Alpha-Fetoprotein, Protein Induced by Vitamin K Absence or Antagonist II and Glypican-3 for the Detection and Prediction of Hepatocellular Carcinoma in Patients with Cirrhosis of Viral Etiology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Diagnostic Accuracy of AFP, PIVKA-II and GPC-3 for the Detection of HCC
2.2. Prediction of HCC Development in Patients with Cirrhosis under Surveillance
3. Discussion
Study Limitations
4. Materials and Methods
4.1. Patients
4.2. Measurement of Serum AFP, PIVKA-II and GPC-3
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The Global Cancer Observatory-IARC. Available online: https://gco.iarc.fr/today (accessed on 11 June 2019).
- Akinyemiju, T.; Abera, S.; Ahmed, M.; Alam, N.; Alemayohu, M.A.; Allen, C.; Al-Raddadi, R.; Alvis-Guzman, N.; Amoako, Y.; Artaman, A.; et al. The Burden of Primary Liver Cancer and Underlying Etiologies from 1990 to 2015 at the Global, Regional, and National Level: Results from the Global Burden of Disease Study 2015. JAMA Oncol. 2017, 3, 1683–1691. [Google Scholar]
- Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ružić, M.; Pellicano, R.; Fabri, M.; Luzza, F.; Boccuto, L.; Brkić, S.; Abenavoli, L. Hepatitis C virus-induced hepatocellular carcinoma: A narrative review. Panminerva Med. 2018, 60, 185–191. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef] [Green Version]
- Omata, M.; Cheng, A.L.; Kokudo, N.; Kudo, M.; Lee, J.M.; Jia, J.; Tateishi, R.; Han, K.H.; Chawla, Y.K.; Shiina, S.; et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: A 2017 update. Hepatol. Int. 2017, 11, 317–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singal, A.; Volk, M.L.; Waljee, A.; Salgia, R.; Higgins, P.; Rogers, M.A.; Marrero, J.A. Meta-analysis: Surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment. Pharmacol. Ther. 2009, 30, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Campion, D.; Tucci, A.; Ponzo, P.; Caviglia, G.P. Non-invasive biomarkers for the detection of hepatocellular carcinoma. Minerva Biotecnol. 2019, 31, 11–22. [Google Scholar] [CrossRef]
- Caviglia, G.P.; Ribaldone, D.G.; Abate, M.L.; Ciancio, A.; Pellicano, R.; Smedile, A.; Saracco, G.M. Performance of protein induced by vitamin K absence or antagonist-II assessed by chemiluminescence enzyme immunoassay for hepatocellular carcinoma detection: A meta-analysis. Scand. J. Gastroenterol. 2018, 53, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Biselli, M.; Conti, F.; Gramenzi, A.; Frigerio, M.; Cucchetti, A.; Fatti, G.; D’Angelo, M.; Dall’Agata, M.; Giannini, E.G.; Farinati, F.; et al. A new approach to the use of α-fetoprotein as surveillance test for hepatocellular carcinoma in patients with cirrhosis. Br. J. Cancer 2015, 112, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.N.; Kim, B.K.; Kim, S.U.; Park, J.Y.; Ahn, S.H.; Han, K.H.; Kim, D.Y. Longitudinal assessment of alpha-fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis. Scand. J. Gastroenterol. 2019, 54, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Z.; Zhang, P.; Liu, J. Diagnostic accuracy of des-gamma-carboxy prothrombin versus α-fetoprotein for hepatocellular carcinoma: A systematic review. Hepatol. Res. 2014, 44, E11–E25. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.I.; Kim, H.S.; Kim, W.J.; Shin, W.G.; Kim, D.J.; Kim, K.H.; Jang, M.K.; Lee, J.H.; Kim, J.S.; Kim, H.Y.; et al. Diagnostic value of PIVKA-II and alpha-fetoprotein in hepatitis B virus-associated hepatocellular carcinoma. World J. Gastroenterol. 2015, 21, 3928–3935. [Google Scholar] [CrossRef] [PubMed]
- Saitta, C.; Raffa, G.; Alibrandi, A.; Brancatelli, S.; Lombardo, D.; Tripodi, G.; Raimondo, G.; Pollicino, T. PIVKA-II is a useful tool for diagnostic characterization of ultrasound-detected liver nodules in cirrhotic patients. Medicine 2017, 96, e7266. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, H.; Zheng, J.; Liu, Y. Glypican-3: A New Target for Diagnosis and Treatment of Hepatocellular Carcinoma. J. Cancer 2020, 11, 2008–2021. [Google Scholar] [CrossRef]
- Hu, D.; Su, C.; Sun, L.; Gao, Y.; Li, Y. Performance of Serum Glypican 3 in Diagnosis of Hepatocellular Carcinoma: A meta-analysis. Ann. Hepatol. 2019, 18, 58–67. [Google Scholar]
- Abenavoli, L.; Boccuto, L. New serum markers for detection of early hepatocellular carcinoma. Panminerva Med. 2017, 59, 281–282. [Google Scholar]
- Xu, X.; Tao, Y.; Shan, L.; Chen, R.; Jiang, H.; Qian, Z.; Cai, F.; Ma, L.; Yu, Y. The Role of MicroRNAs in Hepatocellular Carcinoma. J. Cancer 2018, 9, 3557–3569. [Google Scholar] [CrossRef]
- Klingenberg, M.; Matsuda, A.; Diederichs, S.; Patel, T. Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J. Hepatol. 2017, 67, 603–618. [Google Scholar] [CrossRef] [Green Version]
- Petrini, E.; Caviglia, G.P.; Abate, M.L.; Fagoonee, S.; Smedile, A.; Pellicano, R. MicroRNAs in HBV-related hepatocellular carcinoma: Functions and potential clinical applications. Panminerva Med. 2015, 57, 201–209. [Google Scholar]
- Zhang, Q.Y.; Chen, H.; Lin, Z.; Lin, J.M. Comparison of chemiluminescence enzyme immunoassay based on magnetic microparticles with traditional colorimetric ELISA for the detection of serum α-fetoprotein. J. Pharm. Anal. 2012, 2, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Feier, D.; Lupsor Platon, M.; Stefanescu, H.; Badea, R. Transient elastography for the detection of hepatocellular carcinoma in viral C liver cirrhosis. Is there something else than increased liver stiffness? J. Gastrointestin. Liver Dis. 2013, 22, 283–289. [Google Scholar] [PubMed]
- Johnson, P.J.; Pirrie, S.J.; Cox, T.F.; Berhane, S.; Teng, M.; Palmer, D.; Morse, J.; Hull, D.; Patman, G.; Kagebayashi, C.; et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. Cancer Epidemiol. Biomark. 2014, 23, 144–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Serag, H.B.; Kanwal, F.; Davila, J.A.; Kramer, J.; Richardson, P. A new laboratory-based algorithm to predict development of hepatocellular carcinoma in patients with hepatitis C and cirrhosis. Gastroenterology 2014, 146, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Caviglia, G.P.; Abate, M.L.; Petrini, E.; Gaia, S.; Rizzetto, M.; Smedile, A. Highly sensitive alpha-fetoprotein, Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein and des-gamma-carboxyprothrombin for hepatocellular carcinoma detection. Hepatol. Res. 2016, 46, E130–E135. [Google Scholar] [CrossRef]
- Caviglia, G.P.; Abate, M.L.; Gaia, S.; Petrini, E.; Bosco, C.; Olivero, A.; Rosso, C.; Ciancio, A.; Pellicano, R.; Saracco, G.M.; et al. Risk of hepatocellular carcinoma in HBV cirrhotic patients assessed by the combination of miR-122, AFP and PIVKA-II. Panminerva Med. 2017, 59, 283–289. [Google Scholar] [PubMed]
- Ricco, G.; Cavallone, D.; Cosma, C.; Caviglia, G.P.; Oliveri, F.; Biasiolo, A.; Abate, M.L.; Plebani, M.; Smedile, A.; Bonino, F.; et al. Impact of etiology of chronic liver disease on hepatocellular carcinoma biomarkers. Cancer Biomark. 2018, 21, 603–612. [Google Scholar] [CrossRef]
- Jia, X.; Gao, Y.; Zhai, D.; Liu, J.; Cai, J.; Wang, Y.; Jing, L.; Du, Z. Assessment of the Clinical Utility of Glypican 3 as a Serum Marker for the Diagnosis of Hepatocellular Carcinoma. Technol. Cancer Res. Treat. 2016, 15, 780–786. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Liu, Z.; Li, X.; Zhang, A.; Li, N. Dynamic Changes in Serum Markers and Their Utility in the Early Diagnosis of All Stages of Hepatitis B-Associated Hepatocellular Carcinoma. Onco Targets Ther. 2020, 13, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wang, M.; Zheng, C.; Zhong, Q.; Shi, Y.; Han, X. Diagnostic value of serum glypican-3 alone and in combination with AFP as an aid in the diagnosis of liver cancer. Clin. Biochem. 2020, 79, 54–60. [Google Scholar] [CrossRef]
- Loglio, A.; Iavarone, M.; Facchetti, F.; Di Paolo, D.; Perbellini, R.; Lunghi, G.; Ceriotti, F.; Galli, C.; Sandri, M.T.; Viganò, M.; et al. The combination of PIVKA-II and AFP improves the detection accuracy for HCC in HBV caucasian cirrhotics on long-term oral therapy. Liver Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Tan, Z.; Xiang, X.; Dan, Y.; Deng, G. Effectiveness of PIVKA-II in the detection of hepatocellular carcinoma based on real-world clinical data. BMC Cancer 2017, 17, 608. [Google Scholar] [CrossRef] [PubMed]
- Ricco, G.; Cosma, C.; Bedogni, G.; Biasiolo, A.; Guarino, M.; Pontisso, P.; Morisco, F.; Oliveri, F.; Cavallone, D.; Bonino, F.; et al. Modeling the time-related fluctuations of AFP and PIVKA-II serum levels in patients with cirrhosis undergoing surveillance for hepatocellular carcinoma. Cancer Biomark. 2020. [Google Scholar] [CrossRef]
- Caviglia, G.P.; Touscoz, G.A.; Smedile, A.; Pellicano, R. Noninvasive assessment of liver fibrosis: Key messages for clinicians. Pol. Arch. Med. Wewn. 2014, 124, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Gaia, S.; Campion, D.; Evangelista, A.; Spandre, M.; Cosso, L.; Brunello, F.; Ciccone, G.; Bugianesi, E.; Rizzetto, M. Non-invasive score system for fibrosis in chronic hepatitis: Proposal for a model based on biochemical, FibroScan and ultrasound data. Liver Int. 2015, 35, 2027–2035. [Google Scholar] [CrossRef] [PubMed]
- Caviglia, G.P.; Ciruolo, M.; Olivero, A.; Carucci, P.; Rolle, E.; Rosso, C.; Abate, M.L.; Risso, A.; Ribaldone, D.G.; Tandoi, F.; et al. Prognostic Role of Serum Cytokeratin-19 Fragment (CYFRA 21-1) in Patients with Hepatocellular Carcinoma. Cancers 2020, 12, 2776. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Cirrhosis | HCC | p Value |
---|---|---|---|
Patients, n | 200 | 149 | |
Age (years), median (range) | 61 (33–82) | 67 (31–89) | <0.001 |
Male gender, n (%) | 134 (67%) | 123 (83%) | 0.001 |
Caucasian ethnicity, n (%) | 197 (99%) | 147 (99%) | 1.000 |
Etiology | |||
HBV, n (%) | 52 (26%) | 40 (27%) | 0.902 |
HCV, n (%) | 148 (74%) | 109 (73%) | |
ALT (U/L), median (IQR) | 45 (26–86) | 63 (34–104) | 0.023 |
AST (U/L), median (IQR) | 45 (28–80) | 77 (41–115) | <0.001 |
Platelets (×109/L), median (IQR) | 123 (79–177) | 101 (66–129) | <0.001 |
Albumin (g/dL), median (IQR) | 4.1 (3.7–4.4) | 3.9 (3.4–4.1) | <0.001 |
INR, median (IQR) | 1.11 (1.02–1.20) | 1.15 (1.06–1.25) | 0.103 |
Total Bilirubin (mg/dL), median (IQR) | 0.9 (0.7–1.2) | 1.0 (0.7–1.6) | 0.018 |
Child-Pugh Score | |||
A, n (%) | 188 (94%) | 131 (88%) | 0.034 |
B, n (%) | 12 (6%) | 18 (12%) | |
BCLC Score | |||
0, n (%) | 33 (22%) | ||
A, n (%) | 82 (55%) | ||
B, n (%) | 30 (20%) | ||
C, n (%) | 4 (3%) | ||
HCC nodules | |||
1, n (%) | 87 (58%) | ||
2, n (%) | 34 (23%) | ||
3, n (%) | 22 (15%) | ||
>3, n (%) | 6 (4%) | ||
Size of major nodule (mm), median (IQR) | 22 (17–33) |
BCLC Staging | ||||
---|---|---|---|---|
Biomarkers | 0 | A | B/C | p Value |
Patients, n | 33 | 82 | 34 | |
AFP (ng/mL), median (IQR) | 15.9 (4.4–34.4) | 21.4 (7.5–74.7) | 45.2 (17.8–367.1) | 0.004 |
PIVKA-II (mAU/mL), median (IQR) | 66 (40–115) | 162 (62–366) | 180 (87–742) | <0.001 |
GPC-3 (pg/mL), median (IQR) | 85 (39–194) | 141 (62–243) | 213 (138–352) | <0.001 |
Biomarkers | AUC (95% CI) | Cut-off ** | Se | Sp | +LR | -LR |
---|---|---|---|---|---|---|
AFP | 0.737 (0.688–0.783) | >9.7 ng/mL | 72% | 66% | 2.11 | 0.43 |
PIVKA-II | 0.790 (0.744–0.832) | >73 mAU/mL | 68% | 84% | 4.11 | 0.39 |
GPC-3 | 0.637 (0.584–0.688) | >73 pg/mL | 73% | 51% | 1.49 | 0.53 |
AFP + PIVKA-II * | 0.822 (0.777–0.860) | >0.41 | 70% | 84% | 4.23 | 0.36 |
Variables * | OR (95% CI) | p Value |
---|---|---|
Age (years) | 1.07 (1.03–1.10) | <0.001 |
Male gender | 2.46 (1.12–5.34) | 0.023 |
ALT (U/L) | 0.99 (0.98–1.01) | 0.926 |
AST (U/L) | 1.00 (0.99–1.01) | 0.603 |
Platelets (×109/L) | 0.99 (0.98–0.99) | 0.044 |
Child-Pugh score B | 2.43 (0.77–7.79) | 0.136 |
AFP > 9.7 ng/mL | 2.42 (1.12–5.26) | 0.025 |
PIVKA-II > 73 mAU/mL | 8.57 (4.38–16.74) | <0.001 |
GPC-3 > 73 pg/mL | 0.72 (0.31–1.66) | 0.438 |
Characteristics | No HCC Development * | HCC Development ** | p Value |
---|---|---|---|
Patients, n | 114 | 86 | |
Age (years), median (range) | 57 (33–82) | 65 (35–82) | <0.001 |
Male gender, n (%) | 70 (61%) | 64 (74%) | 0.068 |
Caucasian ethnicity, n (%) | 113 (99%) | 84 (98%) | 0.578 |
Etiology | |||
HBV, n (%) | 28 (25%) | 25 (29%) | 0.519 |
HCV, n (%) | 86 (75%) | 61 (71%) | |
ALT (U/L), median (IQR) | 55 (28–98) | 42 (24–72) | 0.096 |
AST (U/L), median (IQR) | 51 (28–80) | 51 (29–82) | 0.761 |
Platelets (×109/L), median (IQR) | 142 (92–190) | 88 (61–143) | <0.001 |
Albumin (g/dL), median (IQR) | 4.2 (3.8–4.4) | 4.0 (3.6–4.3) | 0.124 |
INR, median (IQR) | 1.10 (1.02–1.16) | 1.15 (1.06–1.25) | 0.075 |
Total Bilirubin (mg/dL), median (IQR) | 0.9 (0.7–1.2) | 0.9 (0.7–1.2) | 0.932 |
Child-Pugh Score | |||
A, n (%) | 109 (96%) | 80 (93%) | 0.535 |
B, n (%) | 5 (4%) | 6 (7%) | |
AFP (ng/mL), median (IQR) | 7.0 (4.0–13.1) | 6.0 (3.2–19.1) | 0.851 |
PIVKA-II (mAU/mL), median (IQR) | 43 (32–57) | 52 (35–73) | 0.020 |
GPC-3 (pg/mL), median (IQR) | 69 (37–170) | 80 (37–152) | 0.844 |
Variables | HR (95% CI) | p Value |
---|---|---|
Age (years) | 1.05 (1.03–1.08) | <0.001 |
Platelets (×109/L) | 0.99 (0.99–0.99) | <0.001 |
PIVKA-II > 55 mAU/mL | 1.99 (1.25–3.19) | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caviglia, G.P.; Ciruolo, M.; Abate, M.L.; Carucci, P.; Rolle, E.; Rosso, C.; Olivero, A.; Troshina, G.; Risso, A.; Nicolosi, A.; et al. Alpha-Fetoprotein, Protein Induced by Vitamin K Absence or Antagonist II and Glypican-3 for the Detection and Prediction of Hepatocellular Carcinoma in Patients with Cirrhosis of Viral Etiology. Cancers 2020, 12, 3218. https://doi.org/10.3390/cancers12113218
Caviglia GP, Ciruolo M, Abate ML, Carucci P, Rolle E, Rosso C, Olivero A, Troshina G, Risso A, Nicolosi A, et al. Alpha-Fetoprotein, Protein Induced by Vitamin K Absence or Antagonist II and Glypican-3 for the Detection and Prediction of Hepatocellular Carcinoma in Patients with Cirrhosis of Viral Etiology. Cancers. 2020; 12(11):3218. https://doi.org/10.3390/cancers12113218
Chicago/Turabian StyleCaviglia, Gian Paolo, Michela Ciruolo, Maria Lorena Abate, Patrizia Carucci, Emanuela Rolle, Chiara Rosso, Antonella Olivero, Giulia Troshina, Alessandra Risso, Aurora Nicolosi, and et al. 2020. "Alpha-Fetoprotein, Protein Induced by Vitamin K Absence or Antagonist II and Glypican-3 for the Detection and Prediction of Hepatocellular Carcinoma in Patients with Cirrhosis of Viral Etiology" Cancers 12, no. 11: 3218. https://doi.org/10.3390/cancers12113218
APA StyleCaviglia, G. P., Ciruolo, M., Abate, M. L., Carucci, P., Rolle, E., Rosso, C., Olivero, A., Troshina, G., Risso, A., Nicolosi, A., Ribaldone, D. G., Armandi, A., Tandoi, F., Saracco, G. M., Bugianesi, E., Ciancio, A., & Gaia, S. (2020). Alpha-Fetoprotein, Protein Induced by Vitamin K Absence or Antagonist II and Glypican-3 for the Detection and Prediction of Hepatocellular Carcinoma in Patients with Cirrhosis of Viral Etiology. Cancers, 12(11), 3218. https://doi.org/10.3390/cancers12113218