The Prognostic Role of Baseline Metabolic Tumor Burden and Systemic Inflammation Biomarkers in Metastatic Castration-Resistant Prostate Cancer Patients Treated with Radium-223: A Proof of Concept Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Systemic Inflammation Indexes
2.3. Imaging Procedures and Images Analyses
2.4. Survival Assessment
2.5. Statistical Analysis
3. Results
3.1. Patients’ and Treatment Characteristics
3.2. Interobserver Agreement between PET Readers
3.3. Systemic Inflammation Indexes and FDG-Derived Parameters in the Prediction of OS.
3.4. The Combination of Systemic Inflammation Indexes and FDG–Derived Parameters in the Prediction of OS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yong, C.; Onukwugha, E.; Mullins, C.D. Clinical and economic burden of bone metastasis and skeletal-related events in prostate cancer. Curr. Opin. Oncol. 2014, 26, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.R.; Wong, T.Z.; Armstrong, A.J.; George, D.J. Radium-223 chloride: A potential new treatment for castration–resistant prostate cancer patients with metastatic bone disease. Cancer Manag. Res. 2013, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritter, M.A.; Cleaver, J.E.; Tobias, C.A. High-LET radiations induce a large proportion of non-rejoining DNA breaks. Nature 1977, 266, 653–655. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parikh, S.; Murray, L.; Kenning, L.; Bottomley, D.; Din, O.; Dixit, S.; Ferguson, C.; Handforth, C.; Joseph, L.; Mokhtar, D.; et al. Real-world Outcomes and Factors Predicting Survival and Completion of Radium 223 in Metastatic Castrate-resistant Prostate Cancer. Clin. Oncol. 2018, 30, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.W.; Anderson, E.M.; Mohammadi, H.; Daniels, T.B.; Schild, S.E.; Keole, S.R.; Choo, C.R.; Tzou, K.S.; Bryce, A.H.; Ho, T.H.; et al. Factors Associated with Survival Following Radium-223 Treatment for Metastatic Castration-resistant Prostate Cancer. Clin. Genitourin. Cancer 2017, 15, e969–e975. [Google Scholar] [CrossRef] [PubMed]
- Frantellizzi, V.; Farcomeni, A.; Follacchio, G.A.; Pacilio, M.; Pellegrini, R.; Pani, R.; De Vincentis, G. A 3-variable prognostic score (3-PS) for overall survival prediction in metastatic castration-resistant prostate cancer treated with 223Radium-dichloride. Ann. Nucl. Med. 2018, 32, 142–148. [Google Scholar] [CrossRef]
- EMA. EMA Restricts Use of Prostate Cancer Medicine XOFIGO. Available online: https://www.ema.europa.eu/en/news/ema–restricts–use–prostate–cancer–medicine–xofigo#:~:text=The%20European%20Medicines%20Agency%20(EMA,who%20cannot%20receive%20other%20treatments (accessed on 20 October 2020).
- Kuppen, M.C.; Westgeest, H.M.; van der Doelen, M.J.; van den Eertwegh, A.J.; Coenen, J.L.; Aben, K.K.; van den Bergh, A.C.; Bergman, A.M.; den Bosch, J.V.; Celik, F.; et al. Real-world outcomes of radium-223 dichloride for metastatic castration resistant prostate cancer. Future Oncol. 2020, 16, 1371–1384. [Google Scholar] [CrossRef]
- Stolten, M.D.; Steinberger, A.E.; Cotogno, P.M.; Ledet, E.M.; Lewis, B.E.; Sartor, O. Parameters Associated with 6 Cycles of Radium-223 Dichloride Therapy in Metastatic Castrate-Resistant Prostate Cancer. Int. J. Radiat. Oncol. 2015, 93, E196. [Google Scholar] [CrossRef]
- Etchebehere, E.C.; Milton, D.R.; Araujo, J.C.; Swanston, N.M.; Macapinlac, H.A.; Rohren, E.M. Factors affecting 223Ra therapy: Clinical experience after 532 cycles from a single institution. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 8–20. [Google Scholar] [CrossRef]
- Sartor, O.; Coleman, R.E.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Vogelzang, N.J.; Bruland, Ø.; Kobina, S.; Wilhelm, S.; et al. An exploratory analysis of alkaline phosphatase, lactate dehydrogenase, and prostate-specific antigen dynamics in the phase 3 ALSYMPCA trial with radium-223. Ann. Oncol. 2017, 28, 1090–1097. [Google Scholar] [CrossRef]
- Prelaj, A.; Rebuzzi, S.E.; Buzzacchino, F.; Pozzi, C.; Ferrara, C.; Frantellizzi, V.; Follacchio, G.A.; Civitelli, L.; De Vincentis, G.; Tomao, S.; et al. Radium-223 in patients with metastatic castration-resistant prostate cancer: Efficacy and safety in clinical practice. Oncol. Lett. 2019, 17, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. JNCI J. Natl. Cancer Inst. 2014, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prelaj, A.; Rebuzzi, S.E.; Pizzutilo, P.; Bilancia, M.; Montrone, M.; Pesola, F.; Longo, V.; Del Bene, G.; Lapadula, V.; Cassano, F.; et al. EPSILoN: A Prognostic Score Using Clinical and Blood Biomarkers in Advanced Non-Small-Cell Lung Cancer Treated with Immunotherapy. Clin. Lung Cancer 2020, 21, 365–377.e5. [Google Scholar] [CrossRef]
- Guan, Y.; Xiong, H.; Feng, Y.; Liao, G.; Tong, T.; Pang, J. Revealing the prognostic landscape of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in metastatic castration-resistant prostate cancer patients treated with abiraterone or enzalutamide: A meta-analysis. Prostate Cancer Prostatic Dis. 2020, 23, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Man, Y.; Chen, Y. Systemic immune-inflammation index, serum albumin, and fibrinogen impact prognosis in castration–resistant prostate cancer patients treated with first-line docetaxel. Int. Urol. Nephrol. 2019, 51, 2189–2199. [Google Scholar] [CrossRef]
- McKay, R.R.; Jacobus, S.; Fiorillo, M.; Ledet, E.M.; Cotogna, P.M.; Steinberger, A.E.; Jacene, H.A.; Sartor, O.; Taplin, M.-E. Radium-223 Use in Clinical Practice and Variables Associated with Completion of Therapy. Clin. Genitourin. Cancer 2017, 15, e289–e298. [Google Scholar] [CrossRef] [PubMed]
- Maruzzo, M.; Basso, U.; Borsatti, E.; Evangelista, L.; Alongi, F.; Caffo, O.; Maines, F.; Galuppo, S.; De Vivo, R.; Zustovich, F.; et al. Results from a Large, Multicenter, Retrospective Analysis on Radium223 Use in Metastatic Castration-Resistant Prostate Cancer (mCRPC) in the Triveneto Italian Region. Clin. Genitourin. Cancer 2019, 17, e187–e194. [Google Scholar] [CrossRef]
- Bauckneht, M.; Capitanio, S.; Donegani, M.I.; Zanardi, E.; Miceli, A.; Murialdo, R.; Raffa, S.; Tomasello, L.; Vitti, M.; Cavo, A.; et al. Role of Baseline and Post-Therapy 18F-FDG PET in the Prognostic Stratification of Metastatic Castration-Resistant Prostate Cancer (mCRPC) Patients Treated with Radium-223. Cancers 2019, 12, 31. [Google Scholar] [CrossRef] [Green Version]
- Poeppel, T.D.; Handkiewicz-Junak, D.; Andreeff, M.; Becherer, A.; Bockisch, A.; Fricke, E.; Geworski, L.; Heinzel, A.; Krause, B.J.; Krause, T.; et al. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 824–845. [Google Scholar] [CrossRef]
- Jadvar, H. Imaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: Utility and limitations. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 5–10. [Google Scholar] [CrossRef] [PubMed]
- AIOM Guidelines on Prostate Cancer. 2019. Available online: https://www.aiom.it/linee–guida–aiom–carcinoma–della–prostata–2019/ (accessed on 20 October 2020).
- Boellaard, R.; Delgado–Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Kruse, V.I.B.E.K.E.; Mees, G.; Maes, A.; D’Asseler, Y.V.E.S.; Borms, M.; Cocquyt, V.; Van De Wiele, C. Reproducibility of FDG PET based metabolic tumor volume measurements and of their FDG distribution within. Q. J. Nucl. Med. Mol. Imaging 2015, 59, 462–468. [Google Scholar] [PubMed]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Epstein, J.I.; Egevad, L.; Srigley, J.R.; Humphrey, P.A. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2016, 40, 9. [Google Scholar] [CrossRef]
- Castello, A.; Toschi, L.; Rossi, S.; Mazziotti, E.; Lopci, E. The immune-metabolic-prognostic index and clinical outcomes in patients with non-small cell lung carcinoma under checkpoint inhibitors. J. Cancer Res. Clin. Oncol. 2020, 146, 1235–1243. [Google Scholar] [CrossRef]
- Van den Wyngaert, T.; Tombal, B. The changing role of radium-223 in metastatic castrate-resistant prostate cancer: Has the EMA missed the mark with revising the label? Q. J. Nucl. Med. Mol. Imaging 2019, 63, 170–182. [Google Scholar] [CrossRef]
- van der Doelen, M.J.; Mehra, N.; Hermsen, R.; Janssen, M.J.R.; Gerritsen, W.R.; van Oort, I.M. Patient Selection for Radium-223 Therapy in Patients with Bone Metastatic Castration-Resistant Prostate Cancer: New Recommendations and Future Perspectives. Clin. Genitourin. Cancer 2019, 17, 79–87. [Google Scholar] [CrossRef]
- Saad, F.; Carles, J.; Gillessen, S.; Heidenreich, A.; Heinrich, D.; Gratt, J.; Lévy, J.; Miller, K.; Nilsson, S.; Petrenciuc, O.; et al. Radium-223 and concomitant therapies in patients with metastatic castration-resistant prostate cancer: An international, early access, open-label, single-arm phase 3b trial. Lancet Oncol. 2016, 17, 1306–1316. [Google Scholar] [CrossRef]
- Vogelzang, N.J.; Coleman, R.E.; Michalski, J.M.; Nilsson, S.; O’Sullivan, J.M.; Parker, C.; Widmark, A.; Thuresson, M.; Xu, L.; Germino, J.; et al. Hematologic Safety of Radium-223 Dichloride: Baseline Prognostic Factors Associated with Myelosuppression in the ALSYMPCA Trial. Clin. Genitourin. Cancer 2017, 15, 42–52.e8. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Dai, Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017, 387, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Kong, X.; Yan, C.; Fang, Y.; Wang, J. The Research Progress on the Prognostic Value of the Common Hematological Parameters in Peripheral Venous Blood in Breast Cancer. Onco Targets Ther. 2020, 13, 1397–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, L.; Li, X.; Wang, B.; Luo, G.; Gu, L.; Chen, L.; Liu, K.; Gao, Y.; Zhang, X. Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Localized and Advanced Prostate Cancer: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0153981. [Google Scholar] [CrossRef]
- Dolan, R.D.; McSorley, S.T.; Horgan, P.G.; Laird, B.; McMillan, D.C. The role of the systemic inflammatory response in predicting outcomes in patients with advanced inoperable cancer: Systematic review and meta -analysis. Crit. Rev. Oncol. Hematol. 2017, 116, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Templeton, A.J.; Ace, O.; McNamara, M.G.; Al-Mubarak, M.; Vera-Badillo, F.E.; Hermanns, T.; Šeruga, B.; Ocana, A.; Tannock, I.F.; Amir, E. Prognostic Role of Platelet to Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1204–1212. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.H.; Huang, D.H.; Chen, Z.Y. Prognostic role of systemic immune-inflammation index in solid tumors: A systematic review and meta-analysis. Oncotarget 2017, 8, 75381–75388. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, D.; Duan, S.; Zhao, Y.; Wu, C.; Zhu, F.; Chen, C.; Chen, Y. Prognostic impact of pretreatment lymphocyte-to-monocyte ratio in advanced epithelial cancers: A meta-analysis. Cancer Cell Int. 2018, 18, 201. [Google Scholar] [CrossRef] [Green Version]
- Nuhn, P.; Vaghasia, A.M.; Goyal, J.; Zhou, X.C.; Carducci, M.A.; Eisenberger, M.A.; Antonarakis, E.S. Association of pretreatment neutrophil-to-lymphocyte ratio (NLR) and overall survival (OS) in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with first-line docetaxel: NLR predicts OS in men with mCRPC receiving docetaxel. BJU Int. 2014, 114, E11–E17. [Google Scholar] [CrossRef] [Green Version]
- Sonpavde, G.; Pond, G.R.; Armstrong, A.J.; Clarke, S.J.; Vardy, J.L.; Templeton, A.J.; Wang, S.-L.; Paolini, J.; Chen, I.; Chow-Maneval, E.; et al. Prognostic Impact of the Neutrophil-to-Lymphocyte Ratio in Men with Metastatic Castration-Resistant Prostate Cancer. Clin. Genitourin. Cancer 2014, 12, 317–324. [Google Scholar] [CrossRef]
- Lozano Martínez, A.J.; Moreno Cano, R.; Escobar Páramo, S.; Salguero Aguilar, R.; Gonzalez Billalabeitia, E.; García Fernández, R.; De La Fuente Muñoz, I.; Romero Borque, A.; Porras Martínez, M.; Lopez Soler, F.; et al. Platelet-lymphocyte and neutrophil-lymphocyte ratios are prognostic but not predictive of response to abiraterone acetate in metastatic castration-resistant prostate cancer. Clin. Transl. Oncol. 2017, 19, 1531–1536. [Google Scholar] [CrossRef] [PubMed]
- Loubersac, T.; Nguile-Makao, M.; Pouliot, F.; Fradet, V.; Toren, P. Neutrophil-to-lymphocyte Ratio as a Predictive Marker of Response to Abiraterone Acetate: A Retrospective Analysis of the COU302 Study. Eur. Urol. Oncol. 2020, 3, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lolli, C.; Caffo, O.; Scarpi, E.; Aieta, M.; Conteduca, V.; Maines, F.; Bianchi, E.; Massari, F.; Veccia, A.; Chiuri, V.E.; et al. Systemic Immune-Inflammation Index Predicts the Clinical Outcome in Patients with mCRPC Treated with Abiraterone. Front. Pharmacol. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.Y.; Atkinson, S.; Pearson, R.; Leaning, D.; Cumming, S.; Burns, A.; Azzabi, A.; Frew, J.; McMenemin, R.; Pedley, I.D. Optimising Radium 223 Therapy for Metastatic Castration-Resistant Prostate Cancer-5-year Real-World Outcome: Focusing on Treatment Sequence and Quality of Life. Clin. Oncol. 2020, S0936655520301965. [Google Scholar] [CrossRef]
- Jadvar, H.; Desai, B.; Ji, L.; Conti, P.S.; Dorff, T.B.; Groshen, S.G.; Pinski, J.K.; Quinn, D.I. Baseline 18F-FDG PET/CT Parameters as Imaging Biomarkers of Overall Survival in Castrate-Resistant Metastatic Prostate Cancer. J. Nucl. Med. 2013, 54, 1195–1201. [Google Scholar] [CrossRef] [Green Version]
- Eidelman, E.; Twum-Ampofo, J.; Ansari, J.; Siddiqui, M.M. The Metabolic Phenotype of Prostate Cancer. Front. Oncol. 2017, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Meziou, S.; Ringuette Goulet, C.; Hovington, H.; Lefebvre, V.; Lavallée, É.; Bergeron, M.; Brisson, H.; Champagne, A.; Neveu, B.; Lacombe, D.; et al. GLUT1 expression in high-risk prostate cancer: Correlation with 18F-FDG-PET/CT and clinical outcome. Prostate Cancer Prostatic Dis. 2020. [Google Scholar] [CrossRef]
- Jin, R.J.; Lho, Y.; Connelly, L.; Wang, Y.; Yu, X.; Saint Jean, L.; Case, T.C.; Ellwood-Yen, K.; Sawyers, C.L.; Bhowmick, N.A.; et al. The Nuclear Factor-B Pathway Controls the Progression of Prostate Cancer to Androgen-Independent Growth. Cancer Res. 2008, 68, 6762–6769. [Google Scholar] [CrossRef] [Green Version]
- Ammirante, M.; Luo, J.-L.; Grivennikov, S.; Nedospasov, S.; Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 2010, 464, 302–305. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.J.; Gavane, S.C.; Blanc-Autran, E.; Nehmeh, S.; Gönen, M.; Beattie, B.; Vargas, H.A.; Schöder, H.; Humm, J.L.; Fine, S.W.; et al. Positron Emission Tomography/Computed Tomography-Based Assessments of Androgen Receptor Expression and Glycolytic Activity as a Prognostic Biomarker for Metastatic Castration-Resistant Prostate Cancer. JAMA Oncol. 2018, 4, 217. [Google Scholar] [CrossRef]
- Keyes, J.W. SUV: Standard Uptake or Silly Useless Value? J. Nucl. Med. 1995, 36, 1836–1839. [Google Scholar] [PubMed]
- Lorente, D.; Mateo, J.; Templeton, A.J.; Zafeiriou, Z.; Bianchini, D.; Ferraldeschi, R.; Bahl, A.; Shen, L.; Su, Z.; Sartor, O.; et al. Baseline neutrophil-lymphocyte ratio (NLR) is associated with survival and response to treatment with second-line chemotherapy for advanced prostate cancer independent of baseline steroid use. Ann. Oncol. 2015, 26, 750–755. [Google Scholar] [CrossRef] [PubMed]
Patients’ Characteristics | All Sample | Complete Cases |
---|---|---|
(n = 59) | (n = 48) | |
Clinical characteristics | n (%) | n (%) |
Median age, years (range) | 74 (51–88) | 75 (51–88) |
ECOG performance status | ||
0 | 22 (37) | 17 (35) |
1 | 23 (39) | 18 (38) |
2 | 14 (24) | 13 (27) |
Gleason score at diagnosis | ||
≤7 | 21 (36) | 16 (33) |
≥8 | 30 (51) | 24 (50) |
Missing data | 8 (13) | 8 (17) |
Gleason group at diagnosis | ||
≤2 | 10 (17) | 8 (17) |
≥3 | 42 (71) | 33 (69) |
Missing data | 7 (12) | 7 (14) |
Prostatectomy | ||
Yes | 21 (36) | 17 (35) |
No | 35 (59) | 28 (58) |
Missing data | 3 (5) | 3 (7) |
Radical radiotherapy | ||
Yes | 4 (7) | 3 (6) |
No | 48 (81) | 40 (83) |
Missing data | 7 (12) | 5 (11) |
Metastatic disease at diagnosis | ||
Yes | 28 (47) | 22 (46) |
No | 27 (46) | 23 (48) |
Missing data | 4 (7) | 3 (6) |
Metastases | ||
Bone metastases | 43 (73) | 35 (73) |
Bone and lymph node metastases | 16 (27) | 13 (27) |
N bone metastases | ||
<6 | 9 (16) | 8 (16) |
6–20 | 24 (40) | 20 (42) |
>20 | 26 (44) | 20 (42) |
Baseline median PSA, g/L (range) | 55 (0–6089) | 68 (0–6089) |
Baseline median ALP, U/L (range) | 138 (10–1296) | 154 (29–1296) |
Baseline ALP, U/L | ||
<220 | 40 (68) | 32 (67) |
≥220 | 19 (32) | 16 (33) |
Ra-223 treatment | ||
Ra-223 treatment line | ||
Median (range) | 3 (1–6) | 3 (1–6) |
First-line | 3 (5) | 2 (4) |
Second-line | 21 (36) | 17 (35) |
Third-line | 21 (36) | 17 (35) |
>3rd line | 14 (23) | 12 (26) |
EMA restriction of use compliant | ||
Not compliant | 33 (56) | 22 (54) |
Compliant | 26 (44) | 26 (46) |
Median cycles received, number (range) | 5 (1–6) | 4 (1–6) |
Completion of 3 cycles | ||
Yes | 46 (78) | 35 (73) |
No | 13 (22) | 13 (27) |
Completion of 6 cycles | ||
Yes | 23 (39) | 18 (38) |
No | 36 (61) | 30 (62) |
Prior chemotherapy | ||
Yes | 35 (59) | 28 (58) |
Docetaxel | 19 (32) | 15 (31) |
Docetaxel and Cabazitaxel | 16 (27) | 13 (27) |
No | 24 (41) | 20 (42) |
Biomarkers | Univariate Analyses on Complete Cases (n = 48) | Multivariate Analyses on Complete Cases (n = 48) | Multivariate Analyses on All Aample (n = 59) | ||||
---|---|---|---|---|---|---|---|
HR (95% CI) | p Value | c-Index | HR (95% CI) | p Value | HR (95% CI) | p Value | |
Inflammatory biomarkers | |||||||
NLR (1-unit) | 1.08 (1.01–1.17) | 0.042 | 0.63 | 1.09 (1.00–1.20) | 0.049 | 1.09 (1.01–1.19) | 0.025 |
d-NLR (1-unit) | 1.27 (1.02–1.58) | 0.036 | 0.65 | ||||
LMR (1-unit) | 0.95 (0.74–1.21) | 0.67 | 0.57 | ||||
PLR (100-unit) | 1.03 (0.90–1.18) | 0.63 | 0.56 | ||||
SII (100-unit) | 1.02 (0.99–1.05) | 0.25 | 0.58 | ||||
FDG-PET parameters | |||||||
SUV max (1-unit) | 1.04 (0.96–1.14) | 0.33 | 0.53 | ||||
MTV (1-unit on log scale) | 2.23 (1.52–3.25) | <0.001 | 0.75 | 1.60 (1.09–2.34) | 0.016 | 1.74 (1.22–2.50) | 0.002 |
TLG (1-unit on log-scale) | 2.06 (1.46–2.90) | <0.001 | 0.75 | ||||
Patients’ characteristics | |||||||
ECOG PS | |||||||
0–1 | 1.00 (ref) | <0.001 | - | 1.00 (ref) | <0.001 | 1.00 (ref) | <0.001 |
2 | 13.4 (5.29–33.74) | 7.92 (2.74–22.90) | 7.37 (2.94–18.47) | ||||
Gleason group | |||||||
<3 | 1.00 (ref) | 0.26 | - | ||||
≥3 | 1.63 (0.70–3.82) | ||||||
Lymph node metastases | |||||||
No | 1.00 (ref) | 0.007 | - | 1.00 (ref) | 0.039 | 1.00 (ref) | 0.002 |
Yes | 2.89 (1.33–6.29) | 2.66 (1.05–6.75) | 3.76 (1.65–8.56) | ||||
N° bone metastases | |||||||
<6 | 1.00 (ref) | - | |||||
6–20 | 1.63 (0.46–5.76) | 0.45 | |||||
>20 | 2.66 (0.74–9.53) | 0.13 | |||||
ALP | |||||||
<220 | 1.00 (ref) | 0.001 | - | ||||
≥220 | 3.79 (1.70–8.49) | ||||||
Treatment characteristics | |||||||
Radium therapy line | |||||||
1–2 | 1.00 (ref) | 0.92 | - | ||||
≥3 | 1.04 (0.50–2.14) | ||||||
Previous chemotherapy | |||||||
No | 1.00 (ref) | 0.44 | - | ||||
Yes | 1.33 (0.64–2.76) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauckneht, M.; Rebuzzi, S.E.; Signori, A.; Donegani, M.I.; Murianni, V.; Miceli, A.; Borea, R.; Raffa, S.; Damassi, A.; Ponzano, M.; et al. The Prognostic Role of Baseline Metabolic Tumor Burden and Systemic Inflammation Biomarkers in Metastatic Castration-Resistant Prostate Cancer Patients Treated with Radium-223: A Proof of Concept Study. Cancers 2020, 12, 3213. https://doi.org/10.3390/cancers12113213
Bauckneht M, Rebuzzi SE, Signori A, Donegani MI, Murianni V, Miceli A, Borea R, Raffa S, Damassi A, Ponzano M, et al. The Prognostic Role of Baseline Metabolic Tumor Burden and Systemic Inflammation Biomarkers in Metastatic Castration-Resistant Prostate Cancer Patients Treated with Radium-223: A Proof of Concept Study. Cancers. 2020; 12(11):3213. https://doi.org/10.3390/cancers12113213
Chicago/Turabian StyleBauckneht, Matteo, Sara Elena Rebuzzi, Alessio Signori, Maria Isabella Donegani, Veronica Murianni, Alberto Miceli, Roberto Borea, Stefano Raffa, Alessandra Damassi, Marta Ponzano, and et al. 2020. "The Prognostic Role of Baseline Metabolic Tumor Burden and Systemic Inflammation Biomarkers in Metastatic Castration-Resistant Prostate Cancer Patients Treated with Radium-223: A Proof of Concept Study" Cancers 12, no. 11: 3213. https://doi.org/10.3390/cancers12113213
APA StyleBauckneht, M., Rebuzzi, S. E., Signori, A., Donegani, M. I., Murianni, V., Miceli, A., Borea, R., Raffa, S., Damassi, A., Ponzano, M., Catalano, F., Martelli, V., Marini, C., Boccardo, F., Morbelli, S., Sambuceti, G., & Fornarini, G. (2020). The Prognostic Role of Baseline Metabolic Tumor Burden and Systemic Inflammation Biomarkers in Metastatic Castration-Resistant Prostate Cancer Patients Treated with Radium-223: A Proof of Concept Study. Cancers, 12(11), 3213. https://doi.org/10.3390/cancers12113213