Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC)
Abstract
:Simple Summary
Abstract
1. Introduction
2. DNA Vaccines as Treatments for Prostate Cancer
3. Androgen Deprivation Therapy
4. Chemotherapy
5. Radiation Therapy
6. Immune Checkpoint Blockade
7. Toll-Like Receptor (TLR) Ligands
8. IDO Inhibitors
9. Future Directions
10. Conclusions and Future Perspective
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADT | androgen deprivation therapy |
AR | androgen receptor |
EBRT | external beam radiation therapy |
GM-CSF | granulocyte-macrophage colony stimulating factor |
GVAX | cancer vaccine consisting of whole tumor cells that secrete GM-CSF |
IDO | indoleamine 2,3 dioxygenase |
mCRPC | metastatic castration-resistant prostate cancer |
MDSC | myeloid-derived suppressor cells |
MFS | metastasis-free survival |
NaF | sodium fluoride |
PAP | prostatic acid phosphatase |
PROSTVAC | prostate cancer vaccine consisting of vaccinia encoding PSA as a primary immunization followed by fowlpox encoding PSA booster immunizations |
PSA | prostate-specific antigen |
PSMA | prostate-specific membrane antigen |
Sip-T | sipuleucel-T, an FDA-approved autologous cellular vaccine for the treatment of prostate cancer |
TRAMP | transgenic adenocarcinoma of the mouse prostate mouse model |
Treg | regulatory T cells |
References
- Beer, T.M.; Kwon, E.D.; Drake, C.G.; Fizazi, K.; Logothetis, C.; Gravis, G.; Ganju, V.; Polikoff, J.; Saad, F.; Humanski, P.; et al. Randomized, double-blind, phase iii trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J. Clin. Oncol. 2017, 35, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti–pd-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.D.; Drake, C.G.; Scher, H.I.; Fizazi, K.; Bossi, A.; van den Eertwegh, A.J.; Krainer, M.; Houede, N.; Santos, R.; Mahammedi, H.; et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (ca184-043): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014, 15, 700–712. [Google Scholar] [CrossRef] [Green Version]
- Antonarakis, E.S.; Piulats, J.M.; Gross-Goupil, M.; Goh, J.; Ojamaa, K.; Hoimes, C.J.; Vaishampayan, U.; Berger, R.; Sezer, A.; Alanko, T.; et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: Multicohort, open-label phase ii keynote-199 study. J. Clin. Oncol. 2020, 38, 395–405. [Google Scholar] [CrossRef]
- Steele, K.E.; Tan, T.H.; Korn, R.; Dacosta, K.; Brown, C.; Kuziora, M.; Zimmermann, J.; Laffin, B.; Widmaier, M.; Rognoni, L.; et al. Measuring multiple parameters of cd8+ tumor-infiltrating lymphocytes in human cancers by image analysis. J. Immunother. Cancer 2018, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Ness, N.; Andersen, S.; Valkov, A.; Nordby, Y.; Donnem, T.; Al-Saad, S.; Busund, L.T.; Bremnes, R.M.; Richardsen, E. Infiltration of cd8+ lymphocytes is an independent prognostic factor of biochemical failure-free survival in prostate cancer. Prostate 2014, 74, 1452–1461. [Google Scholar] [CrossRef]
- Petitprez, F.; Fossati, N.; Vano, Y.; Freschi, M.; Becht, E.; Lucianò, R.; Calderaro, J.; Guédet, T.; Lacroix, L.; Rancoita, P.M.V.; et al. Pd-l1 expression and cd8(+) t-cell infiltrate are associated with clinical progression in patients with node-positive prostate cancer. Eur. Urol. Focus 2019, 5, 192–196. [Google Scholar] [CrossRef]
- Vitkin, N.; Nersesian, S.; Siemens, D.R.; Koti, M. The tumor immune contexture of prostate cancer. Front. Immunol. 2019, 10, 603. [Google Scholar] [CrossRef] [Green Version]
- Zahm, C.D.; Johnson, L.E.; McNeel, D.G. Increased indoleamine 2,3-dioxygenase activity and expression in prostate cancer following targeted immunotherapy. Cancer Immunol. Immunother. 2019, 68, 1661–1669. [Google Scholar] [CrossRef]
- Prokhnevska, N.; Emerson, D.A.; Kissick, H.T.; Redmond, W.L. Immunological complexity of the prostate cancer microenvironment influences the response to immunotherapy. Adv. Exp. Med. Biol. 2019, 1210, 121–147. [Google Scholar] [PubMed]
- McNeel, D.G.; Eickhoff, J.C.; Johnson, L.E.; Roth, A.R.; Perk, T.G.; Fong, L.; Antonarakis, E.S.; Wargowski, E.; Jeraj, R.; Liu, G. Phase ii trial of a DNA vaccine encoding prostatic acid phosphatase (ptvg-hp [mvi-816]) in patients with progressive, nonmetastatic, castration-sensitive prostate cancer. J. Clin. Oncol. 2019, 37, 3507–3517. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.M.; Özenci, V.; Kiessling, R.; Pisa, P. Immune monitoring in a phase 1 trial of a psa DNA vaccine in patients with hormone-refractory prostate cancer. J. Immunother. 2005, 28, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Mincheff, M.; Tchakarov, S.; Zoubak, S.; Loukinov, D.; Botev, C.; Altankova, I.; Georgiev, G.; Petrov, S.; Meryman, H.T. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: A phase i/ii clinical trial. Eur. Urol. 2000, 38, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Pavlenko, M.; Roos, A.K.; Lundqvist, A.; Palmborg, A.; Miller, A.M.; Ozenci, V.; Bergman, B.; Egevad, L.; Hellström, M.; Kiessling, R.; et al. A phase i trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br. J. Cancer 2004, 91, 688–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlotocha, S.; Staab, M.J.; Horvath, D.; Straus, J.; Dobratz, J.; Oliver, K.; Wasielewski, S.; Alberti, D.; Liu, G.; Wilding, G.; et al. A phase i study of a DNA vaccine targeting prostatic acid phosphatase in patients with stage d0 prostate cancer. Clin. Genitourin. Cancer 2005, 4, 215–218. [Google Scholar] [CrossRef]
- Handy, C.E.; Antonarakis, E.S. Sipuleucel-t for the treatment of prostate cancer: Novel insights and future directions. Future Oncol. 2018, 14, 907–917. [Google Scholar] [CrossRef]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-t immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Small, E.J.; Schellhammer, P.F.; Higano, C.S.; Redfern, C.H.; Nemunaitis, J.J.; Valone, F.H.; Verjee, S.S.; Jones, L.A.; Hershberg, R.M. Placebo-controlled phase iii trial of immunologic therapy with sipuleucel-t (apc8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol. 2006, 24, 3089–3094. [Google Scholar] [CrossRef] [Green Version]
- Higano, C.S.; Schellhammer, P.F.; Small, E.J.; Burch, P.A.; Nemunaitis, J.; Yuh, L.; Provost, N.; Frohlich, M.W. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-t in advanced prostate cancer. Cancer 2009, 115, 3670–3679. [Google Scholar] [CrossRef]
- Fong, L.; Carroll, P.; Weinberg, V.; Chan, S.; Lewis, J.; Corman, J.; Amling, C.L.; Stephenson, R.A.; Simko, J.; Sheikh, N.A.; et al. Activated lymphocyte recruitment into the tumor microenvironment following preoperative sipuleucel-t for localized prostate cancer. J. Natl. Cancer Inst. 2014, 106. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, A.A.; Foster, B.A.; Kwon, E.D.; Truong, T.; Choi, E.M.; Greenberg, N.M.; Burg, M.B.; Allison, J.P. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using ctla-4 blockade. Cancer Res. 2000, 60, 2444–2448. [Google Scholar] [PubMed]
- van den Eertwegh, A.J.; Versluis, J.; van den Berg, H.P.; Santegoets, S.J.; van Moorselaar, R.J.; van der Sluis, T.M.; Gall, H.E.; Harding, T.C.; Jooss, K.; Lowy, I.; et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: A phase 1 dose-escalation trial. Lancet Oncol. 2012, 13, 509–517. [Google Scholar] [CrossRef]
- Higano, C. A phase iii trial of gvax immunotherapy for prostate cancer versus docetaxel plus prednisone in asymptomatic, castration-resistant prostate cancer (crpc). In Proceedings of the 2009 Genitourinary Cancer Symposium, American Society of Clinical Oncology (ASCO), Orlando, FL, USA, 26–28 February 2009. [Google Scholar]
- Small, E. A phase iii trial of gvax immunotherapy for prostate cancer in combination with docetaxel versus docetaxel plus prednisone in symptomatic, castration-resistant prostate cancer (crpc). In Proceedings of the 2009 Genitourinary Cancer Symposium, American Society of Clinical Oncology (ASCO), Orlando, FL, USA, 26–28 February 2009. [Google Scholar]
- Caram, M.E.V.; Ross, R.; Lin, P.; Mukherjee, B. Factors associated with use of sipuleucel-t to treat patients with advanced prostate cancer. JAMA Netw. Open 2019, 2, e192589. [Google Scholar] [CrossRef] [Green Version]
- Zahm, C.D.; Colluru, V.T.; McNeel, D.G. DNA vaccines for prostate cancer. Pharmacol. Ther. 2017, 174, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.; Vandermeulen, G.; Préat, V. Cancer DNA vaccines: Current preclinical and clinical developments and future perspectives. J. Exp. Clin. Cancer Res. 2019, 38, 146. [Google Scholar] [CrossRef]
- Liu, M.A. DNA vaccines: An historical perspective and view to the future. Immunol Rev. 2011, 239, 62–84. [Google Scholar] [CrossRef]
- Fioretti, D.; Iurescia, S.; Fazio, V.M.; Rinaldi, M. DNA vaccines: Developing new strategies against cancer. J. Biomed. Biotechnol. 2010, 2010, 174378. [Google Scholar] [CrossRef]
- Porgador, A.; Irvine, K.R.; Iwasaki, A.; Barber, B.H.; Restifo, N.P.; Germain, R.N. Predominant role for directly transfected dendritic cells in antigen presentation to cd8+ t cells after gene gun immunization. J. Exp. Med. 1998, 188, 1075–1082. [Google Scholar] [CrossRef]
- Fu, T.M.; Ulmer, J.B.; Caulfield, M.J.; Deck, R.R.; Friedman, A.; Wang, S.; Liu, X.; Donnelly, J.J.; Liu, M.A. Priming of cytotoxic t lymphocytes by DNA vaccines: Requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol. Med. 1997, 3, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, M.; Hassett, D.E.; Zhang, J.; Lindsay Whitton, J. DNA immunization can stimulate florid local inflammation, and the antiviral immunity induced varies depending on injection site. Vaccine 1997, 15, 553–560. [Google Scholar] [CrossRef]
- Dauphin, G.; Zientara, S. West nile virus: Recent trends in diagnosis and vaccine development. Vaccine 2007, 25, 5563–5576. [Google Scholar] [CrossRef]
- Atherton, M.J.; Morris, J.S.; McDermott, M.R.; Lichty, B.D. Cancer immunology and canine malignant melanoma: A comparative review. Vet. Immunol Immunopathol. 2016, 169, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Carter, C.; Houser, K.V.; Yamshchikov, G.V.; Bellamy, A.R.; May, J.; Enama, M.E.; Sarwar, U.; Larkin, B.; Bailer, R.T.; Koup, R.; et al. Safety and immunogenicity of investigational seasonal influenza hemagglutinin DNA vaccine followed by trivalent inactivated vaccine administered intradermally or intramuscularly in healthy adults: An open-label randomized phase 1 clinical trial. PLoS ONE 2019, 14, e0222178. [Google Scholar] [CrossRef] [PubMed]
- Elizaga, M.L.; Li, S.S.; Kochar, N.K.; Wilson, G.J.; Allen, M.A.; Tieu, H.V.N.; Frank, I.; Sobieszczyk, M.E.; Cohen, K.W.; Sanchez, B.; et al. Safety and tolerability of hiv-1 multiantigen pdna vaccine given with il-12 plasmid DNA via electroporation, boosted with a recombinant vesicular stomatitis virus hiv gag vaccine in healthy volunteers in a randomized, controlled clinical trial. PLoS ONE 2018, 13, e0202753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudinski, M.R.; Houser, K.V.; Morabito, K.M.; Hu, Z.; Yamshchikov, G.; Rothwell, R.S.; Berkowitz, N.; Mendoza, F.; Saunders, J.G.; Novik, L.; et al. Safety, tolerability, and immunogenicity of two zika virus DNA vaccine candidates in healthy adults: Randomised, open-label, phase 1 clinical trials. Lancet 2018, 391, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Hannaman, D.; Dupuy, L.C.; Ellefsen, B.; Schmaljohn, C.S. A phase 1 clinical trial of a DNA vaccine for venezuelan equine encephalitis delivered by intramuscular or intradermal electroporation. Vaccine 2016, 34, 3607–3612. [Google Scholar] [CrossRef]
- Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; Bouchard, C.; Mao, C.; Mehlsen, J.; Moreira, E.D., Jr.; Ngan, Y.; Petersen, L.K.; Lazcano-Ponce, E.; et al. A 9-valent hpv vaccine against infection and intraepithelial neoplasia in women. N. Engl. J. Med. 2015, 372, 711–723. [Google Scholar] [CrossRef]
- Martin, J.E.; Louder, M.K.; Holman, L.A.; Gordon, I.J.; Enama, M.E.; Larkin, B.D.; Andrews, C.A.; Vogel, L.; Koup, R.A.; Roederer, M.; et al. A sars DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a phase i clinical trial. Vaccine 2008, 26, 6338–6343. [Google Scholar] [CrossRef]
- McNeel, D.G.; Eickhoff, J.C.; Wargowski, E.; Zahm, C.; Staab, M.J.; Straus, J.; Liu, G. Concurrent, but not sequential, pd-1 blockade with a DNA vaccine elicits anti-tumor responses in patients with metastatic, castration-resistant prostate cancer. Oncotarget 2018, 9, 25586–25596. [Google Scholar] [CrossRef] [Green Version]
- Trimble, C.L.; Morrow, M.P.; Kraynyak, K.A.; Shen, X.; Dallas, M.; Yan, J.; Edwards, L.; Parker, R.L.; Denny, L.; Giffear, M.; et al. Safety, efficacy, and immunogenicity of vgx-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 e6 and e7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet 2015, 386, 2078–2088. [Google Scholar] [CrossRef] [Green Version]
- Kyriakopoulos, C.E.; Eickhoff, J.; Ferrari, A.C.; Schweizer, M.T.; Wargowski, E.; Olson, B.M.; McNeel, D.G. Multicenter phase 1 trial of a DNA vaccine encoding the androgen receptor ligand binding domain (ptvg-ar, mvi-118) in patients with metastatic prostate cancer. Clin. Cancer Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.S.; Vogelzang, N.J.; Ernstoff, M.S.; Goodman, O.B.; Cranmer, L.D.; Marshall, J.L.; Miles, S.; Rosario, D.; Diamond, D.C.; Qiu, Z.; et al. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J. Immunother. 2011, 34, 556–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeel, D.G.; Becker, J.T.; Johnson, L.E.; Olson, B.M. DNA vaccines for prostate cancer. Curr. Cancer Ther. Rev. 2012, 8, 254–263. [Google Scholar]
- Eriksson, F.; Tötterman, T.; Maltais, A.-K.; Pisa, P.; Yachnin, J. DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 2013, 31, 3843–3848. [Google Scholar] [CrossRef]
- Shore, N.D.; Morrow, M.P.; McMullan, T.; Kraynyak, K.A.; Sylvester, A.; Bhatt, K.; Cheung, J.; Boyer, J.D.; Liu, L.; Sacchetta, B.; et al. Cd8(+) t cells impact rising psa in biochemically relapsed cancer patients using immunotherapy targeting tumor-associated antigens. Mol. Ther. 2020, 28, 1238–1250. [Google Scholar] [CrossRef]
- Gnjatic, S.; Altorki, N.K.; Tang, D.N.; Tu, S.M.; Kundra, V.; Ritter, G.; Old, L.J.; Logothetis, C.J.; Sharma, P. Ny-eso-1 DNA vaccine induces t-cell responses that are suppressed by regulatory t cells. Clin. Cancer Res. 2009, 15, 2130–2139. [Google Scholar] [CrossRef] [Green Version]
- McNeel, D.G.; Dunphy, E.J.; Davies, J.G.; Frye, T.P.; Johnson, L.E.; Staab, M.J.; Horvath, D.L.; Straus, J.; Alberti, D.; Marnocha, R.; et al. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage d0 prostate cancer. J. Clin. Oncol. 2009, 27, 4047–4054. [Google Scholar] [CrossRef] [Green Version]
- McNeel, D.G.; Becker, J.T.; Eickhoff, J.C.; Johnson, L.E.; Bradley, E.; Pohlkamp, I.; Staab, M.J.; Liu, G.; Wilding, G.; Olson, B.M. Real-time immune monitoring to guide plasmid DNA vaccination schedule targeting prostatic acid phosphatase in patients with castration-resistant prostate cancer. Clin. Cancer Res. 2014, 20, 3692–3704. [Google Scholar] [CrossRef] [Green Version]
- Scarpelli, M.; Zahm, C.; Perlman, S.; McNeel, D.G.; Jeraj, R.; Liu, G. Flt pet/ct imaging of metastatic prostate cancer patients treated with ptvg-hp DNA vaccine and pembrolizumab. J. Immunother. Cancer 2019, 7, 23. [Google Scholar] [CrossRef]
- Wargowski, E.; Johnson, L.E.; Eickhoff, J.C.; Delmastro, L.; Staab, M.J.; Liu, G.; McNeel, D.G. Prime-boost vaccination targeting prostatic acid phosphatase (pap) in patients with metastatic castration-resistant prostate cancer (mcrpc) using sipuleucel-t and a DNA vaccine. J. Immunother. Cancer 2018, 6, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graddis, T.J.; McMahan, C.J.; Tamman, J.; Page, K.J.; Trager, J.B. Prostatic acid phosphatase expression in human tissues. Int. J. Clin. Exp. Pathol. 2011, 4, 295–306. [Google Scholar] [PubMed]
- Sweat, S.D.; Pacelli, A.; Murphy, G.P.; Bostwick, D.G. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 1998, 52, 637–640. [Google Scholar] [CrossRef]
- Chudley, L.; McCann, K.; Mander, A.; Tjelle, T.; Campos-Perez, J.; Godeseth, R.; Creak, A.; Dobbyn, J.; Johnson, B.; Bass, P.; et al. DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency cd8(+) t-cell responses and increases psa doubling time. Cancer Immunol. Immunother. 2012, 61, 2161–2170. [Google Scholar] [CrossRef] [Green Version]
- Olson, B.M.; Gamat, M.; Seliski, J.; Sawicki, T.; Jeffery, J.; Ellis, L.; Drake, C.G.; Weichert, J.; McNeel, D.G. Prostate cancer cells express more androgen receptor (ar) following androgen deprivation, improving recognition by ar-specific t cells. Cancer Immunol. Res. 2017, 5, 1074–1085. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.E.; Olson, B.M.; McNeel, D.G. Pretreatment antigen-specific immunity and regulation-association with subsequent immune response to anti-tumor DNA vaccination. J. Immunother. Cancer 2017, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Huggins, C.; Stevens, R.; Hodges, C.V. Studies on prostatic cancer: Ii. The effects of castration on advanced carcinoma of the prostate gland. Arch. Surg. 1941, 43, 209–223. [Google Scholar] [CrossRef]
- Olsen, N.J.; Watson, M.B.; Henderson, G.S.; Kovacs, W.J. Androgen deprivation induces phenotypic and functional changes in the thymus of adult male mice. Endocrinology 1991, 129, 2471–2476. [Google Scholar] [CrossRef]
- Viselli, S.M.; Stanziale, S.; Shults, K.; Kovacs, W.J.; Olsen, N.J. Castration alters peripheral immune function in normal male mice. Immunology 1995, 84, 337–342. [Google Scholar]
- Roden, A.C.; Moser, M.T.; Tri, S.D.; Mercader, M.; Kuntz, S.M.; Dong, H.; Hurwitz, A.A.; McKean, D.J.; Celis, E.; Leibovich, B.C.; et al. Augmentation of t cell levels and responses induced by androgen deprivation. J. Immunol. 2004, 173, 6098–6108. [Google Scholar] [CrossRef] [Green Version]
- Mercader, M.; Bodner, B.K.; Moser, M.T.; Kwon, P.S.; Park, E.S.; Manecke, R.G.; Ellis, T.M.; Wojcik, E.M.; Yang, D.; Flanigan, R.C.; et al. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc. Natl. Acad. Sci. USA 2001, 98, 14565–14570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morse, M.D.; McNeel, D.G. T cells localized to the androgen-deprived prostate are th1 and th17 biased. Prostate 2012, 72, 1239–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorrentino, C.; Musiani, P.; Pompa, P.; Cipollone, G.; Di Carlo, E. Androgen deprivation boosts prostatic infiltration of cytotoxic and regulatory t lymphocytes and has no effect on disease-free survival in prostate cancer patients. Clin. Cancer Res. 2011, 17, 1571–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonarakis, E.S.; Kibel, A.S.; Yu, E.Y.; Karsh, L.I.; Elfiky, A.; Shore, N.D.; Vogelzang, N.J.; Corman, J.M.; Millard, F.E.; Maher, J.C.; et al. Sequencing of sipuleucel-t and androgen deprivation therapy in men with hormone-sensitive biochemically recurrent prostate cancer: A phase ii randomized trial. Clin. Cancer Res. 2017, 23, 2451–2459. [Google Scholar] [CrossRef] [Green Version]
- Arlen, P.M.; Gulley, J.L.; Todd, N.; Lieberman, R.; Steinberg, S.M.; Morin, S.; Bastian, A.; Marte, J.; Tsang, K.Y.; Beetham, P.; et al. Antiandrogen, vaccine and combination therapy in patients with nonmetastatic hormone refractory prostate cancer. J. Urol. 2005, 174, 539–546. [Google Scholar] [CrossRef]
- Madan, R.A.; Gulley, J.L.; Schlom, J.; Steinberg, S.M.; Liewehr, D.J.; Dahut, W.L.; Arlen, P.M. Analysis of overall survival in patients with nonmetastatic castration-resistant prostate cancer treated with vaccine, nilutamide, and combination therapy. Clin. Cancer Res. 2008, 14, 4526–4531. [Google Scholar] [CrossRef] [Green Version]
- Obradovic, A.Z.; Dallos, M.; Zahurak, M.L.; Partin, A.W.; Schaeffer, E.M.; Ross, A.E.; Allaf, M.E.; Nirschl, T.R.; Chapman, C.G.; O’Neal, T.; et al. T-cell infiltration and adaptive treg resistance in response to androgen deprivation with or without vaccination in localized prostate cancer. Clin. Cancer Res. 2020. [Google Scholar] [CrossRef] [Green Version]
- Tannock, I.F.; de Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Theodore, C.; James, N.D.; Turesson, I.; et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 2004, 351, 1502–1512. [Google Scholar] [CrossRef] [Green Version]
- de Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M.J.; Shen, L.; et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 2010, 376, 1147–1154. [Google Scholar] [CrossRef]
- Madan, R.A.; Arlen, P.M. Recent advances revolutionize treatment of metastatic prostate cancer. Future Oncol. 2013, 9, 1133–1144. [Google Scholar] [CrossRef]
- Garnett, C.T.; Schlom, J.; Hodge, J.W. Combination of docetaxel and recombinant vaccine enhances t-cell responses and antitumor activity: Effects of docetaxel on immune enhancement. Clin. Cancer Res. 2008, 14, 3536–3544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arlen, P.M.; Gulley, J.L.; Parker, C.; Skarupa, L.; Pazdur, M.; Panicali, D.; Beetham, P.; Tsang, K.Y.; Grosenbach, D.W.; Feldman, J.; et al. A randomized phase ii study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin. Cancer Res. 2006, 12, 1260–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeel, D.G.; Chen, Y.H.; Gulley, J.L.; Dwyer, A.J.; Madan, R.A.; Carducci, M.A.; DiPaola, R.S. Randomized phase ii trial of docetaxel with or without psa-tricom vaccine in patients with castrate-resistant metastatic prostate cancer: A trial of the ecog-acrin cancer research group (e1809). Hum. Vaccines Immunother. 2015, 11, 2469–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuky, J.; Corman, J.M.; Porter, C.; Olgac, S.; Auerbach, E.; Dahl, K. Phase ii trial of neoadjuvant docetaxel and cg1940/cg8711 followed by radical prostatectomy in patients with high-risk clinically localized prostate cancer. Oncologist 2013, 18, 687–688. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.E.; McNeel, D.G. Gvax: An allogeneic, whole-cell, gm-csf-secreting cellular immunotherapy for the treatment of prostate cancer. Expert Opin. Biol. Ther. 2007, 7, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, K.; Kaneta, T.; Takano, S.; Sugiura, M.; Kawano, T.; Hino, A.; Yamamoto, T.; Shizukuishi, K.; Kaneko, M.; Zurth, C.; et al. Pharmacokinetics of single dose radium-223 dichloride (bay 88-8223) in japanese patients with castration-resistant prostate cancer and bone metastases. Ann. Nucl. Med. 2016, 30, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Hofman, M.S.; Violet, J.; Hicks, R.J.; Ferdinandus, J.; Thang, S.P.; Akhurst, T.; Iravani, A.; Kong, G.; Ravi Kumar, A.; Murphy, D.G.; et al. [(177)lu]-psma-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (lupsma trial): A single-centre, single-arm, phase 2 study. Lancet Oncol. 2018, 19, 825–833. [Google Scholar] [CrossRef]
- Reap, E.A.; Roof, K.; Maynor, K.; Borrero, M.; Booker, J.; Cohen, P.L. Radiation and stress-induced apoptosis: A role for fas/fas ligand interactions. Proc. Natl. Acad. Sci. USA 1997, 94, 5750–5755. [Google Scholar] [CrossRef] [Green Version]
- Reits, E.A.; Hodge, J.W.; Herberts, C.A.; Groothuis, T.A.; Chakraborty, M.; Wansley, E.K.; Camphausen, K.; Luiten, R.M.; de Ru, A.H.; Neijssen, J.; et al. Radiation modulates the peptide repertoire, enhances mhc class i expression, and induces successful antitumor immunotherapy. J. Exp. Med. 2006, 203, 1259–1271. [Google Scholar] [CrossRef]
- Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA exonuclease trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 2017, 8, 15618. [Google Scholar] [CrossRef] [PubMed]
- Golden, E.B.; Apetoh, L. Radiotherapy and immunogenic cell death. Semin. Radiat. Oncol. 2015, 25, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaue, D.; Kachikwu, E.L.; McBride, W.H. Cytokines in radiobiological responses: A review. Radiat. Res. 2012, 178, 505–523. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Auh, S.L.; Wang, Y.; Burnette, B.; Wang, Y.; Meng, Y.; Beckett, M.; Sharma, R.; Chin, R.; Tu, T.; et al. Therapeutic effects of ablative radiation on local tumor require cd8+ t cells: Changing strategies for cancer treatment. Blood 2009, 114, 589–595. [Google Scholar] [CrossRef]
- Chakravarty, P.K.; Alfieri, A.; Thomas, E.K.; Beri, V.; Tanaka, K.E.; Vikram, B.; Guha, C. Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res. 1999, 59, 6028–6032. [Google Scholar]
- Demaria, S.; Kawashima, N.; Yang, A.M.; Devitt, M.L.; Babb, J.S.; Allison, J.P.; Formenti, S.C. Immune-mediated inhibition of metastases after treatment with local radiation and ctla-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 2005, 11, 728–734. [Google Scholar]
- Lumniczky, K.; Desaknai, S.; Mangel, L.; Szende, B.; Hamada, H.; Hidvegi, E.J.; Safrany, G. Local tumor irradiation augments the antitumor effect of cytokine-producing autologous cancer cell vaccines in a murine glioma model. Cancer Gene Ther. 2002, 9, 44–52. [Google Scholar] [CrossRef]
- Seetharam, S.; Staba, M.J.; Schumm, L.P.; Schreiber, K.; Schreiber, H.; Kufe, D.W.; Weichselbaum, R.R. Enhanced eradication of local and distant tumors by genetically produced interleukin-12 and radiation. Int. J. Oncol. 1999, 15, 769–773. [Google Scholar] [CrossRef]
- Jeon, Y.H.; Choi, Y.; Kim, H.J.; Kim, C.W.; Jeong, J.M.; Lee, D.S.; Chung, J.K. Human sodium iodide symporter gene adjunctive radiotherapy to enhance the preventive effect of hmuc1 DNA vaccine. Int. J. Cancer 2007, 121, 1593–1599. [Google Scholar] [CrossRef]
- Chang, M.C.; Chen, Y.L.; Lin, H.W.; Chiang, Y.C.; Chang, C.F.; Hsieh, S.F.; Chen, C.A.; Sun, W.Z.; Cheng, W.F. Irradiation enhances abscopal anti-tumor effects of antigen-specific immunotherapy through regulating tumor microenvironment. Mol. Ther. 2018, 26, 404–419. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.-W.; Chang, J.W.-C. Immune checkpoint inhibitors win the 2018 nobel prize. Biomed. J. 2019, 42, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Vandenborre, K.; Van Gool, S.W.; Kasran, A.; Ceuppens, J.L.; Boogaerts, M.A.; Vandenberghe, P. Interaction of ctla-4 (cd152) with cd80 or cd86 inhibits human t-cell activation. Immunology 1999, 98, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.C.; Ghasemzadeh, A.; Kochel, C.M.; Nirschl, T.R.; Francica, B.J.; Lopez-Bujanda, Z.A.; Carrera Haro, M.A.; Tam, A.; Anders, R.A.; Selby, M.J.; et al. Combining intratumoral treg depletion with androgen deprivation therapy (adt): Preclinical activity in the myc-cap model. Prostate Cancer Prostatic Dis. 2018, 21, 113–125. [Google Scholar] [CrossRef]
- Simpson, T.R.; Li, F.; Montalvo-Ortiz, W.; Sepulveda, M.A.; Bergerhoff, K.; Arce, F.; Roddie, C.; Henry, J.Y.; Yagita, H.; Wolchok, J.D.; et al. Fc-dependent depletion of tumor-infiltrating regulatory t cells co-defines the efficacy of anti-ctla-4 therapy against melanoma. J. Exp. Med. 2013, 210, 1695–1710. [Google Scholar] [CrossRef] [PubMed]
- Afreen, S.; Dermime, S. The immunoinhibitory b7-h1 molecule as a potential target in cancer: Killing many birds with one stone. Hematol. Oncol. Stem. Cell Ther. 2014, 7, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.; Yang, Z.; Miyamoto, H. Immunohistochemistry of immune checkpoint markers pd-1 and pd-l1 in prostate cancer. Medicine 2019, 98, e17257. [Google Scholar] [CrossRef]
- Riley, J.L. Pd-1 signaling in primary t cells. Immunol. Rev. 2009, 229, 114–125. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Boudadi, K.; Suzman, D.L.; Anagnostou, V.; Fu, W.; Luber, B.; Wang, H.; Niknafs, N.; White, J.R.; Silberstein, J.L.; Sullivan, R.; et al. Ipilimumab plus nivolumab and DNA-repair defects in ar-v7-expressing metastatic prostate cancer. Oncotarget 2018, 9, 28561–28571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, S.; Jackson, C.M.; Yoshimura, K.; Yen, H.R.; Getnet, D.; Harris, T.J.; Goldberg, M.V.; Bruno, T.C.; Grosso, J.F.; Durham, N.; et al. Sequencing ctla-4 blockade with cell-based immunotherapy for prostate cancer. J. Transl. Med. 2013, 11, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, A.; Vanvarenberg, K.; Kos, Š.; Lucas, S.; Colau, D.; Van den Eynde, B.; Préat, V.; Vandermeulen, G. Combination of immune checkpoint blockade with DNA cancer vaccine induces potent antitumor immunity against p815 mastocytoma. Sci. Rep. 2018, 8, 15732. [Google Scholar] [CrossRef]
- Kos, S.; Lopes, A.; Preat, V.; Cemazar, M.; Lampreht Tratar, U.; Ucakar, B.; Vanvarenberg, K.; Sersa, G.; Vandermeulen, G. Intradermal DNA vaccination combined with dual ctla-4 and pd-1 blockade provides robust tumor immunity in murine melanoma. PLoS ONE 2019, 14, e0217762. [Google Scholar] [CrossRef] [Green Version]
- Duperret, E.K.; Wise, M.C.; Trautz, A.; Villarreal, D.O.; Ferraro, B.; Walters, J.; Yan, J.; Khan, A.; Masteller, E.; Humeau, L.; et al. Synergy of immune checkpoint blockade with a novel synthetic consensus DNA vaccine targeting tert. Mol. Ther. 2018, 26, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Rekoske, B.T.; Smith, H.A.; Olson, B.M.; Maricque, B.B.; McNeel, D.G. Pd-1 or pd-l1 blockade restores antitumor efficacy following ssx2 epitope-modified DNA vaccine immunization. Cancer Immunol. Res. 2015, 3, 946–955. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Akira, S. Toll-like receptors. Curr. Protoc. Immunol. 2015, 109. [Google Scholar] [CrossRef] [PubMed]
- Delneste, Y.; Beauvillain, C.; Jeannin, P. Innate immunity: Structure and function of tlrs. Med. Sci. 2007, 23, 67–73. [Google Scholar]
- Wong, R.M.; Smith, K.A.; Tam, V.L.; Pagarigan, R.R.; Meisenburg, B.L.; Quach, A.M.; Carrillo, M.A.; Qiu, Z.; Bot, A.I. Tlr-9 signaling and tcr stimulation co-regulate cd8(+) t cell-associated pd-1 expression. Immunol. Lett. 2009, 127, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Zahm, C.D.; Colluru, V.T.; McIlwain, S.J.; Ong, I.M.; McNeel, D.G. Tlr stimulation during t-cell activation lowers pd-1 expression on cd8+ t cells. Cancer Immunol. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Ma, Z.; Li, Q.; Yan, H.; Liu, J.; Wu, W.; Guo, J.; Zhang, X.; Kirschning, C.J.; Xu, H.; et al. Tlr2 stimulation increases cellular metabolism in cd8(+) t cells and thereby enhances cd8(+) t cell activation, function, and antiviral activity. J. Immunol. 2019, 203, 2872–2886. [Google Scholar] [CrossRef]
- Hammerich, L.; Bhardwaj, N.; Kohrt, H.E.; Brody, J.D. In situ vaccination for the treatment of cancer. Immunotherapy 2016, 8, 315–330. [Google Scholar] [CrossRef]
- Domingos-Pereira, S.; Decrausaz, L.; Derré, L.; Bobst, M.; Romero, P.; Schiller, J.T.; Jichlinski, P.; Nardelli-Haefliger, D. Intravaginal tlr agonists increase local vaccine-specific cd8 t cells and human papillomavirus-associated genital-tumor regression in mice. Mucosal Immunol. 2013, 6, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Liu, C.; Lizée, G.; Peng, W.; Xu, C.; Ye, Y.; Rabinovich, B.A.; Hailemichael, Y.; Gelbard, A.; Zhou, D.; et al. Antitumor activity mediated by cpg: The route of administration is critical. J. Immunother. 2011, 34, 279–288. [Google Scholar] [CrossRef]
- Gableh, F.; Saeidi, M.; Hemati, S.; Hamdi, K.; Soleimanjahi, H.; Gorji, A.; Ghaemi, A. Combination of the toll like receptor agonist and α-galactosylceramide as an efficient adjuvant for cancer vaccine. J. Biomed. Sci. 2016, 23, 16. [Google Scholar] [CrossRef] [Green Version]
- Sajadian, A.; Tabarraei, A.; Soleimanjahi, H.; Fotouhi, F.; Gorji, A.; Ghaemi, A. Comparing the effect of toll-like receptor agonist adjuvants on the efficiency of a DNA vaccine. Arch. Virol. 2014, 159, 1951–1960. [Google Scholar] [CrossRef] [Green Version]
- Uyttenhove, C.; Pilotte, L.; Theate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 2003, 9, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Croitoru-Lamoury, J.; Lamoury, F.M.; Caristo, M.; Suzuki, K.; Walker, D.; Takikawa, O.; Taylor, R.; Brew, B.J. Interferon-gamma regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (ido). PLoS ONE 2011, 6, e14698. [Google Scholar] [CrossRef] [Green Version]
- Mbongue, J.C.; Nicholas, D.A.; Torrez, T.W.; Kim, N.S.; Firek, A.F.; Langridge, W.H. The role of indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines 2015, 3, 703–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunther, J.; Dabritz, J.; Wirthgen, E. Limitations and off-target effects of tryptophan-related ido inhibitors in cancer treatment. Front. Immunol. 2019, 10, 1801. [Google Scholar] [CrossRef] [PubMed]
- Holmgaard, R.B.; Zamarin, D.; Munn, D.H.; Wolchok, J.D.; Allison, J.P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor t cell immunotherapy targeting ctla-4. J. Exp. Med. 2013, 210, 1389–1402. [Google Scholar] [CrossRef] [PubMed]
- Gibney, G.T.; Hamid, O.; Lutzky, J.; Olszanski, A.J.; Mitchell, T.C.; Gajewski, T.F.; Chmielowski, B.; Hanks, B.A.; Zhao, Y.; Newton, R.C.; et al. Phase 1/2 study of epacadostat in combination with ipilimumab in patients with unresectable or metastatic melanoma. J. Immunother. Cancer 2019, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Long, G.V.; Dummer, R.; Hamid, O.; Gajewski, T.F.; Caglevic, C.; Dalle, S.; Arance, A.; Carlino, M.S.; Grob, J.J.; Kim, T.M.; et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (echo-301/keynote-252): A phase 3, randomised, double-blind study. Lancet Oncol. 2019, 20, 1083–1097. [Google Scholar] [CrossRef]
- Kallberg, E.; Wikstrom, P.; Bergh, A.; Ivars, F.; Leanderson, T. Indoleamine 2,3-dioxygenase (ido) activity influence tumor growth in the tramp prostate cancer model. Prostate 2010, 70, 1461–1470. [Google Scholar] [CrossRef]
- Feder-Mengus, C.; Wyler, S.; Hudolin, T.; Ruszat, R.; Bubendorf, L.; Chiarugi, A.; Pittelli, M.; Weber, W.P.; Bachmann, A.; Gasser, T.C.; et al. High expression of indoleamine 2,3-dioxygenase gene in prostate cancer. Eur. J. Cancer 2008, 44, 2266–2275. [Google Scholar] [CrossRef] [Green Version]
- Banzola, I.; Mengus, C.; Wyler, S.; Hudolin, T.; Manzella, G.; Chiarugi, A.; Boldorini, R.; Sais, G.; Schmidli, T.S.; Chiffi, G.; et al. Expression of indoleamine 2,3-dioxygenase induced by ifn-gamma and tnf-alpha as potential biomarker of prostate cancer progression. Front. Immunol. 2018, 9, 1051. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Blanco, G.; Burgers, P.C.; Dekker, L.J.; Vredenbregt-van den Berg, M.S.; Ijzermans, J.N.; Schenk-Braat, E.A.; Jenster, G.; Luider, T.M. Serum kynurenine/tryptophan ratio is not a potential marker for detecting prostate cancer. Clin. Biochem. 2014, 47, 1347–1348. [Google Scholar] [CrossRef] [PubMed]
- Yen, M.C.; Lin, C.C.; Chen, Y.L.; Huang, S.S.; Yang, H.J.; Chang, C.P.; Lei, H.Y.; Lai, M.D. A novel cancer therapy by skin delivery of indoleamine 2,3-dioxygenase sirna. Clin. Cancer Res. 2009, 15, 641–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.C.; Chou, C.W.; Shiau, A.L.; Tu, C.F.; Ko, T.M.; Chen, Y.L.; Yang, B.C.; Tao, M.H.; Lai, M.D. Therapeutic her2/neu DNA vaccine inhibits mouse tumor naturally overexpressing endogenous neu. Mol. Ther. 2004, 10, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Zappasodi, R.; Budhu, S.; Hellmann, M.D.; Postow, M.A.; Senbabaoglu, Y.; Manne, S.; Gasmi, B.; Liu, C.; Zhong, H.; Li, Y.; et al. Non-conventional inhibitory cd4(+)foxp3(-)pd-1(hi) t cells as a biomarker of immune checkpoint blockade activity. Cancer Cell 2018, 33, 1017–1032.e1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, V.; Shrimali, R.K.; Ahmad, S.; Dai, W.; Wang, H.; Lu, S.; Nandre, R.; Gaur, P.; Lopez, J.; Sade-Feldman, M.; et al. Pd-1 blockade in subprimed cd8 cells induces dysfunctional pd-1(+)cd38(hi) cells and anti-pd-1 resistance. Nat. Immunol. 2019, 20, 1231–1243. [Google Scholar] [CrossRef]
- Jafari, S.; Molavi, O.; Kahroba, H.; Hejazi, M.S.; Maleki-Dizaji, N.; Barghi, S.; Kiaie, S.H.; Jadidi-Niaragh, F. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Cell Mol. Life Sci. 2020. [Google Scholar] [CrossRef]
- Hansen, A.R.; Massard, C.; Ott, P.A.; Haas, N.B.; Lopez, J.S.; Ejadi, S.; Wallmark, J.M.; Keam, B.; Delord, J.P.; Aggarwal, R.; et al. Pembrolizumab for advanced prostate adenocarcinoma: Findings of the keynote-028 study. Ann. Oncol. 2018, 29, 1807–1813. [Google Scholar] [CrossRef]
- De Guillebon, E.; Dardenne, A.; Saldmann, A.; Seguier, S.; Tran, T.; Paolini, L.; Lebbe, C.; Tartour, E. Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. Int. J. Cancer 2020. [Google Scholar] [CrossRef]
Vaccine Antigen | Vaccine Name | Combination | Phase (Number Treated) | Rationale/Approach | Major Finding | NCT Trial Number | Ref. |
---|---|---|---|---|---|---|---|
Rhesus PSA | pVAXrcPSAv531 | – | 1 (N = 15) | Dose escalation. Safety, changes in PSA kinetics, and detection of PSA-specific immune responses in patients with nmCSPC | Vx was safe. No changes in PSA kinetics. 14/15 patients had PSA-specific immune responses due to vx or ADT | NCT00859729 | [47] |
PSA | pVAX/PSA | – | 1 (N = 8) | Dose escalation. Safety and detection of PSA-specific cellular immunity in CRPC | Vx was safe. At highest dose (900 μg), PSA-specific cellular and humoral immunity detected | - | [15] |
PSA + PSMA | INO-5150 | + IL-12 DNA plasmid (INO-9012) | 1 (N = 62) | Safety, tolerability, immune response to PSA and PSMA, PSA doubling time and PSA kinetics. Patients with biochemically recurrent PCa (nmCSPC) | Vx was safe, and 53/62 patients were progression-free after 72 weeks. PSA doubling time increased in patients with pretreatment PSA doubling time <12 months, and 47/62 patients had PSA- or PSMA-specific immunity | NCT02514213 | [48] |
PSMA + PRAME | MKC1106-PP | – | 1 (N = 24) | Fixed DNA plasmid (prime) and two different doses of peptide boost (low/high). Safety, PSA or PRAME specific immune response, clinical benefit (stable disease) in CRPC | Vx was safe, and 4/10 showed PSA decline or stable disease for >6 months. Association between antigen-specific T cells above baseline and disease control (stable disease >6 months) | NCT00423254 | [45] |
NY-ESO1 | pPJV7611 | – | 1 (N = 16) | Safety and immune response in patients with different malignancies, including 9 with metastatic prostate cancer | Vx was safe. All 10 patients had CD4+ immune responses, and 2/10 patients had CD8+ immune responses | NCT00199849 | [49] |
AR LBD | pTVG-AR (MVI-118) | – | 1 (N = 40) | Safety, immune response, median time to PSA progression, and 18-month PSA progression free survival in patients with mCSPC | Vx was safe, and 14/30 evaluated patients developed AR-specific cellular immunity. Patients with T cell immunity had significantly longer time to PSA progression | NCT02411786 | [44] |
PAP | pTVG-HP (MVI-816) | – | 1 (N = 22) | Dose escalation. Safety, PAP-specific immune response, PSA doubling time in patients with nmCSPC | Vx was safe, and 9/22 patients developed PAP-specific CD4+ and/or CD8+ cell proliferation. PSA doubling time increased from 6.5 months pretreatment to 8.5 months post-treatment and 9.3 months to 1-year post-treatment | NCT00582140 | [50] |
PAP | pTVG-HP (MVI-816) | – | 1/2 (N = 16) | Tested two schedules: 6 immunizations every 2 weeks, then every 3 months for up to 2 years versus 6 immunizations every 2 weeks, then immunized based on results from immune monitoring. In patients with nmCRPC | Immune monitoring did not lead to superior schedule. Antigen-specific T cells elicited persisted over time | NCT00849121 | [51] |
PAP | pTVG-HP (MVI-816) | – | 2 (N = 99) | Randomized to pTVG-HP with GM-CSF versus GM-CSF alone in patients with nmCSPC and PSA doubling time < 12 months | Two-year metastasis-free survival was not different overall between study arms. Patients with a pretreatment PSA doubling time < 3 months, MFS was significantly longer in vx arm. Decreased NaF uptake by PET/CT imaging suggested vx affected bone micrometastatic disease | NCT01341652 | [12] |
PAP | pTVG-HP (MVI-816) | + pembrolizumab | 1/2 (N = 66) | Assess pTVG-HP with pembrolizumab (concurrent) or pTVG-HP vx first followed by pembrolizumab (sequential) in patients with mCRPC | Median time to radiographic progression was not different; 8/13 patients treated concurrently and 1/12 patients treated sequentially had PSA declines from baseline. PSA declines associated with PAP-specific cellular immunity and CD8+ tumor infiltration. Expansion cohorts ongoing | NCT02499835 | [42,52] |
PAP | pTVG-HP (MVI-816) | + Sip-T | 2 (N = 18) | Assessed whether pTVG-HP could augment Sip-T antitumor efficacy in patients with mCRPC | Treatment was safe, and 11/18 patients developed PAP-specific cellular immunity. Higher antibody immunity observed in patients receiving pTVG-HP boost compared to Sip-T alone. Median time to progression was not significantly different | NCT01706458 | [53] |
PAP | pTVG-HP (MVI-816) | + nivolumab | 2 (N = 21–41) | Assess the safety and PSA complete response rate using pTVG-HP with nivolumab in patients with nmCSPC | Ongoing | NCT03600350 | – |
PAP and AR LBD | pTVG-HP (MVI-816) and pTVG-AR (MVI-118) | + pembrolizumab | 2 (N = 60) | Assess efficacy (6m PFS) of one versus two DNA vaccines, with PD-1 blockade in patients with mCRPC | Ongoing | NCT04090528 | – |
Mutation-associated neoantigens | + PROSTVAC + ipilimumab + nivolumab | 1 (N = 20) | Will elucidate safety and immune response to a shared antigen vaccine and tumor-specific antigen DNA vaccine with ICB | Ongoing | NCT03532217 | – |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamat-Huber, M.; Jeon, D.; Johnson, L.E.; Moseman, J.E.; Muralidhar, A.; Potluri, H.K.; Rastogi, I.; Wargowski, E.; Zahm, C.D.; McNeel, D.G. Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC). Cancers 2020, 12, 2831. https://doi.org/10.3390/cancers12102831
Gamat-Huber M, Jeon D, Johnson LE, Moseman JE, Muralidhar A, Potluri HK, Rastogi I, Wargowski E, Zahm CD, McNeel DG. Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC). Cancers. 2020; 12(10):2831. https://doi.org/10.3390/cancers12102831
Chicago/Turabian StyleGamat-Huber, Melissa, Donghwan Jeon, Laura E. Johnson, Jena E. Moseman, Anusha Muralidhar, Hemanth K. Potluri, Ichwaku Rastogi, Ellen Wargowski, Christopher D. Zahm, and Douglas G. McNeel. 2020. "Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC)" Cancers 12, no. 10: 2831. https://doi.org/10.3390/cancers12102831
APA StyleGamat-Huber, M., Jeon, D., Johnson, L. E., Moseman, J. E., Muralidhar, A., Potluri, H. K., Rastogi, I., Wargowski, E., Zahm, C. D., & McNeel, D. G. (2020). Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC). Cancers, 12(10), 2831. https://doi.org/10.3390/cancers12102831