The Innate Immune Signalling Pathways: Turning RIG-I Sensor Activation against Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. RNA Recognition and Signal Activation by RIG-I Sensor
3. RIG-I Signalling Triggers Cancer Cells Death
4. RIG-I Activation in Cancer and Immune Cells
5. Evaluation of RIG-I Agonists in Cellular and Preclinical Models of Cancers
6. The RIG-I Signalling Pathway: From Basic Research to Clinical Translation
6.1. Clinical Trials Based on Targeting of RIG-I with RIG-I Mimetics
6.2. Clinical Trials Based on Oncolytic Viruses
6.3. Clinical Trials Based on Epigenetics Drugs
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Lanitis, E.; Dangaj, D.; Irving, M.; Coukos, G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann. Oncol. 2017, 28, xii18–xii32. [Google Scholar] [CrossRef] [PubMed]
- Kather, J.N.; Suarez-Carmona, M.; Charoentong, P.; Weis, C.A.; Hirsch, D.; Bankhead, P.; Horning, M.; Ferber, D.; Kel, I.; Herpel, E.; et al. Topography of cancer-associated immune cells in human solid tumors. eLife 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Zitvogel, L.; Tesniere, A.; Kroemer, G. Cancer despite immunosurveillance: Immunoselection and immunosubversion. Nat. Rev. Immunol. 2006, 6, 715–727. [Google Scholar] [CrossRef]
- Beatty, G.L.; Gladney, W.L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 2015, 21, 687–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spranger, S. Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int. Immunol. 2016, 28, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, T.F.; Corrales, L.; Williams, J.; Horton, B.; Sivan, A.; Spranger, S. Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. Adv. Exp. Med. Biol. 2017, 1036, 19–31. [Google Scholar] [CrossRef]
- Spranger, S.; Koblish, H.K.; Horton, B.; Scherle, P.A.; Newton, R.; Gajewski, T.F. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T-cells directly within the tumor microenvironment. J. Immunother. Cancer 2014, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Corrales, L.; Matson, V.; Flood, B.; Spranger, S.; Gajewski, T.F. Innate immune signaling and regulation in cancer immunotherapy. Cell Res. 2017, 27, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Fuertes, M.B.; Kacha, A.K.; Kline, J.; Woo, S.R.; Kranz, D.M.; Murphy, K.M.; Gajewski, T.F. Host type I IFN signals are required for antitumor CD8+ T-cell responses through CD8{alpha}+ dendritic cells. J. Exp. Med. 2011, 208, 2005–2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuertes, M.B.; Woo, S.R.; Burnett, B.; Fu, Y.X.; Gajewski, T.F. Type I interferon response and innate immune sensing of cancer. Trends Immunol. 2013, 34, 67–73. [Google Scholar] [CrossRef] [Green Version]
- van den Boorn, J.G.; Hartmann, G. Turning tumors into vaccines: Co-opting the innate immune system. Immunity 2013, 39, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Zhang, H.; Zheng, J.; Zhang, L. Turning Cold into Hot: Firing up the Tumor Microenvironment. Trends Cancer 2020, 6, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Desmet, C.J.; Ishii, K.J. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat. Rev. Immunol. 2012, 12, 479–491. [Google Scholar] [CrossRef]
- Iurescia, S.; Fioretti, D.; Rinaldi, M. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies. Front. Immunol. 2018, 9, 711. [Google Scholar] [CrossRef]
- Zevini, A.; Olagnier, D.; Hiscott, J. Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways. Trends Immunol. 2017, 38, 194–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iurescia, S.; Fioretti, D.; Rinaldi, M. Nucleic Acid Sensing Machinery: Targeting Innate Immune System for Cancer Therapy. Recent Pat. Anticancer Drug Discov. 2017, 13. [Google Scholar] [CrossRef] [PubMed]
- Flood, B.A.; Higgs, E.F.; Li, S.; Luke, J.J.; Gajewski, T.F. STING pathway agonism as a cancer therapeutic. Immunol. Rev. 2019, 290, 24–38. [Google Scholar] [CrossRef]
- Motwani, M.; Pesiridis, S.; Fitzgerald, K.A. DNA sensing by the cGAS-STING pathway in health and disease. Nat. Rev. Genet. 2019, 20, 657–674. [Google Scholar] [CrossRef]
- Le Naour, J.; Zitvogel, L.; Galluzzi, L.; Vacchelli, E.; Kroemer, G. Trial watch: STING agonists in cancer therapy. Oncoimmunology 2020, 9, 1777624. [Google Scholar] [CrossRef]
- Lemos, H.; Mohamed, E.; Huang, L.; Ou, R.; Pacholczyk, G.; Arbab, A.S.; Munn, D.; Mellor, A.L. STING Promotes the Growth of Tumors Characterized by Low Antigenicity via IDO Activation. Cancer Res. 2016, 76, 2076–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Boire, A.; Jin, X.; Valiente, M.; Er, E.E.; Lopez-Soto, A.; Jacob, L.; Patwa, R.; Shah, H.; Xu, K.; et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 2016, 533, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Bakhoum, S.F.; Ngo, B.; Laughney, A.M.; Cavallo, J.A.; Murphy, C.J.; Ly, P.; Shah, P.; Sriram, R.K.; Watkins, T.B.K.; Taunk, N.K.; et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 2018, 553, 467–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elion, D.L.; Cook, R.S. Harnessing RIG-I and intrinsic immunity in the tumor microenvironment for therapeutic cancer treatment. Oncotarget 2018, 9, 29007–29017. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wu, X.; Wu, L.; Wang, X.; Liu, Z. The anticancer functions of RIG-I-like receptors, RIG-I and MDA5, and their applications in cancer therapy. Transl. Res. 2017, 190, 51–60. [Google Scholar] [CrossRef]
- Schlee, M. Master sensors of pathogenic RNA–RIG-I like receptors. Immunobiology 2013, 218, 1322–1335. [Google Scholar] [CrossRef]
- Yoneyama, M.; Onomoto, K.; Jogi, M.; Akaboshi, T.; Fujita, T. Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol. 2015, 32, 48–53. [Google Scholar] [CrossRef]
- Rehwinkel, J.; Gack, M.U. RIG-I-like receptors: Their regulation and roles in RNA sensing. Nat. Rev. Immunol. 2020. [Google Scholar] [CrossRef]
- Rodriguez, K.R.; Bruns, A.M.; Horvath, C.M. MDA5 and LGP2: Accomplices and antagonists of antiviral signal transduction. J. Virol. 2014, 88, 8194–8200. [Google Scholar] [CrossRef] [Green Version]
- Brisse, M.; Ly, H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front. Immunol. 2019, 10, 1586. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Takeuchi, O.; Mikamo-Satoh, E.; Hirai, R.; Kawai, T.; Matsushita, K.; Hiiragi, A.; Dermody, T.S.; Fujita, T.; Akira, S. Length-dependent reco+++gnition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 2008, 205, 1601–1610. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Takahasi, K.; Fujita, T. RIG-I-like receptors: Cytoplasmic sensors for non-self RNA. Immunol. Rev. 2011, 243, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolakofsky, D.; Kowalinski, E.; Cusack, S. A structure-based model of RIG-I activation. RNA 2012, 18, 2118–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasumba, D.M.; Grandvaux, N. Therapeutic Targeting of RIG-I and MDA5 Might Not Lead to the Same Rome. Trends Pharm. Sci. 2019, 40, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Schlee, M.; Roth, A.; Hornung, V.; Hagmann, C.A.; Wimmenauer, V.; Barchet, W.; Coch, C.; Janke, M.; Mihailovic, A.; Wardle, G.; et al. Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 2009, 31, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Hornung, V.; Ellegast, J.; Kim, S.; Brzozka, K.; Jung, A.; Kato, H.; Poeck, H.; Akira, S.; Conzelmann, K.K.; Schlee, M.; et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 2006, 314, 994–997. [Google Scholar] [CrossRef] [Green Version]
- Goubau, D.; Schlee, M.; Deddouche, S.; Pruijssers, A.J.; Zillinger, T.; Goldeck, M.; Schuberth, C.; Van der Veen, A.G.; Fujimura, T.; Rehwinkel, J. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature 2014, 514, 372–375. [Google Scholar] [CrossRef] [Green Version]
- Schuberth-Wagner, C.; Ludwig, J.; Bruder, A.K.; Herzner, A.M.; Zillinger, T.; Goldeck, M.; Schmidt, T.; Schmid-Burgk, J.L.; Kerber, R.; Wolter, S.; et al. A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2′O-Methylated Self RNA. Immunity 2015, 43, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.X.; Wan, H.; Nie, L.; Shao, T.; Xiang, L.X.; Shao, J.Z. RIG-I: A multifunctional protein beyond a pattern recognition receptor. Protein Cell 2018, 9, 246–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.J.; Zhang, N.N.; Ding, F.; Li, X.Y.; Chen, L.; Zhang, H.X.; Zhang, W.; Chen, S.J.; Wang, Z.G.; Li, J.M.; et al. RA-inducible gene-I induction augments STAT1 activation to inhibit leukemia cell proliferation. Proc. Natl. Acad. Sci. USA 2011, 108, 1897–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, J.; Zhou, Y.; Zheng, Y.; Fan, J.; Zhou, W.; Ng, I.O.; Sun, H.; Qin, L.; Qiu, S.; Lee, J.M.; et al. Hepatic RIG-I predicts survival and interferon-alpha therapeutic response in hepatocellular carcinoma. Cancer Cell 2014, 25, 49–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.Y.; Guo, H.Z.; Zhu, J. Tumor suppressor activity of RIG-I. Mol. Cell. Oncol. 2014, 1, e968016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.Y.; Jiang, L.J.; Chen, L.; Ding, M.L.; Guo, H.Z.; Zhang, W.; Zhang, H.X.; Ma, X.D.; Liu, X.Z.; Xi, X.D.; et al. RIG-I modulates Src-mediated AKT activation to restrain leukemic stemness. Mol. Cell 2014, 53, 407–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Dou, C.; Yao, B.; Xu, M.; Ding, L.; Wang, Y.; Jia, Y.; Li, Q.; Zhang, H.; Tu, K.; et al. Ftx non coding RNA-derived miR-545 promotes cell proliferation by targeting RIG-I in hepatocellular carcinoma. Oncotarget 2016, 7, 25350–25365. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Zhang, L.; Ma, Y.W.; Xiao, J.; Zhang, Y.; Liu, M.; Tang, H. microRNA-34a-Upregulated Retinoic Acid-Inducible Gene-I Promotes Apoptosis and Delays Cell Cycle Transition in Cervical Cancer Cells. DNA Cell Biol. 2016, 35, 267–279. [Google Scholar] [CrossRef]
- Maelfait, J.; Liverpool, L.; Rehwinkel, J. Nucleic Acid Sensors and Programmed Cell Death. J. Mol. Biol. 2020, 432, 552–568. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef]
- Elion, D.L.; Jacobson, M.E.; Hicks, D.J.; Rahman, B.; Sanchez, V.; Gonzales-Ericsson, P.I.; Fedorova, O.; Pyle, A.M.; Wilson, J.T.; Cook, R.S. Therapeutically Active RIG-I Agonist Induces Immunogenic Tumor Cell Killing in Breast Cancers. Cancer Res. 2018, 78, 6183–6195. [Google Scholar] [CrossRef] [Green Version]
- Castiello, L.; Zevini, A.; Vulpis, E.; Muscolini, M.; Ferrari, M.; Palermo, E.; Peruzzi, G.; Krapp, C.; Jakobsen, M.; Olagnier, D.; et al. An optimized retinoic acid-inducible gene I agonist M8 induces immunogenic cell death markers in human cancer cells and dendritic cell activation. Cancer Immunol. Immunother. 2019, 68, 1479–1492. [Google Scholar] [CrossRef]
- Galluzzi, L.; Buque, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017, 17, 97–111. [Google Scholar] [CrossRef]
- Yatim, N.; Jusforgues-Saklani, H.; Orozco, S.; Schulz, O.; Barreira da Silva, R.; Reis e Sousa, C.; Green, D.R.; Oberst, A.; Albert, M.L. RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T-cells. Science 2015, 350, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Besch, R.; Poeck, H.; Hohenauer, T.; Senft, D.; Hacker, G.; Berking, C.; Hornung, V.; Endres, S.; Ruzicka, T.; Rothenfusser, S.; et al. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J. Clin. Investig. 2009, 119, 2399–2411. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, Y.; Miyamoto, Y.; Inoue, T.; Kaneda, Y. Efficient eradication of hormone-resistant human prostate cancers by inactivated Sendai virus particle. Int. J. Cancer 2009, 124, 2478–2487. [Google Scholar] [CrossRef]
- Dassler-Plenker, J.; Paschen, A.; Putschli, B.; Rattay, S.; Schmitz, S.; Goldeck, M.; Bartok, E.; Hartmann, G.; Coch, C. Direct RIG-I activation in human NK cells induces TRAIL-dependent cytotoxicity toward autologous melanoma cells. Int. J. Cancer 2019, 144, 1645–1656. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Liu, X.L.; Zhao, R. Induction of Pyroptosis and Its Implications in Cancer Management. Front. Oncol. 2019, 9, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poeck, H.; Besch, R.; Maihoefer, C.; Renn, M.; Tormo, D.; Morskaya, S.S.; Kirschnek, S.; Gaffal, E.; Landsberg, J.; Hellmuth, J.; et al. 5′-Triphosphate-siRNA: Turning gene silencing and Rig-I activation against melanoma. Nat. Med. 2008, 14, 1256–1263. [Google Scholar] [CrossRef]
- Meng, G.; Xia, M.; Xu, C.; Yuan, D.; Schnurr, M.; Wei, J. Multifunctional antitumor molecule 5′-triphosphate siRNA combining glutaminase silencing and RIG-I activation. Int. J. Cancer 2014, 134, 1958–1971. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Xia, M.; Meng, G.; Xu, C.; Song, Y.; Wei, J. Anti-angiogenic efficacy of 5′-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs. Oncotarget 2015, 6, 29664–29674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Gale, R.P.; Liu, Y.; Lei, B.; Wang, Y.; Diao, D.; Zhang, M. 5′-Triphosphate siRNA targeting MDR1 reverses multi-drug resistance and activates RIG-I-induced immune-stimulatory and apoptotic effects against human myeloid leukaemia cells. Leuk. Res. 2017, 58, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Poeck, H.; Bscheider, M.; Gross, O.; Finger, K.; Roth, S.; Rebsamen, M.; Hannesschlager, N.; Schlee, M.; Rothenfusser, S.; Barchet, W.; et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat. Immunol. 2010, 11, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Tschopp, J.; Thome, M.; Hofmann, K.; Meinl, E. The fight of viruses against apoptosis. Curr. Opin. Genet. Dev. 1998, 8, 82–87. [Google Scholar] [CrossRef]
- Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72. [Google Scholar] [CrossRef]
- Engel, C.; Brugmann, G.; Lambing, S.; Muhlenbeck, L.H.; Marx, S.; Hagen, C.; Horvath, D.; Goldeck, M.; Ludwig, J.; Herzner, A.M.; et al. RIG-I Resists Hypoxia-Induced Immunosuppression and Dedifferentiation. Cancer Immunol. Res. 2017, 5, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Muthusamy, V.; Fedorova, O.; Kong, Y.; Kim, D.J.; Bosenberg, M.; Pyle, A.M.; Iwasaki, A. Intratumoral delivery of RIG-I agonist SLR14 induces robust antitumor responses. J. Exp. Med. 2019, 216, 2854–2868. [Google Scholar] [CrossRef]
- Ellermeier, J.; Wei, J.; Duewell, P.; Hoves, S.; Stieg, M.R.; Adunka, T.; Noerenberg, D.; Anders, H.J.; Mayr, D.; Poeck, H.; et al. Therapeutic efficacy of bifunctional siRNA combining TGF-beta1 silencing with RIG-I activation in pancreatic cancer. Cancer Res. 2013, 73, 1709–1720. [Google Scholar] [CrossRef] [Green Version]
- Schnurr, M.; Duewell, P. Breaking tumor-induced immunosuppression with 5′-triphosphate siRNA silencing TGFbeta and activating RIG-I. Oncoimmunology 2013, 2, e24170. [Google Scholar] [CrossRef] [Green Version]
- Dassler-Plenker, J.; Reiners, K.S.; van den Boorn, J.G.; Hansen, H.P.; Putschli, B.; Barnert, S.; Schuberth-Wagner, C.; Schubert, R.; Tuting, T.; Hallek, M.; et al. RIG-I activation induces the release of extracellular vesicles with antitumor activity. Oncoimmunology 2016, 5, e1219827. [Google Scholar] [CrossRef]
- Glas, M.; Coch, C.; Trageser, D.; Dassler, J.; Simon, M.; Koch, P.; Mertens, J.; Quandel, T.; Gorris, R.; Reinartz, R.; et al. Targeting the cytosolic innate immune receptors RIG-I and MDA5 effectively counteracts cancer cell heterogeneity in glioblastoma. Stem Cells 2013, 31, 1064–1074. [Google Scholar] [CrossRef]
- Heidegger, S.; Kreppel, D.; Bscheider, M.; Stritzke, F.; Nedelko, T.; Wintges, A.; Bek, S.; Fischer, J.C.; Graalmann, T.; Kalinke, U.; et al. RIG-I activating immunostimulatory RNA boosts the efficacy of anticancer vaccines and synergizes with immune checkpoint blockade. EBioMedicine 2019, 41, 146–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruzicka, M.; Koenig, L.M.; Formisano, S.; Boehmer, D.F.R.; Vick, B.; Heuer, E.M.; Meinl, H.; Kocheise, L.; Zeitlhofler, M.; Ahlfeld, J.; et al. RIG-I-based immunotherapy enhances survival in preclinical AML models and sensitizes AML cells to checkpoint blockade. Leukemia 2020, 34, 1017–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bek, S.; Stritzke, F.; Wintges, A.; Nedelko, T.; Bohmer, D.F.R.; Fischer, J.C.; Haas, T.; Poeck, H.; Heidegger, S. Targeting intrinsic RIG-I signaling turns melanoma cells into type I interferon-releasing cellular antitumor vaccines. Oncoimmunology 2019, 8, e1570779. [Google Scholar] [CrossRef]
- Chiang, C.; Beljanski, V.; Yin, K.; Olagnier, D.; Ben Yebdri, F.; Steel, C.; Goulet, M.L.; DeFilippis, V.R.; Streblow, D.N.; Haddad, E.K.; et al. Sequence-Specific Modifications Enhance the Broad-Spectrum Antiviral Response Activated by RIG-I Agonists. J. Virol. 2015, 89, 8011–8025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubler, K.; Gehrke, N.; Riemann, S.; Bohnert, V.; Zillinger, T.; Hartmann, E.; Polcher, M.; Rudlowski, C.; Kuhn, W.; Hartmann, G.; et al. Targeted activation of RNA helicase retinoic acid-inducible gene-I induces proimmunogenic apoptosis of human ovarian cancer cells. Cancer Res. 2010, 70, 5293–5304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duewell, P.; Steger, A.; Lohr, H.; Bourhis, H.; Hoelz, H.; Kirchleitner, S.V.; Stieg, M.R.; Grassmann, S.; Kobold, S.; Siveke, J.T.; et al. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8(+) T-cells. Cell Death Differ. 2014, 21, 1825–1837. [Google Scholar] [CrossRef] [PubMed]
- Linehan, M.M.; Dickey, T.H.; Molinari, E.S.; Fitzgerald, M.E.; Potapova, O.; Iwasaki, A.; Pyle, A.M. A minimal RNA ligand for potent RIG-I activation in living mice. Sci. Adv. 2018, 4, e1701854. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, A.; Nandigam, H.; Muccioli, M.; Singh, M.; Loftus, T.; Lewis, D.; Pate, M.; Benencia, F. Regulation of inflammatory factors by double-stranded RNA receptors in breast cancer cells. Immunobiology 2018, 223, 466–476. [Google Scholar] [CrossRef]
- Wallden, B.; Emond, M.; Swift, M.E.; Disis, M.L.; Swisshelm, K. Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells. BMC Cancer 2005, 5, 140. [Google Scholar] [CrossRef] [Green Version]
- Diamond, M.S.; Kinder, M.; Matsushita, H.; Mashayekhi, M.; Dunn, G.P.; Archambault, J.M.; Lee, H.; Arthur, C.D.; White, J.M.; Kalinke, U.; et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 2011, 208, 1989–2003. [Google Scholar] [CrossRef]
- Hochheiser, K.; Klein, M.; Gottschalk, C.; Hoss, F.; Scheu, S.; Coch, C.; Hartmann, G.; Kurts, C. Cutting Edge: The RIG-I Ligand 3pRNA Potently Improves CTL Cross-Priming and Facilitates Antiviral Vaccination. J. Immunol. 2016, 196, 2439–2443. [Google Scholar] [CrossRef]
- Shen, W.; Patnaik, M.M.; Ruiz, A.; Russell, S.J.; Peng, K.W. Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood 2016, 127, 1449–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curran, E.; Chen, X.; Corrales, L.; Kline, D.E.; Dubensky, T.W., Jr.; Duttagupta, P.; Kortylewski, M.; Kline, J. STING Pathway Activation Stimulates Potent Immunity against Acute Myeloid Leukemia. Cell Rep. 2016, 15, 2357–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ClinicalTrials.gov. Study of Intralesional Administration of MK-4621 (RGT100) in Adult Participants With Advanced or Recurrent Tumors (MK-4621-001/RGT100-001) (NCT03065023). Available online: https://clinicaltrials.gov/ct2/show/NCT03065023 (accessed on 30 April 2020).
- ClinicalTrials.gov. Intratumoral/Intralesional Administration of MK-4621/JetPEI™ with or without Pembrolizumab in Participants with Advanced/Metastatic or Recurrent Solid Tumors (MK-4621-002) (NCT03739138). Available online: https://clinicaltrials.gov/ct2/show/NCT03739138 (accessed on 30 April 2020).
- ClinicalTrials.gov. IMA970A Plus CV8102 in Very Early, Early and Intermediate Stage Hepatocellular Carcinoma Patients (NCT03203005). Available online: https://clinicaltrials.gov/ct2/show/NCT03203005 (accessed on 30 April 2020).
- ClinicalTrials.gov. Study of Intratumoral CV8102 in cMEL, cSCC, hnSCC, and ACC (NCT03291002). Available online: https://clinicaltrials.gov/ct2/show/NCT03291002 (accessed on 30 April 2020).
- UMIN-CTR Clinical Trial. Phase I/II Clinical Trial to Assess Safety and Efficacy of Intratumoral and Subcutaneous Injection of HVJ-E to Castration Resistant Prostate Cancer Patients (UMIN000006142). Available online: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000007153 (accessed on 30 April 2020).
- UMIN-CTR Clinical Trial. Clinical Trial of Subsequent Injection of HVJ-E to Those Patients Who Enrolled in the Clinical Trial of ‘Phase I/II Clinical Trial to Assess Safety and Efficacy of Intratumoral and Subcutaneous Injection of HVJ-E to Castration Resistant Prostate Cancer Patients’ (UMIN000010840). Available online: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000012688 (accessed on 30 April 2020).
- ClinicalTrials.gov. Phase 1 Study of GEN0101 in Patients with Recurrence of CRPC (NCT02502994). Available online: https://clinicaltrials.gov/ct2/show/NCT02502994 (accessed on 30 April 2020).
- UMIN-CTR Clinical Trial. Phase 1 Dose-Escalation, Safety/Tolerability and Preliminary Efficacy Study of Intratumoral and Subcutaneous Administration of GEN0101 in Patients with Recurrence of Castration Resistant Prostate Cancer (UMIN000017092). Available online: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000019824 (accessed on 30 April 2020).
- UMIN-CTR Clinical Trial. Phase I/II Clinical Trial of Inactivated HVJ-E Administration for Advanced Malignant Melanoma Patients (UMIN000002376). Available online: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000002889 (accessed on 30 April 2020).
- UMIN-CTR Clinical Trial. Phase I Dose-Escalation, Safety/Tolerability and Preliminary Efficacy Study of Intratumoral Administration of GEN0101 in Patients with Advanced Melanoma. (UMIN000012943). Available online: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000015136 (accessed on 30 April 2020).
- UMIN-CTR Clinical Trial. Phase 1 Dose-Escalation, Safety/Tolerability and Preliminary Efficacy Study of Intratumoral and Subcutaneous Administration of GEN0101 in Patients with Chemotheapy-Resistant Malignant Pleural Mesothelioma (Phase I). (UMIN000019345). Available online: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000022270 (accessed on 30 April 2020).
- UMIN-CTR Clinical Trial. Open-Label Clinical Study for Safety and Preliminary Efficacy of HiDCV-OS1 Hybrid Cell (Dendritic and Tumor Fusion Cells) and Subsequent Subcutaneous Administration of GEN0101 in Patients with Recalcitrant Residual or Relapsed Ovarian Cancer after Strict Chemotherapy (UMIN000031281). Available online: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000035704 (accessed on 30 April 2020).
- ClinicalTrials.gov. Azacitidine and Entinostat in Treating Patients with Metastatic Colorectal Cancer (NCT01105377). Available online: https://clinicaltrials.gov/ct2/show/NCT01105377 (accessed on 30 April 2020).
- ClinicalTrials.gov. Azacitidine and Entinostat in Treating Patients with Advanced Breast Cancer (NCT01349959). Available online: https://clinicaltrials.gov/ct2/show/NCT01349959 (accessed on 30 April 2020).
- ClinicalTrials.gov. Phase II Anti-PD1 Epigenetic Therapy Study in NSCLC. (NA_00084192) (NCT01928576). Available online: https://clinicaltrials.gov/ct2/show/NCT01928576 (accessed on 30 April 2020).
- Middleton, M.R.; Wermke, M.; Calvo, E.; Chartash, E.; Zhou, H.; Zhao, X.; Niewel, M.; Dobrenkov, K.; Moreno, V. Phase I/II, multicenter, open-label study of intratumoral/intralesional administration of the retinoic acid-inducible gene I (RIG-I) activator MK-4621 in patients with advanced or recurrent tumors. Ann. Oncol. 2018, 29, viii712. [Google Scholar] [CrossRef]
- Elion, D.L.; Cook, R.S. Activation of RIG-I signaling to increase the pro-inflammatory phenotype of a tumor. Oncotarget 2019, 10, 2338–2339. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.; Accolla, R.; Ma, Y.T.; Heidenreich, R.; Koenigsrainer, A.; Izzo, F.; Loeffler, M.; Flohr, C.; Mueller, P.; Kutscher, S.; et al. Discovery to first-in-man studies of a multi-peptide-based hepatocellular carcinoma vaccine adjuvanted with CV8102 (RNAdjuvant) HEPAVAC. J. Hepatol. 2017, 66, S445–S446. [Google Scholar] [CrossRef]
- Buonaguro, L.; Consortium, H. New vaccination strategies in liver cancer. Cytokine Growth Factor Rev. 2017, 36, 125–129. [Google Scholar] [CrossRef]
- Eigentler, T.; Krauss, J.; Schreiber, J.; Weishaupt, C.; Terheyden, P.; Heinzerling, L.; Mohr, P.; Weide, B.; Gutzmer, R.; Becker, J.C.; et al. Abstract LB-021: Intratumoral RNA-based TLR-7/-8 and RIG-I agonist CV8102 alone and in combination with anti-PD-1 in a Phase I dose-escalation and expansion trial in patients with advanced solid tumors. Cancer Res. 2019, 79, LB-021-LB-021. [Google Scholar] [CrossRef]
- Fujita, K.; Nakai, Y.; Kawashima, A.; Ujike, T.; Nagahara, A.; Nakajima, T.; Inoue, T.; Lee, C.M.; Uemura, M.; Miyagawa, Y.; et al. Phase I/II clinical trial to assess safety and efficacy of intratumoral and subcutaneous injection of HVJ-E in castration-resistant prostate cancer patients. Cancer Gene 2017, 24, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Kato, T.; Hatano, K.; Kawashima, A.; Ujike, T.; Uemura, M.; Imamura, R.; Okihara, K.; Ukimura, O.; Miki, T.; et al. Intratumoral and s.c. injection of inactivated hemagglutinating virus of Japan envelope (GEN0101) in metastatic castration-resistant prostate cancer. Cancer Sci. 2020, 111. [Google Scholar] [CrossRef] [Green Version]
- Tanemura, A.; Kiyohara, E.; Katayama, I.; Kaneda, Y. Recent advances and developments in the antitumor effect of the HVJ envelope vector on malignant melanoma: From the bench to clinical application. Cancer Gene 2013, 20, 599–605. [Google Scholar] [CrossRef]
- Kiyohara, E.; Tamai, K.; Katayama, I.; Kaneda, Y. The combination of chemotherapy with HVJ-E containing Rad51 siRNA elicited diverse anti-tumor effects and synergistically suppressed melanoma. Gene 2012, 19, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chiappinelli, K.B.; Guzzetta, A.A.; Easwaran, H.; Yen, R.W.; Vatapalli, R.; Topper, M.J.; Luo, J.; Connolly, R.M.; Azad, N.S.; et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget 2014, 5, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Azad, N.S.; El-Khoueiry, A.; Yin, J.; Oberg, A.L.; Flynn, P.; Adkins, D.; Sharma, A.; Weisenberger, D.J.; Brown, T.; Medvari, P.; et al. Combination epigenetic therapy in metastatic colorectal cancer (mCRC) with subcutaneous 5-azacitidine and entinostat: A phase 2 consortium/stand up 2 cancer study. Oncotarget 2017, 8, 35326–35338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, R.M.; Li, H.; Jankowitz, R.C.; Zhang, Z.; Rudek, M.A.; Jeter, S.C.; Slater, S.A.; Powers, P.; Wolff, A.C.; Fetting, J.H.; et al. Combination Epigenetic Therapy in Advanced Breast Cancer with 5-Azacitidine and Entinostat: A Phase II National Cancer Institute/Stand Up to Cancer Study. Clin. Cancer Res. 2017, 23, 2691–2701. [Google Scholar] [CrossRef] [Green Version]
- Schiffmann, I.; Greve, G.; Jung, M.; Lubbert, M. Epigenetic therapy approaches in non-small cell lung cancer: Update and perspectives. Epigenetics 2016, 11, 858–870. [Google Scholar] [CrossRef] [Green Version]
- Heidenreich, R.; Jasny, E.; Kowalczyk, A.; Lutz, J.; Probst, J.; Baumhof, P.; Scheel, B.; Voss, S.; Kallen, K.J.; Fotin-Mleczek, M. A novel RNA-based adjuvant combines strong immunostimulatory capacities with a favorable safety profile. Int. J. Cancer 2015, 137, 372–384. [Google Scholar] [CrossRef]
- Ziegler, A.; Soldner, C.; Lienenklaus, S.; Spanier, J.; Trittel, S.; Riese, P.; Kramps, T.; Weiss, S.; Heidenreich, R.; Jasny, E.; et al. A New RNA-Based Adjuvant Enhances Virus-Specific Vaccine Responses by Locally Triggering TLR- and RLH-Dependent Effects. J. Immunol. 2017, 198, 1595–1605. [Google Scholar] [CrossRef] [Green Version]
- Meister, M.; Habbeddine, M.; Fiedler, K.; Lutz, J.; Ramakrishnan, M.; Heidenreich, R. P640-Intratumoral application of the RNA-based TLR-7/-8 and RIG-I agonist CV8102 promotes a pro-inflammatory tumor microenvironment and causes a durable anti-tumor response. J. Immunother. Cancer 2019, 7, 283. [Google Scholar] [CrossRef] [Green Version]
- Mauriello, A.; Manolio, C.; Cavalluzzo, B.; Avallone, A.; Borrelli, M.; Morabito, A.; Iovine, E.; Chambery, A.; Russo, R.; Tornesello, M.L.; et al. Immunological effects of adjuvants in subsets of antigen presenting cells of cancer patients undergoing chemotherapy. J. Transl. Med. 2020, 18, 34. [Google Scholar] [CrossRef]
- Achard, C.; Surendran, A.; Wedge, M.E.; Ungerechts, G.; Bell, J.; Ilkow, C.S. Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy. EBioMedicine 2018, 31, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Matsushima-Miyagi, T.; Hatano, K.; Nomura, M.; Li-Wen, L.; Nishikawa, T.; Saga, K.; Shimbo, T.; Kaneda, Y. TRAIL and Noxa are selectively upregulated in prostate cancer cells downstream of the RIG-I/MAVS signaling pathway by nonreplicating Sendai virus particles. Clin. Cancer Res. 2012, 18, 6271–6283. [Google Scholar] [CrossRef] [Green Version]
- Saga, K.; Kaneda, Y. Oncolytic Sendai virus-based virotherapy for cancer: Recent advances. Oncolytic Virother. 2015, 4, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, S.; Fukuhara, H.; Homma, Y.; Todo, T. Current status of clinical trials assessing oncolytic virus therapy for urological cancers. Int. J. Urol. 2017, 24, 342–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, K.; Nakai, Y.; Kato, T.; Kawashima, A.; Ujike, T.; Nagahara, A.; Uemura, M.; Imamura, R.; Okihara, K.; Ukimura, O.; et al. Intratumoral and subcutaneous injection of HVJ-E (GEN0101) for metastatic castration-resistant prostate cancer: Open-label, phase I, dose escalation study. J. Clin. Oncol. 2019, 37, e16511. [Google Scholar] [CrossRef]
- Hatano, K.; Miyamoto, Y.; Mori, M.; Nimura, K.; Nakai, Y.; Nonomura, N.; Kaneda, Y. Androgen-regulated transcriptional control of sialyltransferases in prostate cancer cells. PLoS ONE 2012, 7, e31234. [Google Scholar] [CrossRef] [Green Version]
- Kiyohara, E.; Tanemura, A.; Nishioka, M.; Yamada, M.; Tanaka, A.; Yokomi, A.; Saito, A.; Sakura, K.; Nakajima, T.; Myoui, A.; et al. Intratumoral injection of hemagglutinating virus of Japan-envelope vector yielded an antitumor effect for advanced melanoma: A phase I/IIa clinical study. Cancer Immunol. Immunother. 2020, 69, 1131–1140. [Google Scholar] [CrossRef]
- Chiappinelli, K.B.; Strissel, P.L.; Desrichard, A.; Li, H.; Henke, C.; Akman, B.; Hein, A.; Rote, N.S.; Cope, L.M.; Snyder, A.; et al. Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses. Cell 2015, 162, 974–986. [Google Scholar] [CrossRef] [Green Version]
- Roulois, D.; Loo Yau, H.; Singhania, R.; Wang, Y.; Danesh, A.; Shen, S.Y.; Han, H.; Liang, G.; Jones, P.A.; Pugh, T.J.; et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell 2015, 162, 961–973. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.A.; Ohtani, H.; Chakravarthy, A.; De Carvalho, D.D. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 2019, 19, 151–161. [Google Scholar] [CrossRef]
- Unnikrishnan, A.; Papaemmanuil, E.; Beck, D.; Deshpande, N.P.; Verma, A.; Kumari, A.; Woll, P.S.; Richards, L.A.; Knezevic, K.; Chandrakanthan, V.; et al. Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes. Cell Rep. 2017, 20, 572–585. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.M.; Kroemer, G.; Zitvogel, L. Immunogenic and Non-immunogenic Cell Death in the Tumor Microenvironment. Adv. Exp. Med. Biol. 2017, 1036, 65–79. [Google Scholar] [CrossRef]
- Labani-Motlagh, A.; Ashja-Mahdavi, M.; Loskog, A. The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front. Immunol. 2020, 11, 940. [Google Scholar] [CrossRef]
Therapy and Diseases | Status | Phase | Enrolment | Trial and Compound | CT Identifier and Drug | Sponsor | Start Date/Last Update | References |
---|---|---|---|---|---|---|---|---|
Study of intralesional administration of MK-4621 (RGT100) in adult participants w/advanced or recurrent tumours (MK-4621-001/RGT100-001) | Terminated | Phase 1/Phase 2 | 15 | MK-4621/RGT100 (MK-4621-001/RGT100-001) | NCT03065023 A synthetic RNA oligonucleotide | Rigontec GMBH Merck Sharp & Dohme Corp. | April 2017/July 2019 | [26,84,99] |
Intratumoral/intralesional administration of MK-4621/JetPEI™ w/or w/o pembrolizumab in participants w/advanced/metastatic or recurrent solid tumours (MK-4621-002) | Active, not recruiting | Phase 1 | 72 | MK-4621/JetPEI™ Pembrolizumab | NCT03739138 A synthetic RNA oligonucleotide as monotherapy and in combination with anti-PD-1 via the JetPEI™ | Merck Sharp & Dohme Corp. | December 2018/April 2020 | [85,100] |
IMA970A plus V8102 in very early, early and intermediate stage hepatocellular carcinoma patients | Completed | Phase 1/Phase 2 | 22 | IMA970A CV8102 cyclophosphamide | NCT03203005 Liver cancer peptide vaccine plus RNAdjuvant® and cyclophosphamide | National Oncological Institute “Pascale Foundation” (HepaVAC Foundation) CureVac AG | September 2018/February 2020 | [86,101,102] |
Study of intratumoral CV8102 w/or w/o standard of care anti-PD-1 therapy in cMEL, cSCC, hnSCC, and ACC | Recruiting | Phase 1 | 233 | CV8102 Standard anti-PD-1 therapy | NCT03291002 RNAdjuvant® as monotherapy and in combination with anti-PD-1 Abs | CureVac AG | September 2017/April 2020 | [87,103] |
Safety and efficacy study of intratumoral and subcutaneous injection of HVJ-E to castration resistant prostate cancer patients | Recruiting | Phase 1/Phase 2 | 12 | GEN0101 | UMIN000006142 Inactivated HVJ-E | Osaka Hospital GenomIdea Inc. | July 2011/December 2014 | [88,104] |
Study of subsequent injection of HVJ-E to castration resistant prostate cancer patients enrolled in the UMIN000006142 clinical trial | Enrolling by invitation | Phase 1/Phase 2 | 9 | GEN0101 | UMIN000010840/NCT02502994 Inactivated HVJ-E | Osaka Hospital GenomIdea Inc. | May 2013/June 2013 | [89,90] |
Dose-escalation, safety/tolerability and preliminary efficacy study of intratumoral and subcutaneous administration of GEN0101 in patients with recurrence of CRPC | Follow-up complete | Phase 1 | 12 | GEN0101 | UMIN000017092 Inactivated HVJ-E | Osaka Hospital GenomIdea Inc. | March 2015/November 2017 | [91,105] |
Administration of inactivated HVJ-E for advanced malignant melanoma patients (stage IIIC or stage IV) | phase I completed | Phase 1/Phase 2 | 6 | GEN0101 | UMIN000002376 Inactivated HVJ-E | Osaka University Keio University | July 2009/January 2012 | [92,106,107] |
Dose-escalation, safety/tolerability and preliminary efficacy study of intratumoral administration of GEN0101 in patients with advanced melanoma. | Completed | Phase 1 | 15 | GEN0101 | UMIN000012943 Inactivated HVJ-E | Osaka University Hospital Japan Agency for Medical Research and Development | December 2013/January 2017 | [93] |
Dose-escalation, safety/tolerability and preliminary efficacy study of intratumoral and subcutaneous administration of GEN0101 in patients with chemotherapy-resistant malignant pleural mesothelioma | Recruiting | Phase 1 | 12 | GEN0101 | UMIN000019345 Inactivated HVJ-E | Osaka University GenomIdea Inc | September 2015/October 2015 | [94] |
Safety and preliminary efficacy study of HiDCV-OS1 and GEN0101 in patients with chemotherapy-resistant ovarian cancer | Enrolling by invitation | Phase 1 | 6 | GEN0101 HiDCV-OS1 | UMIN000031281 Inactivated HVJ-E and dendritic/tumor fusion cells | Osaka University | January 2018/May 2018 | [95] |
Study of azacitadine and entinostat in patients with metastatic colorectal cancer | Completed | Phase 2 | 47 | Azacitidine/entinostat | NCT01105377 DNA methyltransferase inhibitor and DNA methyltransferase and HDAC inhibitor | National Cancer Institute (NCI) | April 2010/August 2014 | [96,108,109] |
Azacitidine and entinostat in treating patients with advanced breast cancer, triple-negative and hormone-refractory | Active, not recruiting | Phase 2 | 58 | Azacitidine/entinostat | NCT01349959 DNA methyltransferase inhibitor and HDAC inhibitor | National Cancer Institute (NCI) | April 2011/March 2020 | [97,108,110] |
Study of epigenetic therapy with azacitidine and entinostat with Concurrent nivolumab in subjects with recurrent metastatic non-small cell lung cancer. | Recruiting | Phase 2 | 120 | Azacitidine/entinostat/nivolumab | NCT01928576 DNA methyltransferase inhibitor and HDAC inhibitor and monoclonal anti PD-1 protein antibody | Sidney Kimmel Comprehensive Cancer Centre at Johns Hopkins | August 2013/April 2020 | [98,111] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iurescia, S.; Fioretti, D.; Rinaldi, M. The Innate Immune Signalling Pathways: Turning RIG-I Sensor Activation against Cancer. Cancers 2020, 12, 3158. https://doi.org/10.3390/cancers12113158
Iurescia S, Fioretti D, Rinaldi M. The Innate Immune Signalling Pathways: Turning RIG-I Sensor Activation against Cancer. Cancers. 2020; 12(11):3158. https://doi.org/10.3390/cancers12113158
Chicago/Turabian StyleIurescia, Sandra, Daniela Fioretti, and Monica Rinaldi. 2020. "The Innate Immune Signalling Pathways: Turning RIG-I Sensor Activation against Cancer" Cancers 12, no. 11: 3158. https://doi.org/10.3390/cancers12113158
APA StyleIurescia, S., Fioretti, D., & Rinaldi, M. (2020). The Innate Immune Signalling Pathways: Turning RIG-I Sensor Activation against Cancer. Cancers, 12(11), 3158. https://doi.org/10.3390/cancers12113158