Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Non-Coding RNAs as the Important Players in the Regulation of Gene Expression
3. Roles of miRNAs in Anaplastic Thyroid Carcinoma
4. Roles of lncRNAs in Anaplastic Thyroid Carcinoma
5. Non-coding RNA (siRNA) Mediated Targeted Therapy for Anaplastic Thyroid Carcinoma
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Deeken-Draisey, A.; Yang, G.Y.; Gao, J.; Alexiev, B.A. Anaplastic thyroid carcinoma: An epidemiologic, histologic, immunohistochemical, and molecular single-institution study. Hum. Pathol. 2018, 82, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.K. Update on Adrenal Tumours in 2017 World Health Organization (WHO) of Endocrine Tumours. Endocr. Pathol. 2017, 28, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.; Agarwal, A.; Pradhan, R.; George, N.; Kumari, N.; Sabaretnam, M.; Chand, G.; Mishra, A.; Agarwal, G.; Mishra, S.K. Genetic Alterations in Anaplastic Thyroid Carcinoma. Indian J. Endocrinol. Metab. 2019, 23, 480–485. [Google Scholar] [PubMed]
- Tiedje, V.; Stuschke, M.; Weber, F.; Dralle, H.; Moss, L.; Führer, D. Anaplastic thyroid carcinoma: Review of treatment protocols. Endocr. Relat. Cancer 2018, 25, R153–R161. [Google Scholar] [CrossRef] [Green Version]
- García Carretero, R.; Peña-Arce, C.; Martinez-Quesada, G.; Garcia-Alvarez, J. Fatal outcome of an anaplastic thyroid tumour. BMJ. Case. Rep. 2017, 2017, bcr2017221672. [Google Scholar] [CrossRef] [PubMed]
- Bozorg-Ghalati, F.; Hedayati, M. Molecular biomarkers of anaplastic thyroid carcinoma. Curr. Mol. Med. 2017, 17, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Abe, I.; Lam, A.K. Anaplastic thyroid carcinoma: Current issues in genomics and therapeutics. Curr. Oncol. Rep. 2020, in press. [Google Scholar]
- Wang, Y.; Hardin, H.; Chu, Y.H.; Esbona, K.; Zhang, R.; Lloyd, R.V. Long Non-coding RNA expression in anaplastic thyroid carcinomas. Endocr. Pathol. 2019, 30, 262–269. [Google Scholar] [CrossRef]
- Molinaro, E.; Romei, C.; Biagini, A.; Sabini, E.; Agate, L.; Mazzeo, S.; Materazzi, G.; Sellari-Franceschini, S.; Ribechini, A.; Torregrossa, L.; et al. Anaplastic thyroid carcinoma: From linicopathology to genetics and advancedtherapies. Nat. Rev. Endocrinol. 2017, 13, 644–660. [Google Scholar] [CrossRef]
- Acquaviva, G.; Visani, M.; Repaci, A.; Rhoden, K.J.; de Biase, D.; Pession, A.; Giovanni, T. Molecular pathology of thyroid tumours of follicular cells: A review of genetic alterations and their clinicopathological relevance. Histopathology 2018, 72, 6–31. [Google Scholar] [CrossRef]
- Saini, S.; Tulla, K.; Maker, A.V.; Burman, K.D.; Prabhakar, B.S. Therapeutic advances in anaplastic thyroid cancer: A current perspective. Mol. Cancer 2018, 17, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javed, Z.; Ahmed Shah, F.; Rajabi, S.; Raza, Q.; Iqbal, Z.; Ullah, M.; Ahmad, T.; Salehi, B.; Sharifi-Rad, M.; Pezzani, R.; et al. LncRNAs as Potential Therapeutic Targets in Thyroid Cancer. Asian. Pac. J. Cancer Prev. 2020, 21, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Landa, I.; Ibrahimpasic, T.; Boucai, L.; Sinha, R.; Knauf, J.A.; Shah, R.H.; Dogan, S.; Ricarte-Filho, J.C.; Krishnamoorthy, G.P.; Xu, B.; et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Investig. 2016, 126, 1052–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Ghossein, R. Genomic landscape of poorly differentiated and anaplastic thyroid carcinoma. Endocr. Pathol. 2016, 27, 205–212. [Google Scholar] [CrossRef]
- Fuziwara, C.S.; Kimura, E.T. MicroRNAs in thyroid development, function and tumorigenesis. Mol. Cell. Endocrinol. 2017, 456, 44–50. [Google Scholar] [CrossRef]
- Gou, L.; Zou, H.; Li, B. Long noncoding RNA MALAT1 knockdown inhibits progression of anaplastic thyroid carcinoma by regulating miR-200a-3p/FOXA. Cancer Biol. Ther. 2019, 20, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Das, P.K.; Siddika, M.A.; Asha, S.Y.; Aktar, S.; Rakib, M.A.; Khanam, J.A.; Pillai, S.; Islam, F. MicroRNAs, a promising target for breast cancer stem cells. Mol. Diagn. Ther. 2020, 24, 69–83. [Google Scholar] [CrossRef]
- Mohr, A.M.; Mott, J.L. Overview of microRNA biology. Semin. Liver. Dis. 2015, 35, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Li, J.; Cairns, M.J. Identifying miRNAs, targets and functions. Brief. Bioinform. 2014, 15, 1–19. [Google Scholar] [CrossRef]
- Kontomanolis, E.N.; Koukouli, A.; Liberis, G.; Stanulov, H.; Achouhan, A.; Pagkalos, A. MiRNAs: Regulators of human disease. Eur. J. Gynaecol. Oncol. 2016, 37, 759–765. [Google Scholar]
- Bertoli, G.; Cava, C.; Castiglioni, I. MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics 2015, 5, 1122–1143. [Google Scholar] [CrossRef] [PubMed]
- Tafrihi, M.; Hasheminasab, E. MiRNAs: Biology, Biogenesis, their Web-based Tools, and Databases. Microrna 2019, 8, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Morris, K.V.; Mattick, J.S. The rise of regulatory RNA. Nat. Rev. Genet. 2014, 15, 423–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatica, A.; Bozzoni, I. Long non-coding RNAs: New players in cell differentiation and development. Nat. Rev. Genet. 2014, 15, 7–21. [Google Scholar] [CrossRef]
- Hu, W.; Alvarez-Dominguez, J.R.; Lodish, H.F. Regulation of mammalian cell differentiation by long noncoding RNAs. EMBO Rep. 2012, 13, 971–983. [Google Scholar] [CrossRef] [Green Version]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome. Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.A.; Yin, H.; Sweeney, S.; Raha, D.; Snyder, M.; Lin, H. A major epigenetic programming mechanism guided by piRNAs. Dev. Cell. 2013, 24, 502–516. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, Y.W.; Siomi, M.C.; Siomi, H. PIWI-Interacting RNA: Its Biogenesis and Functions. Annu. Rev. Biochem. 2015, 84, 405–433. [Google Scholar] [CrossRef]
- Liu, Y.; Dou, M.; Song, X.; Dong, Y.; Liu, S.; Liu, H.; Tao, J.; Li, W.; Yin, X.; Xu, W. The emerging role of the piRNA/piwi complex in Cancer. Mol. Cancer 2019, 18, 123. [Google Scholar] [CrossRef] [Green Version]
- Lim, A.K.; Lorthongpanich, C.; Chew, T.G.; Tan, C.W.; Shue, Y.T.; Balu, S.; Gounko, N.; Kuramochi-Miyagawa, S.; Matzuk, M.M.; Chuma, S.; et al. The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles. Development 2013, 140, 3819–3825. [Google Scholar] [CrossRef] [Green Version]
- Martinez, V.D.; Vucic, E.A.; Thu, K.L.; Hubaux, R.; Enfield, K.S.; Pikor, L.A.; Becker-Santos, D.D.; Brown, C.J.; Lam, S.; Lam, W.L. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci. Rep. 2015, 5, 10423. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Sun, M.; Liu, H.; Yao, Y.; Song, Y. Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett. 2013, 339, 159–166. [Google Scholar] [CrossRef]
- Ferdin, J.; Kunej, T.; Calin, G.A. MicroRNA: Genomic Association with Cancer Predisposition. J. Assoc. Genet. Technol. 2011, 37, 11–19. [Google Scholar] [PubMed]
- Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in Cancer. Annu. Rev. Pathol. 2014, 9, 287–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kouwenhove, M.; Kedde, M.; Agami, R. MicroRNA regulation by RNA-binding proteins and its implications for Cancer. Nat. Rev. Cancer 2011, 11, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Chruścik, A.; Gopalan, V.; Lam, A.K. The clinical and biological roles oftransforming growth factor beta in colon cancer stem cells: A systematic review. Eur. J. Cell. Biol. 2018, 97, 15–22. [Google Scholar] [CrossRef]
- Salajegheh, A.; Vosgha, H.; Md Rahman, A.; Amin, M.; Smith, R.A.; Lam, A.K. Modulatory role of miR-205 in angiogenesis and progression of thyroid Cancer. J. Mol. Endocrinol. 2015, 55, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, G.; Dolcimascolo, A.; Caruso, G.; Forte, S. miR-19a is involved in progression and malignancy of anaplastic thyroid cancer cells. Onco. Targets. Ther. 2019, 12, 9571–9583. [Google Scholar] [CrossRef] [Green Version]
- Frisk, T.; Foukakis, T.; Dwight, T.; Lundberg, J.; Höög, A.; Wallin, G.; Eng, C.; Zedenius, J.; Larsson, C. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid Cancer. Genes. Chromosomes Cancer 2002, 35, 74–80. [Google Scholar] [CrossRef]
- Takakura, S.; Mitsutake, N.; Nakashima, M.; Namba, H.; Saenko, V.A.; Rogounovitch, T.I.; Nakazawa, Y.; Hayashi, T.; Ohtsuru, A.; Yamashita, S. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci. 2008, 99, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Zhang, X.; Xu, X.; Lu, X. MiR-618 inhibits anaplastic thyroid cancer by repressing XIAP in one ATC cell line. Ann. Endocrinol. 2014, 75, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhang, L.; Kebebew, E. MiR-20a is upregulated in anaplastic thyroid cancer and targets LIMK1. PLoS ONE 2014, 9, e96103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.M.; Yoon, W.; Shim, J.H.; Jung, H.; Lim, J.H.; Choi, H.J.; Seo, M.; Lee, T.H.; Min, S.H. Roleof Protein Kinases and Their Inhibitors in Radiation Response of Tumor Cells. Curr. Pharm. Des. 2017, 23, 4259–4280. [Google Scholar] [CrossRef]
- Wei, W.; Zeng, G.; Liu, C.; Zou, B.; Li, L. Associations of LIM kinase1 (LIMK1) gene single nucleotide polymorphisms with prostate cancer susceptibility in Chinese population. Int. J. Clin. Exp. Pathol. 2017, 10, 9725–9734. [Google Scholar]
- Chen, J.; Ananthanarayanan, B.; Springer, K.S.; Wolf, K.J.; Sheyman, S.M.; Tran, V.D.; Kumar, S. Suppression of LIM Kinase 1 and LIM Kinase 2 Limits Glioblastoma Invasion. Cancer Res. 2020, 80, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Davila, M.; Jhala, D.; Ghosh, D.; Grizzle, W.E.; Chakrabarti, R. Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate Cancer. Mol. Cancer 2007, 6, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escuin, S.; Vernay, B.; Savery, D.; Gurniak, C.B.; Witke, W.; Greene, N.D.; Copp, A.J. Rho-kinase-dependent actin turnover and actomyosin disassembly are necessary for mouse spinal neural tube closure. J. Cell. Sci. 2015, 128, 2468–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggelou, H.; Chadla, P.; Nikou, S.; Karteri, S.; Maroulis, I.; Kalofonos, H.P.; Papadaki, H.; Bravou, V. LIMK/cofilin pathway and Slingshot are implicated in humancolorectal cancer progression and chemoresistance. Virchows. Arch. 2018, 472, 727–737. [Google Scholar] [CrossRef]
- George, J.; Soares, C.; Montersino, A.; Beique, J.C.; Thomas, G.M. Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphologicalplasticity. eLife 2015, 4, e06327. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, W.; Zhao, X. MiR-155 promotes anaplastic thyroid cancer progression by directly targeting SOCS. BMC Cancer 2019, 19, 1093. [Google Scholar] [CrossRef]
- Oh, J.; Kim, S.H.; Ahn, S.; Lee, C.E. Suppressors of cytokine signaling promote Fas-induced apoptosis through downregulation of NF-kappaB and mitochondrial Bfl-1 in leukemic T cells. J. Immunol. 2012, 189, 5561–5571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, X.; Liu, Y.; Wang, Y.; Meng, M.; Wang, K.; Zang, X.; Zhao, S.; Sun, X.; Cui, L.; Pan, L.; et al. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 2016, 7, 84508–84519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkel, O.; Hamacher, F.; Griessl, R.; Grabner, L.; Schiefer, A.I.; Prutsch, N.; Baer, C.; Egger, G.; Schlederer, M.; Krenn, P.W.; et al. Oncogenic role of miR-155 in anaplastic large cell lymphoma lacking the t(2; 5) translocation. J. Pathol. 2015, 236, 445–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bu, Q.; You, F.; Pan, G.; Yuan, Q.; Cui, T.; Hao, L.; Zhang, J. MiR-125b inhibits anaplastic thyroid cancer cell migration and invasion by targeting PIK3CD. Biomed. Pharmacother. 2017, 88, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Liu, Z.; Zhao, S.; Hu, C.; Liu, Y.; Ma, W.; Zhang, Q. The Expression of CD9 and PIK3CD is associated with prognosis of follicular lymphoma. J. Cancer 2015, 6, 1222–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, W.T.; Ye, Y.P.; Zhang, N.J.; Li, T.T.; Wang, S.Y.; Cui, Y.M.; Qi, L.; Wu, P.; Jiao, H.L.; Xie, Y.J.; et al. MicroRNA-30b functions as a tumour suppressor in human colorectal cancer by targeting KRAS, PIK3CD and BCLJ. Pathology 2014, 232, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, L.; Deng, X.; Li, D.; Cai, H.; Ma, Y.; Jia, C.; Wu, B.; Fan, Y.; Lv, Z. MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene 2019, 38, 699–715. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Suzuki, A.; Ohno, S. PAR-1/MARK: A kinase essential for maintaining the dynamic state of microtubules. Cell. Struct. Funct. 2012, 37, 21–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardin, H.; Guo, Z.; Shan, W.; Montemayor-Garcia, C.; Asioli, S.; Yu, X.M.; Harrison, A.D.; Chen, H.; Lloyd, R.V. The roles of the epithelial-mesenchymal transition marker PRRX1 and miR-146b-5p in papillary thyroid carcinoma progression. Am. J. Pathol. 2014, 184, 2342–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wang, Y.; Li, D.; Jing, S. Notch and TGF-beta/Smad3 pathways are involved in the interaction between cancer cells and cancer-associated fibroblasts in papillary thyroid carcinoma. Tumour. Biol. 2014, 35, 379–385. [Google Scholar] [CrossRef]
- Visone, R.; Pallante, P.; Vecchione, A.; Cirombella, R.; Ferracin, M.; Ferraro, A.; Volinia, S.; Coluzzi, S.; Leone, V.; Borbone, E.; et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 2007, 26, 7590–7595. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Tornincasa, M.; Pallante, P.; Federico, A.; Borbone, E.; Pierantoni, G.M.; Fusco, A. Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH. J. Clin. Endocrinol. Metab. 2012, 97, E710–E718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroof, H.; Islam, F.; Dong, L.; Ajjikuttira, P.; Gopalan, V.; McMillan, N.A.J.; Lam, A.K. Liposomal Delivery of miR-34b-5p Induced Cancer Cell Death in Thyroid Carcinoma. Cells 2018, 7, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Liu, Z.B.; Ren, W.M.; Ye, X.G.; Zhang, Y.Y. The miR-200 family regulates the epithelial-mesenchymal transition induced by EGF/EGFR in anaplastic thyroid cancer cells. Int. J. Mol. Med. 2012, 30, 856–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Zhang, H.; Xiang, H.; Liu, J.; Liu, Y.; Zhang, X.; Wang, J.; Tang, Y. TGF-β1 induces the dissolution of tight junctions in human renal proximal tubularcells: Role of the RhoA/ROCK signaling pathway. Int. J. Mol. Med. 2013, 32, 464–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markowski, M.C.; Brown, A.C.; Barker, T.H. Directing epithelial to mesenchymal transition through engineered microenvironments displaying orthogonal adhesive and mechanical cues. J. Biomed. Mater. Res. A. 2012, 100, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Moya, J.; Wert-Lamas, L.; Santisteban, P. MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene 2018, 37, 3369–3383. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wu, H.; Liu, X.; Li, B.; Chen, Y.; Ren, X.; Liu, C.G.; Yang, J.M. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 2009, 5, 816–823. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS is regulated by the let-7 microRNA family. Cell 2005, 120, 635–647. [Google Scholar] [CrossRef] [Green Version]
- Maroof, H.; Irani, S.; Arianna, A.; Vider, J.; Gopalan, V.; Lam, A.K. Interactions of Vascular Endothelial Growth Factor and p53 with miR-195 in Thyroid Carcinoma: Possible Therapeutic Targets in Aggressive Thyroid Cancers. Current. Cancer Drug Targets 2019, 19, 561–570. [Google Scholar] [CrossRef]
- Salajegheh, A.; Vosgha, H.; Rahman, M.A.; Amin, M.; Smith, R.A.; Lam, A.K. Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma. Human. Pathol. 2016, 51, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Murugan, A.K.; Munirajan, A.K.; Alzahrani, A.S. Long noncoding RNAs: Emerging players in thyroid cancer pathogenesis. Endocr. Relat. Cancer 2018, 25, R59–R82. [Google Scholar] [CrossRef]
- Samimi, H.; Sajjadi-Jazi, S.M.; Seifirad, S.; Atlasi, R.; Mahmoodzadeh, H.; Faghihi, M.A.; Haghpanah, V. Molecular mechanisms of long non-coding RNAs in anaplastic thyroid cancer: A systematic review. Cancer Cell. Int. 2020, 20, 352. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Y.; Zhang, K.; Liu, X.; Dai, Y.; Jiao, X. Targeted inhibition of long non-coding RNA H19 blocks anaplastic thyroid carcinoma growth and metastasis. Bioengineered 2019, 10, 306–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raveh, E.; Matouk, I.J.; Gilon, M.; Hochberg, A. The H19 Long non-coding RNA in cancer initiation, progression and metastasis-a proposed unifying theory. Mol. Cancer 2015, 14, 184. [Google Scholar] [CrossRef] [Green Version]
- Jantscheff, P.; Esser, N.; Geipel, A.; Woias, P.; Ziroli, V.; Goldschmidtboing, F.; Massing, U. Metastasizing, Luciferase Transduced MAT-Lu Rat Prostate Cancer Models: Follow up of Bolus and Metronomic Therapy with Doxorubicin as Model Drug. Cancers 2011, 3, 2679–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surguladze, D.; Steiner, P.; Prewett, M.; Tonra, J.R. Methods for evaluating effects of an irinotecan + 5-fluorouracil/leucovorin (IFL) regimen in an orthotopic metastatic colorectal cancer model utilizing in vivo bioluminescence imaging. Methods. Mol. Biol. 2010, 602, 235–252. [Google Scholar] [PubMed]
- Chen, J.; Zhao, D.; Meng, Q. Knockdown of HCP5 exerts tumor-suppressive functions by up-regulating tumor suppressor miR-128-3p in anaplastic thyroid Cancer. Biomed. Pharmacother. 2019, 116, 108966. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, Z.; Li, D. Long noncoding RNA UCA1 promotes anaplastic thyroid cancer cell proliferation via miR-135a-mediated c-myc activation. Mol. Med. Rep. 2018, 18, 3068–3076. [Google Scholar] [CrossRef] [Green Version]
- Enomoto, K.; Zhu, X.; Park, S.; Zhao, L.; Zhu, Y.J.; Willingham, M.C.; Qi, J.; Copland, J.A.; Meltzer, P.; Cheng, S.Y. Targeting MYC as a Therapeutic Intervention for Anaplastic Thyroid Cancer. J. Clin. Endocrinol. Metab. 2017, 102, 2268–2280. [Google Scholar] [CrossRef] [Green Version]
- Dang, C.V. MYC on the path to Cancer. Cell 2012, 149, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Yan, P.; Su, Z.; Zhang, Z.; Gao, T. LncRNA NEAT1 enhances the resistance of anaplastic thyroid carcinoma cells to cisplatin by sponging miR-9-5p and regulating SPAG9 expression. Int. J. Oncol. 2019, 55, 988–1002. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.M.; Wang, C.; Yuan, Z.; Chen, G.L.; Ye, T.; Yang, B.W. LncRNA NEAT1 promotes thetumorigenesis of colorectal cancer by sponging miR-193a-3p. Cell. Prolif. 2019, 52, e12526. [Google Scholar] [CrossRef]
- Chen, Z.J.; Zhang, Z.; Xie, B.B.; Zhang, H.Y. Clinical significance of up-regulated lncRNA NEAT1 in prognosis of ovarian Cancer. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3373–3377. [Google Scholar]
- Choudhry, H.; Albukhari, A.; Morotti, M.; Haider, S.; Moralli, D.; Smythies, J.; Schödel, J.; Green, C.M.; Camps, C.; Buffa, F.; et al. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene 2015, 34, 4482–4490. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Kong, J.; Ma, Z.; Gao, S.; Feng, X. Up regulation of the long non-coding RNA NEAT1 promotes esophageal squamous cell carcinoma cell progression and correlates with poor prognosis. Am. J. Cancer Res. 2015, 5, 2808–2815. [Google Scholar]
- Hu, Y.; Yang, Q.; Wang, L.; Wang, S.; Sun, F.; Xu, D.; Jiang, J. Knockdown of the oncogene lncRNA NEAT1 restores the availability of miR-34c and improves the sensitivity to cisplatin in osteosarcoma. Biosci. Rep. 2018, 38, BSR20180375. [Google Scholar] [CrossRef] [Green Version]
- An, J.; Lv, W.; Zhang, Y. LncRNA NEAT1 contributes to paclitaxel resistance of ovarian cancer cells by regulating ZEB1 expression via miR-194. Onco Targets. Ther. 2017, 10, 5377–5390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Zhang, J.; Wang, Q.; Ren, C. Overexpression of lncRNA NEAT1 mitigates multidrug resistance by inhibiting ABCG2 in leukemia. Oncol. Lett. 2016, 12, 1051–1057. [Google Scholar] [CrossRef] [Green Version]
- Pellecchia, S.; Sepe, R.; Decaussin-Petrucci, M.; Ivan, C.; Shimizu, M.; Coppola, C.; Testa, D.; Calin, G.A.; Fusco, A.; Pallante, P. The Long Non-Coding RNA Prader Willi/Angelman Region RNA5 (PAR5) is downregulated in anaplastic thyroid carcinomas where it acts as a tumor suppressor by reducing EZH2 activity. Cancers 2020, 12, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borbone, E.; Troncone, G.; Ferraro, A.; Jasencakova, Z.; Stojic, L.; Esposito, F.; Hornig, N.; Fusco, A.; Orlando, V. Enhancer of zeste homolog 2 overexpression has a role in the development of anaplastic thyroid carcinomas. J. Clin. Endocrinol. Metab. 2011, 96, 1029–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Hou, P.; Fan, D.; Dong, M.; Ma, M.; Li, H.; Yao, R.; Li, Y.; Wang, G.; Geng, P.; et al. The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast Cancer. Cell Death Differ. 2017, 24, 59–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.; Cai, Q.; Wang, S.; Mondal, T.; Wang, J.; Quan, Z. Long noncoding RNA MEG3 regulates LATS2 by promoting the ubiquitination of EZH2 and inhibits proliferation and invasion in gallbladder Cancer. Cell. Death. Dis. 2018, 9, 1017. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Gomez, S.J.; Maziveyi, M.; Alahari, S.K. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol. Cancer 2016, 15, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrova, Y.I.; Schecterson, L.; Gumbiner, B.M. Roles for E-cadherin cell surface regulation in Cancer. Mol. Biol. Cell. 2016, 27, 3233–3244. [Google Scholar] [CrossRef]
- Jolly, M.K.; Ware, K.E.; Xu, S.; Gilja, S.; Shetler, S.; Yang, Y.; Wang, X.; Austin, R.G.; Runyambo, D.; Hish, A.J.; et al. E-Cadherin Represses Anchorage-Independent Growth in Sarcomas through Both Signaling and Mechanical Mechanisms. Mol. Cancer Res. 2019, 17, 1391–1402. [Google Scholar] [CrossRef] [Green Version]
- Loh, C.Y.; Chai, J.Y.; Tang, T.F.; Wong, W.F.; Sethi, G.; Shanmugam, M.K.; Chong, P.P.; Looi, C.Y. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.M.; Chen, W.D.; Jiang, X.M.; Jia, X.F.; Wang, H.M.; Zhang, Q.J.; Shu, Y.Q.; Zhao, H.B. HOXtranscript antisense intergenic RNA represses E-cadherin expression by binding to EZH2 in gastric Cancer. World J. Gastroenterol. 2017, 23, 6100–6110. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, J.; Feng, J.; Wang, J. Long noncoding RNA PVT1 modulates thyroid cancer cell proliferation by recruiting EZH2 and regulating thyroid-stimulating hormone receptor (TSHR). Tumour. Biol. 2016, 37, 3105–3113. [Google Scholar] [CrossRef]
- Colombo, T.; Farina, L.; Macino, G.; Paci, P. PVT1: A rising star among oncogenic long noncoding RNAs. Biomed. Res. Int. 2015, 2015, 304208. [Google Scholar] [CrossRef]
- Huang, C.; Yu, W.; Wang, Q.; Cui, H.; Wang, Y.; Zhang, L.; Han, F.; Huang, T. Increased expression of the lncRNA PVT1 is associated with poor prognosis in pancreatic cancer patients. Minerva. Med. 2015, 106, 143–149. [Google Scholar] [PubMed]
- Yang, Y.R.; Zang, S.Z.; Zhong, C.L.; Li, Y.X.; Zhao, S.S.; Feng, X.J. Increased expression of the lncRNA PVT1 promotes tumorigenesis in non-small cell lung Cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 6929–6935. [Google Scholar] [PubMed]
- D’Agostino, M.; Sponziello, M.; Puppin, C.; Celano, M.; Maggisano, V.; Baldan, F.; Biffoni, M.; Bulotta, S.; Durante, C.; Filetti, S.; et al. Differentexpression of TSH receptor and NIS genes in thyroid cancer: Role of epigenetics. J. Mol. Endocrinol. 2014, 52, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, L.H.; Spieker, T.; Koschmieder, S.; Humberg, J.; Jungen, D.; Bulk, E.; Hascher, A.; Wittmer, D.; Marra, A.; Hillejan, L.; et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J. Thorac. Oncol. 2011, 6, 1984–1992. [Google Scholar] [CrossRef] [Green Version]
- Gutschner, T.; Hämmerle, M.; Eißmann, M.; Hsu, J.; Kim, Y.; Hung, G.; Revenko, A.; Arun, G.; Stentrup, M.; Groß, M.; et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013, 73, 31180–31189. [Google Scholar] [CrossRef] [Green Version]
- Cheetham, S.; Gruhl, F.; Mattick, J.; Dinger, M. Long noncoding RNAs and the genetics of Cancer. Br. J. Cancer 2013, 108, 2419–2425. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Xia, L.Q.; Lu, W.W.; Zhang, J.; Zhu, J.S. LncRNAs and Cancer. Oncol. Lett. 2016, 12, 1233–1239. [Google Scholar] [CrossRef] [Green Version]
- Samimi, H.; Haghpanah, V.; Irani, S.; Arefian, E.; Sohi, A.N.; Fallah, P.; Soleimani, M. Transcript-level regulation of MALAT1-mediated cell cycle and apoptosis genes using dual MEK/Aurora kinase inhibitor "BI-847325" on anaplastic thyroidcarcinoma. Daru 2019, 27, 1–7. [Google Scholar] [CrossRef]
- Wu, X.S.; Wang, X.A.; Wu, W.G.; Hu, Y.P.; Li, M.L.; Ding, Q.; Weng, H.; Shu, Y.-J.; Liu, T.-Y.; Jiang, L.; et al. MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway. Cancer Biol. Ther. 2014, 15, 806–814. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Liang, G.; Yuan, B.; Yang, C.; Gao, R.; Zhou, X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour. Biol. 2015, 36, 1477–1486. [Google Scholar] [CrossRef]
- Zhao, J.; Li, L.; Peng, L. MAPK1 up-regulates the expression of MALAT1 to promote the proliferation of cardiomyocytes through PI3K/AKT signaling pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 15947. [Google Scholar]
- Li, C.; Chang, L.; Chen, Z.; Liu, Z.; Wang, Y.; Ye, Q. The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. Int. J. Mol. Med. 2017, 39, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat. Rev. Cancer 2014, 14, 736–746. [Google Scholar] [CrossRef]
- Wang, X.M.; Liu, Y.; Fan, Y.X.; Liu, Z.; Yuan, Q.L.; Jia, M.; Geng, Z.; Gu, L.; Lu, X. LncRNA PTCSC3 affects drug resistance of anaplastic thyroid cancer through STAT3/INO80 pathway. Cancer Biol. Ther. 2018, 19, 590–597. [Google Scholar] [CrossRef] [Green Version]
- Jendrzejewski, J.; He, H.; Radomska, H.S.; Li, W.; Tomsic, J.; Liyanarachchi, S.; Davuluri, R.V.; Nagy, R.; de la Chapelle, A. The polymorphismrs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc. Natl. Acad. Sci. USA 2012, 109, 8646–8651. [Google Scholar] [CrossRef] [Green Version]
- Jendrzejewski, J.; Thomas, A.; Liyanarachchi, S.; Eiterman, A.; Tomsic, J.; He, H.; Radomska, H.S.; Li, W.; Nagy, R.; Sworczak, K.; et al. PTCSC3 Is Involved in Papillary Thyroid Carcinoma Development by Modulating S100A4 Gene Expression. J. Clin. Endocrinol. Metab. 2015, 100, E1370–E1377. [Google Scholar] [CrossRef] [Green Version]
- Conaway, R.C.; Conaway, J.W. The INO80 chromatin remodeling complex in transcription, replication and repair. Trends. Biochem. Sci. 2009, 34, 71–77. [Google Scholar] [CrossRef]
- Decaussin-Petrucci, M.; Delado€ey, J.; Hafdi-Nejjari, Z.; Sassolas, G.; Borson-Chazot, F.; Abu-Khudir, R.; Fusco, A.; Descotes, F.; Cournoyer, S.; Sartelet, H.; et al. Expression of CD133 in differentiated thyroid cancer of young patients. J. Clin. Pathol. 2015, 68, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Berlingieri, M.T.; Manfiletti, G.; Santoro, M.; Bandiera, A.; Visconti, R.; Giancotti, V.; Fusco, A. Inhibition of HMGI-C protein synthesis suppresses retrovirally induced neoplastic transformation of rat thyroid cells. Mol. Cell. Biol. 1995, 15, 1545–1553. [Google Scholar] [CrossRef] [Green Version]
- Berlingieri, M.T.; Pierantoni, G.M.; Giancotti, V.; Santoro, M.; Fusco, A. Thyroid cell transformation requires the expression of the HMG1 proteins. Oncogene 2002, 21, 2971–2980. [Google Scholar] [CrossRef] [Green Version]
- Esposito, F.; De Martino, M.; Petti, M.G.; Forzati, F.; Tornincasa, M.; Federico, A.; Arra, C.; Pierantoni, G.M.; Fusco, A. HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs. Oncotarget 2014, 5, 8341–8354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nambudiri, V.E.; Widlund, H.R. Small interfering RNA. J. Investig. Dermatol. 2013, 133, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikam, R.R.; Gore, K.R. Journey of siRNA: Clinical Developments and Targeted Delivery. Nucleic. Acid. Ther. 2018, 28, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Trivedi, P.; Jain, N.K. Advances in siRNA delivery in cancer therapy. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Mangala, L.S.; Rodriguez-Aguayo, C.; Kong, X.; Lopez-Berestein, G.; Sood, A.K. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018, 37, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Weng, Y.; Xia, X.H.; Liang, X.J.; Huang, Y. Clinical advances of siRNA therapeutics. J. Gene. Med. 2019, 21, e3097. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wang, J.; Man, W.Y.; Zhang, Q.W.; Xu, W.G. siRNA silencing EZH2 reverses cisplatin-resistance of human non-small cell lung and gastric cancer cells. Asian. Pac. J. Cancer Prev. 2015, 16, 2425–2430. [Google Scholar] [CrossRef] [Green Version]
- Saini, S.; Sripada, L.; Tulla, K.; Kumar, P.; Yue, F.; Kunda, N.; Maker, A.V.; Prabhakar, B.S. Loss of MADD expression inhibits cellular growth and metastasis in anaplastic thyroid Cancer. Cell. Death. Dis. 2019, 10, 145. [Google Scholar] [CrossRef]
- Kurada, B.R.; Li, L.C.; Mulherkar, N.; Subramanian, M.; Prasad, K.V.; Prabhakar, B.S. MADD, a splice variant of IG20, is indispensable for MAPK activation and protection against apoptosis upon tumor necrosis factor-alpha treatment. J. Biol. Chem. 2009, 284, 13533–13541. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, N.; Takahashi, A.; Ota, I.; Ohnishi, K.; Mori, E.; Kondo, N.; Noda, T.; Nakagawa, Y.; Uemura, H.; Yane, K.; et al. siRNA targeted for NBS1 enhances heat sensitivity in human anaplastic thyroid carcinoma cells. Int. J. Hyperthermia. 2011, 27, 297–304. [Google Scholar] [CrossRef]
- Takahashi, A.; Matsumoto, H.; Nagayama, K.; Kitano, M.; Hirose, S.; Tanaka, H.; Mori, E.; Yamakawa, N.; Yasumoto, J.; Yuki, K.; et al. Evidence for the involvement of double-strandbreaks in heat-induced cell killing. Cancer Res. 2004, 64, 8839–8845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedelnikova, O.A.; Rogakou, E.P.; Panyutin, I.G.; Bonner, W.M. Quantitative detection of125IdU-induced DNA double-strandbreaks with gamma-H2AX antibody. Radiat. Res. 2002, 158, 486–492. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, P.; Chen, D.; Dou, L. Small interfering RNA (siRNA) against Slug induces apoptosis and sensitizes human anaplastic thyroid carcinoma cells to doxorubicin. Cancer Biomark. 2017, 18, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.R.; Liu, J.; Yu, X.J. Targeting SLUG sensitizes leukemia cells to ADR-induced apoptosis. Int. J. Clin. Exp. Med. 2015, 8, 22139–22148. [Google Scholar]
- Torreggiani, E.; Lisignoli, G.; Manferdini, C.; Lambertini, E.; Penolazzi, L.; Vecchiatini, R.; Gabusi, E.; Chieco, P.; Facchini, A.; Gambari, R.; et al. Role of Slug transcription factor in human mesenchymal stem cells. J. Cell. Mol. Med. 2012, 16, 740–751. [Google Scholar] [CrossRef]
- Xu, T.; Fan, B.; Lv, C.; Xiao, D. Slug mediates nasopharyngeal carcinoma radioresistance via downregulation of PUMA in a p53-dependent and -independent manner. Oncol. Rep. 2015, 33, 2631–2638. [Google Scholar] [CrossRef] [Green Version]
- Buehler, D.; Hardin, H.; Shan, W.; Montemayor-Garcia, C.; Rush, P.S.; Asioli, S.; Chen, H.; Lloyd, R.V. Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. Mod. Pathol. 2013, 26, 54–61. [Google Scholar] [CrossRef]
MiRNAs | Expression Pattern in ATC | Potential Target (s) | Potential Functions | Reference |
---|---|---|---|---|
miR-205 | Downregulated | VEGF-A, ZEB1 | Causes significant inhibition of angiogenesis and EMT Inhibits tumour growth, vascularization, migration and invasion. | [37] |
miR-19a | Upregulated | PTEN | Increases cellular proliferation and progression by suppressing the expression of tumour suppressor PTEN | [38,39] |
miR-17-3p and miR-17-5p | Upregulated | Unknown | Inhibition of these miRNA expression results in growth arrest and induction of apoptosis | [40] |
miR-618 | Downregulated | XIAP | Inhibits cell growth and induces apoptosis | [41] |
miR-20a | Downregulated | LIMK1 | Inhibits proliferation, migration and invasion | [42] |
miR-155 | Upregulated | SOCS1 | Inhibits apoptosis, promotes proliferation, invasion and migration of ATC cells | [51] |
miR-125b | Downregulated | PIK3CD | Decreases the PI3K, phospho-Akt, and phospho-mTOR expression in ATC cells Inhibits migration and invasion of ATC cells | [54] |
miR-483 | Upregulated | Pard3 | Causes significant increase in cell growth, migration, and invasion. | [57] |
miR-25 and miR-30d | Downregulated | EZH2 | Inhibits proliferation and colony formation of ATC cells by inducing G2/M-phase cell-cycle arrest | [62] |
MiR-34b | Downregulated | VEGF-A | Decreases cell proliferation, and wound healing, reduces cell cycle progression and increases apoptosis | [63] |
miR-200 family | Downregulated | ZEB1 and ZEB2 | Inhibits TGF-mediated EMT switch and decreases aggressiveness of ATC | [64] |
miR-146b | Upregulated | PTEN | Inhibits the expression of tumour suppressor PTEN Decreases apoptosis, increases migration and invasion potential by regulating genes related to EMT Activates PI3K/AKT signalling to drive oncogenic proliferation | [67] |
LncRNAs | Expression Pattern in ATC | Potential Target (s) | Potential Functions in ATC | Reference |
---|---|---|---|---|
H19 | Upregulated | Unknown | Increases proliferation, migration and decreases apoptosis in ATC cells | [74] |
HLA complex P5 (HCP5) | Upregulated | miR-128-3p | Increases cell viability, and decreases apoptosis | [78] |
Urothelial carcinoma-associated 1 (UCA1) | Upregulated | miR-135a | Promotes ATC cell proliferation by acting as a competing endogenous RNA by binding with miR-135a Increases cell viability, proliferation, migration and invasion in ATC cells | [79] |
Nuclear paraspeckle assembly transcript 1 (NEAT1) | Upregulated | miR-9-5p | Increases chemoresistance to cisplatin via miR-9-5p/SPAG9 axis in vitro and in vivo | [82] |
Prader Willi/Angelman Region RNA5 (PAR5) | Downregulated | Enhancer of Zeste Homolog 2 (EZH2) E-cadherin | Reduces cell proliferation and cell migration ability Increases E-cadherin expression Mediates its action by impairing EZH2 oncogenic activity | [90] |
PVT1 | Upregulated | EZH2 | Increases cell proliferation by enhancing cell cycle progression, cyclin D and TSHR expression | [103] |
MALAT1 | Upregulated | miR-363-3p | Inhibits the expression of miR-363-3p by binding to it, thereby releases inhibitory effect of miR-363-3p to Mcl1 oncogene Also decreases the expression of cell cycle and apoptosis related gene cyclin D1 | [108] |
PTCSC3 | Downregulated | STAT3 | Inhibits the expression of INO80 through negatively regulating STAT3, which subsequently decreases drug resistance of ATC to doxorubicin. PTCSC3 also inhibits stem cell properties of ATC 8050C cells | [114] |
HMGA1Ps | Upregulated | miR-16 and miR-17 etc. | Leads to increase of HMGA2, and other cancer related proteins like VEGF and EZH2 levels | [121] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, P.K.; Asha, S.Y.; Abe, I.; Islam, F.; Lam, A.K. Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers 2020, 12, 3159. https://doi.org/10.3390/cancers12113159
Das PK, Asha SY, Abe I, Islam F, Lam AK. Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers. 2020; 12(11):3159. https://doi.org/10.3390/cancers12113159
Chicago/Turabian StyleDas, Plabon Kumar, Saharia Yeasmin Asha, Ichiro Abe, Farhadul Islam, and Alfred K. Lam. 2020. "Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas" Cancers 12, no. 11: 3159. https://doi.org/10.3390/cancers12113159
APA StyleDas, P. K., Asha, S. Y., Abe, I., Islam, F., & Lam, A. K. (2020). Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers, 12(11), 3159. https://doi.org/10.3390/cancers12113159