monotherapy | Yes | n/a | n/a | n/a | n/a | * |
Brivanib Alaninate | VEGFR2, FGFR2 | II | NCT00888173 | 43 | EC | Monotherapy | Yes | 2.3 | 16.3 | n/a | 41.9 | [60] |
Cediranib Maleate | VEGFR2 | II | NCT01132820 | 48 | EC | Monotherapy | Yes | n/a | 12.5 | n/a | 41.7 | [64] |
Dasatinib | PDGFR, SRC, EPH, BCR, ABL | I | NCT01440998 | 18 | EC | Combination (Carboplatin and Paclitaxel) | No | n/a | n/a | n/a | n/a | * |
I | NCT01482728 | 12 | EC | Monotherapy | No | n/a | n/a | n/a | n/a | [71] | ||
Erlotinib hydrochloride | EGFR | II | NCT00030485 | 32 | EC | Monotherapy | Yes | 0 | 12.5 | 46.8 | 87.9 | [53] |
Gefitinib | EGFR | II | NCT00027690 | 56 | Recurrent EC | Monotherapy | Yes | 3.8 | n/a | 26.9 | 73 | [54] |
Lapatinib ditosylate | EGFR, ERBB2 | II | NCT00096447 | 30 | EC | Monotherapy | Yes | 0 | 3.3 | 23.3 | 33.3 | [57] |
Lenvatinib | VEGFR1,2,3, PDGFRα, FGFR1,2,3,4, KIT, RET | II | NCT01111461 | 133 | EC | Monotherapy | Yes | 1.5 | 19.5 | 23.3 | 49 | [68] |
Nintedanib | VEGFR1,2,3, PDGFRα,β, FGFR1,2,3, SRC | II | NCT01225887 | 32 | EC | Monotherapy | Yes | 0 | 9.4 | 21.9 | 43.7 | [65] |
Perifosine | MAPK1, PRKCA | II | NCT00053794 | 17 | EC | Monotherapy | Yes | n/a | n/a | n/a | n/a | [86] |
Vatalanib | VEGFR1,2,3 | I | NCT00268918 | 24 | EC | Combination (Docetaxel) | Yes | n/a | n/a | n/a | n/a | * |
Sunitinib Malate | VEGFR1,2,3, PDGFRα,β, KIT | II | NCT00478426 | 34 | EC | Monotherapy | Yes | 0 | 18.2 | 18.2 | 90.9 | [66] |
II | NCT00474994 | 53 | EC | Monotherapy | Yes | 0 | 2.1 | 43.7 | 17 | * | ||
Dovitinib | FGF, VEGF, PDGF | II | NCT01379534 | 53 | Advanced EC | Monotherapy | Yes | 0 | 11.3 | 45.3 | 56.6 | [59] |
Trametinib | MEK1,2 | I | NCT01138085 | 240 | EC | Monotherapy | Yes | n/a | n/a | n/a | n/a | * |
DNA Damage Repair SMI | ||||||||||||
Olaparib | PARP | I | NCT02484404 | 9 | EC | Monotherapy | Yes | n/a | 44 | 33 | n/a | [76] |
Drug | Target | Phase | ClinicalTrials.gov Identifier | n | Patient Inclusion | Monotherapy or Combination Therapy | Expected Results |
---|---|---|---|---|---|---|---|
PI3K/AKT/mTOR SMI | |||||||
Vistusertib | mTOR | I/II | NCT02730923 | 72 | Advanced EC | Combination (Anastrozole) | June 2020 |
Ib | NCT02208375 | 159 | Recurrent EC | Combination (Olaparib) | November 2021 | ||
Sapanisertib | mTOR | II | NCT02725268 | 241 | Advanced or recurrent EC | Combination (Paclitaxel or MLN1117) | October 2020 |
Serabelisib | PI3K | Ib/II | NCT04073680 | 60 | Advanced EC | Combination (Canagliflozin) | December 2021 |
Gedatolisib | mTOR/PI3K | I | NCT03065062 | 96 | Recurrent or metastatic EC | Combination (Palbociclib) | January 2023 |
AZD5363 | AKT | Ib | NCT02208375 | 159 | Recurrent EC | Combination (Olaparib) | November 2021 |
Receptor Tyrosine Kinase SMI | |||||||
Afatinib, Adavosertib, Binimetinib, Capivasertib, Copanlisib, Copanlisib Hydrochloride, Crizotinib, Dabrafenib, Dasatinib, Defactinib, Erdafitinib, Ipatasertib, Larotrectinib, Nivolumab, Osimertinib, Palbociclib, Pertuzumab, GSK2636771, Sapanisertib, Sunitinib Malate, Taselisib, Trametinib, Trastuzumab, Ulixertinib and Vismodegib | EGFR | II | NCT02465060 | 6452 | Advanced or recurrent EC | Monotherapy | June 2022 |
Anlotinib | VEGFR2-3 | I/II | NCT02584478 | 48 | Recurrent or metastatic EC | Combination (Carboplatin and Paclitaxel) | December 2020 |
I/II | NCT04157491 | 23 | Recurrent or metastatic EC | Combination (Anlotinib) | December 2022 | ||
BDTX-189 | EGFR, ERBB2 | I/II | NCT04209465 | 184 | Advanced EC | Monotherapy | December 2023 |
Cabozantinib | MET, VEGFR2, RET | I/II | NCT03170960 | 1732 | Advanced or metastatic EC | Combination (Atezolizumab) | December 2021 |
Cediranib | VEGFR2 | II | NCT03570437 | 129 | Advanced EC | Combination (Paclitaxcel and Olaparib) | September 2021 |
CPL304110 | FGFR | I | NCT04149691 | 42 | Advanced EC | Monotherapy | July 2020 |
Famitinib | EGFR, ERBB2, FLT1/3 | II | NCT03827837 | 265 | Advanced EC | Combination (Camrelizumab) | June 2021 |
Pemigatinib | FGFR1,2,3,4 | I/II | NCT02393248 | 325 | Advanced EC | Combination (Gemcitabine, Cisplatin, Pembrolizumab, Docetaxel, Trastuzumab and Retifanlimab) | December 2020 |
Rebastinib | SRC, LYN, FGR, HCK, KDR, FLT3, Tie-2, BCR, Abl1 | I/II | NCT03601897 | 201 | Advanced or metastatic EC | Combination (Paclitaxel) | November 2021 |
Afatinib | ERBB2 | II | NCT02491099 | 50 | Recurrent EC | Monotherapy | July 2028 |
Cabozantinib S-malate | MET, VEGFR2, RET, | II | NCT01935934 | 102 | Recurrent or metastatic EC | Monotherapy | September 2020 |
Cediranib | VEGFR2 | I | NCT01065662 | 50 | Advanced EC | Combination (Temsirolimus) | April 2020 |
Dasatinib | PDGFR, SRC, EPH, BCR, ABL | II | NCT02059265 | 35 | Recurrent EC | Monotherapy | November 2020 |
Lenvatinib Mesylate | VEGFR1,2,3, PDGFRα, FGFR1,2,3,4, KIT, RET | I | NCT02788708 | 26 | Recurrent EC | Combination (Paclitaxel) | November 2020 |
Lenvatinib | VEGFR1,2,3, PDGFRa, FGFR1,2,3,4, KIT, RET | I | NCT03006887 | 6 | EC | Combination (Pembrolizumab) | April 2020 |
I/II | NCT02501096 | 357 | EC | Combination (Pembrolizumab) | April 2020 | ||
III | NCT03884101 | 720 | Recurrent EC | Combination (Pembrolizumab, Paclitaxel and Carboplatin) | April 2023 | ||
III | NCT03517449 | 780 | Advanced EC | Combination (Pembrolizumab, Paclitaxel and Doxorubicin) | January 2023 | ||
Nintedanib | VEGFR1,2,3, PDGFRα,β, FGFR1,2,3, SRC | II | NCT02730416 | 148 | Advanced EC | Combination (Carboplatin and Paclitaxel) | July 2022 |
Axitinib | VEGFR1,2,3 | II | NCT04197219 | 26 | Recurrent EC | Combination (Pembrolizumab) | December 2026 |
Crizotinib | MET, ALK | II | NCT04030429 | 40 | Recurrent or metastatic EC | Monotherapy | December 2023 |
Lapatinib | EGFR, ERBB2, TUBB3 | I | NCT01454479 | 24 | Recurrent EC | Combination (Ixempra) | April 2021 |
DNA Damage Repair and Cell Cycle Progression SMI | |||||||
Olaparib | PARP | I/II | NCT02208375 | 159 | Recurrent EC | Combination (Capivasertib and Vistusertib) | November 2021 |
I | NCT01237067 | 77 | Recurrent EC | Combination (Carboplatin) | December 2020 | ||
Rucaparib | PARP | I/II | NCT03572478 | 12 | Recurrent or metastatic EC | Combination (Nivolumab) | December 2021 |
II | NCT03476798 | 33 | Recurrent EC | Combination (Bevacizumab) | February 2023 | ||
II | NCT04171700 | 220 | EC | Monotherapy | May 2022 | ||
Niraparib | PARP | II | NCT03016338 | 44 | Recurrent EC | Monotherapy and combination (TSR-042) | December 2022 |
I | NCT03586661 | 44 | Recurrent EC | Combination (Copanlisib) | April 2022 | ||
Olaparib | PARP | II | NCT03951415 | 55 | Advanced, recurrent or metastatic EC | Combination (Durvalumab) | July 2023 |
I/II | NCT03924245 | 73 | High-grade EC | Combination (Entinostat) | September 2025 | ||
II | NCT04065269 | 40 | Recurrent EC | Combination (AZD6738) | March 2023 | ||
LY3023414 | DNA-PK | I | NCT01655225 | 156 | Advanced or metastatic EC | Monotherapy and combination (Midazolam, Fulvestrant, Pemetrexed, Cisplatin, Abemaciclib and Letrozole) | December 2020 |
II | NCT02549989 | 31 | Recurrent EC | Monotherapy | September 2021 | ||
AZD6738 | ATR | II | NCT04065269 | 40 | Recurrent EC | Combination (AZD6738) | March 2023 |
Abemaciclib | CDK4/6 | I | NCT04188548 | 186 | Advanced or metastatic EC | Combination (LY3484356) | April 2023 |
Palbociclib | CDK4/6 | II | NCT02730429 | 78 | EEC | Combination (Letrozole) | December 2022 |
I | NCT03065062 | 96 | EC | Combination (Gedatolisib) | January 2023 | ||
Abemaciclib | CDK4/6 | II | NCT03643510 | 25 | Recurrent EC | Combination (Fulvestrant) | August 2021 |
II | NCT03675893 | 40 | Recurrent or metastatic EC | Combination (Letrozole) | May 2024 | ||
I | NCT04049227 | 27 | Recurrent EC | Combination (Letrozole) | July 2023 | ||
II | NCT04393285 | 50 | Advanced, recurrent or metastatic EC | Combination (Letrozole) | June 2023 | ||
Ribociclib | CDK4/6 | II | NCT02657928 | 40 | Recurrent EC | Combination (Letrozole) | July 2021 |
I | NCT03008408 | 87 | Recurrent or metastatic EC | Combination (Letrozole and Everolimus) | August 2022 | ||
DNA and Histone Modifiers SMI | |||||||
Entinostat | HDAC | I | NCT00020579 | 75 | Metastatic EC | Monotherapy | March 2022 |
II | NCT03018249 | 50 | EEC | Combination (Medroxyprogesterone Acetate) | December 2020 | ||
I/II | NCT03924245 | 73 | High-grade EC | Combination (Olaparib) | September 2025 | ||
Tinostamustine | HDAC | I/II | NCT03345485 | 167 | Advanced or metastatic EC | Monotherapy | July 2022 |
Celecoxib | IDO1 | II | NCT03896113 | 48 | EC | Monotherapy | June 2022 |
Epacadostat | IDO1 | I/II | NCT03277352 | 10 | Advanced or metastatic EC | Combination (INCAGN01876 and pembrolizumab) | July 2020 |
IDO1 | I/II | NCT02178722 | 444 | EC | Combination (MK-3475) | August 2020 | |
BMS- 986205 | IDO1 | II | NCT04106414 | 50 | Recurrent EC | Combination (Nivolumab) | September 2021 |
Immunocheckpoints SMI | |||||||
PF-06801591 | PD1 | I | NCT04152018 | 104 | Advanced or metastatic EC | Combination (PF-06940434) | March 2024 |
AB122 | PD1 | I | NCT03629756 | 44 | Advanced EC | Combination (AB298) | September 2021 |
AB928 | Adenosin receptor | I | NCT03629756 | 44 | Advanced EC | Combination (AB298 and AB122) | September 2021 |
INCB001158 | Arginase | I/II | NCT03314935 | 149 | Advanced or metastatic EC | Combination (Oxaliplatin, Leucovorin, 5-Fluorouracil, Gemcitabine, Cisplatin and Paclitaxel) | October 2021 |
Ciforadenant | ADORA2A | I | NCT03454451 | 378 | Advanced EC | Combination (Pembrolizumab and CPI-006) | December 2023 |
Pterostilbene | MUC1 | II | NCT03671811 | 36 | EC | Combination (Megestrol Acetate) | December 2020 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Megino-Luque, C.; Moiola, C.P.; Molins-Escuder, C.; López-Gil, C.; Gil-Moreno, A.; Matias-Guiu, X.; Colas, E.; Eritja, N. Small-Molecule Inhibitors (SMIs) as an Effective Therapeutic Strategy for Endometrial Cancer. Cancers 2020, 12, 2751. https://doi.org/10.3390/cancers12102751
Megino-Luque C, Moiola CP, Molins-Escuder C, López-Gil C, Gil-Moreno A, Matias-Guiu X, Colas E, Eritja N. Small-Molecule Inhibitors (SMIs) as an Effective Therapeutic Strategy for Endometrial Cancer. Cancers. 2020; 12(10):2751. https://doi.org/10.3390/cancers12102751
Chicago/Turabian StyleMegino-Luque, Cristina, Cristian Pablo Moiola, Clara Molins-Escuder, Carlos López-Gil, Antonio Gil-Moreno, Xavier Matias-Guiu, Eva Colas, and Núria Eritja. 2020. "Small-Molecule Inhibitors (SMIs) as an Effective Therapeutic Strategy for Endometrial Cancer" Cancers 12, no. 10: 2751. https://doi.org/10.3390/cancers12102751
APA StyleMegino-Luque, C., Moiola, C. P., Molins-Escuder, C., López-Gil, C., Gil-Moreno, A., Matias-Guiu, X., Colas, E., & Eritja, N. (2020). Small-Molecule Inhibitors (SMIs) as an Effective Therapeutic Strategy for Endometrial Cancer. Cancers, 12(10), 2751. https://doi.org/10.3390/cancers12102751