Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies
Abstract
:Simple Summary
Abstract
1. Introduction
2. ROS1 Discovery and Signalling Pathway
3. ROS1 in Lung Cancer and Brain Metastasis
Brain Metastasis
4. ROS1 Rearrangement Diagnosis
5. Targeting the ROS1 Oncogene with Crizotinib
6. Mechanisms of Resistance to Crizotinib
7. A New Generation of TKIs to Overcome Crizotinib Resistance and Combination Regimens
7.1. Brigatinib
7.2. Cabozantinib
7.3. Ceritinib
7.4. Entrectinib
7.5. Lorlatinib
7.6. Repotrectinib
7.7. Other Promising Drugs
8. Discussion
9. Conclusions
Funding
Conflicts of Interest
References
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiol. Biomark. Prev. 2015, 25, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, K.; Soda, M.; Togashi, Y.; Suzuki, R.; Sakata, S.; Hatano, S.; Asaka, R.; Hamanaka, W.; Ninomiya, H.; Uehara, H.; et al. RET, ROS1 and ALK Fusions in Lung Cancer. Nat. Med. 2012, 18, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S.; et al. KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. N. Engl. J. Med. 2020, 383, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Morris, T.A.; Khoo, C.; Solomon, B.J. Targeting ROS1 Rearrangements in Non-small Cell Lung Cancer: Crizotinib and Newer Generation Tyrosine Kinase Inhibitors. Drugs 2019, 79, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.T.; Ou, S.-H.I.; Bang, Y.-J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; et al. Crizotinib in ROS1-Rearranged Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2014, 371, 1963–1971. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-L.; Yang, J.C.-H.; Kim, D.-W.; Lu, S.; Zhou, J.; Seto, T.; Yang, J.-J.; Yamamoto, N.; Ahn, M.-J.; Takahashi, T.; et al. Phase II Study of Crizotinib in East Asian Patients with ROS1-Positive Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Moro-Sibilot, D.; Cozic, N.; Pérol, M.; Mazières, J.; Otto, J.; Souquet, P.; Bahleda, R.; Wislez, M.; Zalcman, G.; Guibert, S.; et al. Crizotinib in c-MET-or ROS1-Positive NSCLC: Results of the AcSé Phase II Trial. Ann. Oncol. 2019, 30, 1985–1991. [Google Scholar] [CrossRef]
- Roys, A.; Chang, X.; Liu, Y.; Xu, X.; Wu, Y.; Zuo, D. Resistance Mechanisms and Potent-Targeted Therapies of ros1-Positive Lung Cancer. Cancer Chemother. Pharmacol. 2019, 84, 679–688. [Google Scholar] [CrossRef]
- Genova, C.; Rossi, G.; Tagliamento, M.; Rijavec, E.; Biello, F.; Cerbone, L.; Zullo, L.; Grossi, F. Targeted Therapy of Oncogenic-Driven Advanced Non-Small Cell Lung Cancer: Recent Advances and New Perspectives. Expert Rev. Respir. Med. 2020, 14, 367–383. [Google Scholar] [CrossRef]
- Birchmeier, C.; Sharma, S.; Wigler, M. Expression and Rearrangement of the ROS1 Gene in Human Glioblastoma Cells. Proc. Natl. Acad. Sci. USA 1987, 84, 9270–9274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roskoski, R. ROS1 Protein-Tyrosine Kinase Inhibitors in the Treatment of ros1 Fusion Protein-Driven Non-Small Cell Lung Cancers. Pharmacol. Res. 2017, 121, 202–212. [Google Scholar] [CrossRef]
- Davare, M.A.; Vellore, N.A.; Wagner, J.P.; Eide, C.A.; Goodman, J.R.; Drilon, A.; Deininger, M.W.; O’Hare, T.; Druker, B.J. Structural Insight Into Selectivity and Resistance Profiles of ROS1 Tyrosine Kinase Inhibitors. Proc. Natl. Acad. Sci. USA 2015, 112, E5381–E5390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikova, K.; Guo, A.; Zeng, Q.; Possemato, A.; Yu, J.; Haack, H.; Nardone, J.; Lee, K.; Reeves, C.; Li, Y.; et al. Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer. Cell 2007, 131, 1190–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazières, J.; Zalcman, G.; Crinò, L.; Biondani, P.; Barlesi, F.; Filleron, T.; Dingemans, A.-M.C.; Léna, H.; Monnet, I.; Rothschild, S.I.; et al. Crizotinib Therapy for Advanced Lung Adenocarcinoma and a ROS1 Rearrangement: Results from the EUROS1 Cohort. J. Clin. Oncol. 2015, 33, 992–999. [Google Scholar] [CrossRef]
- Gainor, J.F.; Shaw, A.T. Novel Targets in Non-Small Cell Lung Cancer:ROS1 and RET Fusions. Oncologist 2013, 18, 865–875. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.J.; Shaw, A.T. Recent Advances in Targeting ROS1 in Lung Cancer. J. Thorac. Oncol. 2017, 12, 1611–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uguen, A.; De Braekeleer, M. ROS1fusions in Cancer: A Review. Futur. Oncol. 2016, 12, 1911–1928. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib Versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular CarcinomA: A Randomised Phase 3 Non-Inferiority Trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Wiesner, T.; He, J.; Yelensky, R.; Esteve-Puig, R.; Botton, T.; Yeh, I.; Lipson, D.; Otto, G.; Brennan, K.; Murali, R.; et al. Kinase Fusions Are Frequent in Spitz Tumours and Spitzoid Melanomas. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, T.; Li, N.; Wang, T.; Pu, Y.; Lin, R.; Yue, P. Identification of a Novel WNK1-ROS1 Fusion in a Lung Adenocarcinoma Sensitive to Crizotinib. Lung Cancer 2018, 129, 92–94. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, M.; Yuan, M.; Chen, R.; Huang, M. Identification of a Novel RBPMS-ROS1 Fusion in an Adolescent Patient with Microsatellite-instable Advanced Lung Adenocarcinoma Sensitive to Crizotinib: A Case Report. Clin. Lung Cancer 2020, 21, e78–e83. [Google Scholar] [CrossRef]
- Shi, E.; Chmielecki, J.; Tang, C.-M.; Wang, K.; Heinrich, M.C.; Kang, G.; Corless, C.L.; Hong, D.; Fero, K.E.; Murphy, J.D.; et al. FGFR1 and NTRK3 Actionable Alterations in “Wild-Type” Gastrointestinal Stromal Tumors. J. Transl. Med. 2016, 14, 339. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Ahn, B.-C.; Lim, S.W.; Sun, J.-M.; Kim, H.R.; Hong, M.H.; Lee, S.-H.; Ahn, J.S.; Park, K.; La Choi, Y.; et al. Characteristics and Outcome of ROS1-Positive Non–Small Cell Lung Cancer Patients in Routine Clinical Practice. J. Thorac. Oncol. 2018, 13, 1373–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, K.D.; Le, A.T.; Theodoro, M.F.; Skokan, M.C.; Aisner, D.L.; Berge, E.M.; Terracciano, L.M.; Cappuzzo, F.; Incarbone, M.; Roncalli, M.; et al. Identifying and Targeting ROS1 Gene Fusions in Non–Small Cell Lung Cancer. Clin. Cancer Res. 2012, 18, 4570–4579. [Google Scholar] [CrossRef] [Green Version]
- Gu, T.-L.; Deng, X.; Huang, F.; Tucker, M.; Crosby, K.; Rimkunas, V.; Wang, Y.; Deng, G.; Zhu, L.; Tan, Z.; et al. Survey of Tyrosine Kinase Signaling Reveals ROS Kinase Fusions in Human Cholangiocarcinoma. PLoS ONE 2011, 6, e15640. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, C.P.; Sun, S.; Varma, S.; Shain, A.H.; Giacomini, M.M.; Balagtas, J.; Sweeney, R.T.; Lai, E.; Del Vecchio, C.A.; Forster, A.D.; et al. Breakpoint Analysis of Transcriptional and Genomic Profiles Uncovers Novel Gene Fusions Spanning Multiple Human Cancer Types. PLoS Genet. 2013, 9, e1003464. [Google Scholar] [CrossRef]
- Birch, A.H.; Arcand, S.L.; Oros, K.K.; Rahimi, K.; Watters, A.K.; Provencher, D.; Greenwood, C.M.; Mes-Masson, A.-M.; Tonin, P.N. Chromosome 3 Anomalies Investigated by Genome Wide SNP Analysis of Benign, Low Malignant Potential and Low Grade Ovarian Serous Tumours. PLoS ONE 2011, 6, e28250. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.E.; Kang, S.Y.; Do, I.G.; Lee, S.; Ha, S.Y.; Cho, J.; Kang, W.K.; Jang, J.; Ou, S.-H.I.; et al. Identification of ROS1rearrangement in Gastric Adenocarcinoma. Cancer 2013, 119, 1627–1635. [Google Scholar] [CrossRef]
- Aisner, D.L.; Nguyen, T.T.; Paskulin, D.D.; Le, A.T.; Haney, J.; Schulte, N.; Chionh, F.; Hardingham, J.E.; Mariadason, J.M.; Tebbutt, N.; et al. ROS1 and ALK Fusions in Colorectal Cancer, with Evidence of Intratumoral Heterogeneity for Molecular Drivers. Mol. Cancer Res. 2013, 12, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Facchinetti, F.; Rossi, G.; Bria, E.; Soria, J.-C.; Besse, B.; Minari, R.; Friboulet, L.; Tiseo, M. Oncogene Addiction in Non-Small Cell Lung Cancer: Focus on ROS1 Inhibition. Cancer Treat. Rev. 2017, 55, 83–95. [Google Scholar] [CrossRef]
- Bergethon, K.; Shaw, A.T.; Ou, S.-H.I.; Katayama, R.; Lovly, C.M.; McDonald, N.T.; Massion, P.P.; Siwak-Tapp, C.; Gonzalez, A.; Fang, R.; et al. ROS1 Rearrangements Define a Unique Molecular Class of Lung Cancers. J. Clin. Oncol. 2012, 30, 863–870. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.J.; Ritterhouse, L.L.; Ali, S.M.; Bailey, M.; Schrock, A.B.; Gainor, J.F.; Ferris, L.A.; Mino-Kenudson, M.; Miller, V.A.; Iafrate, A.J.; et al. ROS1 Fusions Rarely Overlap with Other Oncogenic Drivers in Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, 872–877. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.J.; Langenbucher, A.; Gupta, P.; Yoda, S.; Fetter, I.J.; Rooney, M.; Do, A.; Kem, M.; Chang, K.P.; Oh, A.Y.; et al. Small Cell Transformation of ROS1 Fusion-Positive Lung Cancer Resistant to ROS1 Inhibition. NPJ Precis. Oncol. 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Wiesweg, M.; Eberhardt, W.E.; Reis, H.; Ting, S.; Savvidou, N.; Skiba, C.; Herold, T.; Christoph, D.C.; Meiler, J.; Worm, K.; et al. High Prevalence of Concomitant Oncogene Mutations in Prospectively Identified Patients with ROS1-Positive Metastatic Lung Cancer. J. Thorac. Oncol. 2017, 12, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-F.; Hsieh, M.-S.; Wu, S.-G.; Chang, Y.-L.; Yu, C.-J.; Yang, J.C.-H.; Yang, P.-C.; Shih, J.-Y. Efficacy of Pemetrexed-Based Chemotherapy in Patients with ROS1 Fusion–Positive Lung Adenocarcinoma Compared with in Patients Harboring Other Driver Mutations in East Asian Populations. J. Thorac. Oncol. 2016, 11, 1140–1152. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, M.; Schultheis, A.; Teixido, C.; Michels, S.; Morales-Espinosa, D.; Viteri, S.; Hartmann, W.; Merkelbach-Bruse, S.; Fischer, R.; Schildhaus, H.-U.; et al. ROS1 Rearrangements in Lung AdenocarcinomA: Prognostic Impact, Therapeutic Options and Genetic Variability. Oncotarget 2015, 6, 10577–10585. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Wakelee, H.A.; Neal, J.W. Relationship of Driver Oncogenes to Long-Term Pemetrexed Response in Non--Small-Cell Lung Cancer. Clin. Lung Cancer 2014, 16, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Riess, J.; Padda, S.K.; Bangs, C.D.; Das, M.; Neal, J.W.; Adrouny, A.R.; Cherry, A.; Wakelee, H.A. A Case Series of Lengthy Progression-Free Survival With Pemetrexed-Containing Therapy in Metastatic Non–Small-Cell Lung Cancer Patients Harboring ROS1 Gene Rearrangements. Clin. Lung Cancer 2013, 14, 592–595. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Su, H.; Zhang, Y. Patients with ROS 1 Rearrangement-Positive Non-Small-Cell Lung Cancer Benefit From Pemetrexed-Based Chemotherapy. Cancer Med. 2016, 5, 2688–2693. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, T.; Zhao, C.; Li, W.; Li, X.; Zhao, S.; Liu, X.; Jia, Y.; Yang, H.; Ren, S.; et al. Efficacy of Crizotinib and Pemetrexed-Based Chemotherapy in Chinese NSCLC Patients with ROS1 Rearrangement. Oncotarget 2016, 7, 75145–75154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-O.; Kim, T.M.; Lee, S.-H.; Kim, D.-W.; Kim, S.; Jeon, Y.K.; Chung, D.H.; Kim, W.H.; Kim, Y.W.; Yang, S.-C.; et al. Anaplastic Lymphoma Kinase Translocation: A Predictive Biomarker of Pemetrexed in Patients with Non-small Cell Lung Cancer. J. Thorac. Oncol. 2011, 6, 1474–1480. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Chen, X.; Kuang, P.; Zheng, L.; Su, C.; Li, J.; Li, B.; Wang, Y.; Liu, L.; Hu, Q.; et al. Association of EGFR Mutation or ALK Rearrangement with Expression of DNA Repair and Synthesis Genes in Never-Smoker Women with Pulmonary Adenocarcinoma. Cancer 2012, 118, 5588–5594. [Google Scholar] [CrossRef]
- Mazieres, J.; Drilon, A.; Lusque, A.; Mhanna, L.; Cortot, A.; Mezquita, L.; Thai, A.; Mascaux, C.; Couraud, S.; Veillon, R.; et al. Immune Checkpoint Inhibitors for Patients with Advanced Lung Cancer and Oncogenic Driver Alterations: Results from the IMMUNOTARGET Registry. Ann. Oncol. 2019, 30, 1321–1328. [Google Scholar] [CrossRef]
- Patil, T.; Smith, D.E.; Bunn, P.A.; Aisner, D.L.; Le, A.T.; Hancock, M.; Purcell, W.T.; Bowles, D.W.; Camidge, D.R.; Doebele, R.C. The Incidence of Brain Metastases in Stage IV ROS1-Rearranged Non–Small Cell Lung Cancer and Rate of Central Nervous System Progression on Crizotinib. J. Thorac. Oncol. 2018, 13, 1717–1726. [Google Scholar] [CrossRef] [Green Version]
- Gainor, J.F.; Tseng, D.; Yoda, S.; Dagogo-Jack, I.; Friboulet, L.; Lin, J.J.; Hubbeling, H.G.; Dardaei, L.; Farago, A.F.; Schultz, K.R.; et al. Patterns of Metastatic Spread and Mechanisms of Resistance to Crizotinib in ROS1-Positive Non–Small-Cell Lung Cancer. JCO Precis. Oncol. 2017, 1, 1–13. [Google Scholar] [CrossRef]
- Sehgal, K.; Piper-Vallillo, A.J.; Viray, H.; Khan, A.M.; Rangachari, D.; Costa, D.B. Cases of ROS1-Rearranged Lung Cancer: When to Use Crizotinib, Entrectinib, Lorlatinib, and Beyond? Precis. Cancer Med. 2020, 3, 17. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Jung, H.A.; Sun, J.-M.; Lee, S.-H.; Ahn, J.S.; Park, K.; Ahn, M.-J. Evaluating Entrectinib as a Treatment Option for Non-Small Cell Lung Cancer. Expert Opin. Pharmacother. 2020, 1–8. [Google Scholar] [CrossRef]
- Metro, G.; Lunardi, G.; Floridi, P.; Pascali, J.P.; Marcomigni, L.; Chiari, R.; Ludovini, V.; Crinò, L.; Gori, S. CSF Concentration of Crizotinib in Two ALK-Positive Non–Small-Cell Lung Cancer Patients with CNS Metastases Deriving Clinical Benefit from Treatment. J. Thorac. Oncol. 2015, 10, e26–e27. [Google Scholar] [CrossRef] [Green Version]
- Lukas, R.V.; Hasan, Y.; Nicholas, M.K.; Salgia, R. ROS1 Rearranged Non-Small Cell Lung Cancer Brain Metastases Respond to Low Dose Radiotherapy. J. Clin. Neurosci. 2015, 22, 1978–1979. [Google Scholar] [CrossRef]
- Bubendorf, L.; Büttner, R.; Al-Dayel, F.; Dietel, M.; Elmberger, G.; Kerr, K.; López-Ríos, F.; Marchetti, A.; Öz, B.; Pauwels, P.; et al. Testing for ROS1 in Non-Small Cell Lung Cancer: A Review with Recommendations. Virchows Archiv. 2016, 469, 489–503. [Google Scholar] [CrossRef]
- Kocher, M.; Soffietti, R.; Abacioglu, U.M.; Villà, S.; Fauchon, F.; Baumert, B.G.; Fariselli, L.; Tzuk-Shina, T.; Kortmann, R.-D.; Carrie, C.; et al. Adjuvant Whole-Brain Radiotherapy Versus Observation After Radiosurgery or Surgical Resection of One to Three Cerebral Metastases: Results of the EORTC 22952-26001 Study. J. Clin. Oncol. 2011, 29, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Andrews, D.W.; Scott, C.B.; Sperduto, P.W.; Flanders, A.E.; Gaspar, L.E.; Schell, M.C.; Werner-Wasik, M.; Demas, W.; Ryu, J.; Bahary, J.-P.; et al. Whole Brain Radiation Therapy with or Without Stereotactic Radiosurgery Boost for Patients with One to Three Brain Metastases: Phase III Results of the RTOG 9508 Randomised Trial. Lancet 2004, 363, 1665–1672. [Google Scholar] [CrossRef]
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch. Pathol. Lab. Med. 2018, 142, 321–346. [Google Scholar] [CrossRef] [Green Version]
- Rogers, T.-M.; Russell, P.A.; Wright, G.; Wainer, Z.; Pang, J.-M.; Henricksen, L.A.; Singh, S.; Stanislaw, S.; Grille, J.; Roberts, E.; et al. Comparison of Methods in the Detection of ALK and ROS1 Rearrangements in Lung Cancer. J. Thorac. Oncol. 2015, 10, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Bozzetti, C.; Nizzoli, R.; Tiseo, M.; Squadrilli, A.; Lagrasta, C.; Buti, S.; Gasparro, D.; Zanoni, D.; Majori, M.; De Filippo, M.; et al. ALK and ROS1 Rearrangements Tested by Fluorescence in Situ Hybridization in Cytological Smears From Advanced Non-Small Cell Lung Cancer Patients. Diagn. Cytopathol. 2015, 43, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Mescam-Mancini, L.; Lantuéjoul, S.; Moro-Sibilot, D.; Rouquette, I.; Souquet, P.-J.; Audigier-Valette, C.; Sabourin, J.-C.; Decroisette, C.; Sakhri, L.; Brambilla, E.; et al. On the Relevance of a Testing Algorithm for the Detection of ROS1-Rearranged Lung Adenocarcinomas. Lung Cancer 2014, 83, 168–173. [Google Scholar] [CrossRef]
- Boyle, T.A.; Masago, K.; Ellison, K.E.; Yatabe, Y.; Hirsch, F.R. ROS1 Immunohistochemistry Among Major Genotypes of Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2014, 16, 106–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, T.-M.; Arnau, G.M.; Ryland, G.L.; Huang, S.; Lira, M.E.; Emmanuel, Y.; Perez, O.D.; Irwin, D.; Fellowes, A.P.; Wong, S.Q.; et al. Multiplexed Transcriptome Analysis to Detect ALK, ROS1 and RET Rearrangements in Lung Cancer. Sci. Rep. 2017, 7, 42259. [Google Scholar] [CrossRef] [Green Version]
- Shan, L.; Lian, F.; Guo, L.; Qiu, T.; Ling, Y.; Ying, J.; Lin, D. Detection of ROS1 Gene Rearrangement in Lung Adenocarcinoma: Comparison of IHC, FISH and Real-Time RT-PCR. PLoS ONE 2015, 10, e0120422. [Google Scholar] [CrossRef] [PubMed]
- Sholl, L.M.; Sun, H.; Butaney, M.; Zhang, C.; Lee, C.; Jänne, P.A.; Rodig, S.J. ROS1 Immunohistochemistry for Detection of ROS1-Rearranged Lung Adenocarcinomas. Am. J. Surg. Pathol. 2013, 37, 1441–1449. [Google Scholar] [CrossRef]
- Wong, S.Q.; Li, J.; Tan, A.Y.-C.; Vedururu, R.; Pang, J.-M.B.; Do, H.; Ellul, J.; Doig, K.; Bell, A.; McArthur, G.A.; et al. Sequence Artefacts in a Prospective Series of Formalin-Fixed Tumours Tested for Mutations in Hotspot Regions by Massively Parallel Sequencing. BMC Med. Genom. 2014, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Liebers, M.; Zhelyazkova, B.; Cao, Y.; Panditi, D.; Lynch, K.D.; Chen, J.; Robinson, H.E.; Shim, H.S.; Chmielecki, J.; et al. Anchored Multiplex PCR for Targeted Next-Generation Sequencing. Nat. Med. 2014, 20, 1479–1484. [Google Scholar] [CrossRef]
- Davies, K.D.; Le, A.T.; Sheren, J.; Nijmeh, H.; Gowan, K.; Jones, K.L.; Varella-Garcia, M.; Aisner, D.L.; Doebele, R.C. Comparison of Molecular Testing Modalities for Detection of ROS1 Rearrangements in a Cohort of Positive Patient Samples. J. Thorac. Oncol. 2018, 13, 1474–1482. [Google Scholar] [CrossRef] [Green Version]
- Benayed, R.; Offin, M.; Mullaney, K.; Sukhadia, P.; Rios, K.; Desmeules, P.; Ptashkin, R.; Won, H.; Chang, J.; Halpenny, D.; et al. High Yield of RNA Sequencing for Targetable Kinase Fusions in Lung Adenocarcinomas with No Mitogenic Driver Alteration Detected by DNA Sequencing and Low Tumor Mutation Burden. Clin. Cancer Res. 2019, 25, 4712–4722. [Google Scholar] [CrossRef]
- Yasuda, H.; De Figueiredo-Pontes, L.L.; Kobayashi, S.; Costa, D.B. Preclinical Rationale for Use of the Clinically Available Multitargeted Tyrosine Kinase Inhibitor Crizotinib in ROS1-Translocated Lung Cancer. J. Thorac. Oncol. 2012, 7, 1086–1090. [Google Scholar] [CrossRef] [Green Version]
- Bos, M.; Gardizi, M.; Schildhaus, H.-U.; Heukamp, L.; Geist, T.; Kaminsky, B.; Zander, T.; Nogova, L.; Scheffler, M.; Dietlein, M.; et al. Complete Metabolic Response in a Patient with Repeatedly Relapsed Non-Small Cell Lung Cancer Harboring ROS1 Gene Rearrangement After Treatment with Crizotinib. Lung Cancer 2013, 81, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Chiari, R.; Buttitta, F.; Iacono, D.; Bennati, C.; Metro, G.; Di Lorito, A.; Iezzi, M.; Tiseo, M.; Mazzoni, F.; Cappuzzo, F.; et al. Dramatic Response to Crizotinib in ROS1 Fluorescent In Situ Hybridization-and Immunohistochemistry-Positive Lung Adenocarcinoma: A Case Series. Clin. Lung Cancer 2014, 15, 470–474. [Google Scholar] [CrossRef]
- Shaw, A.; Riely, G.; Bang, Y.-J.; Kim, D.-W.; Camidge, D.; Solomon, B.; Varella-Garcia, M.; Iafrate, A.; Shapiro, G.; Usari, T.; et al. Crizotinib in ROS1-Rearranged Advanced Non-Small-Cell Lung Cancer (NSCLC): Updated Results, Including Overall Survival, from PROFILE 1001. Ann. Oncol. 2019, 30, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Expands Use of Xalkori to Treat Rare Form of Advanced Non-Small Cell Lung Cancer. Available online: https://www.fda.gov/news-events/press-announcements/fda-expands-use-xalkori-treat-rare-form-advanced-non-small-cell-lung-cancer (accessed on 16 September 2020).
- Moro-Sibilot, D.; Faivre, L.; Zalcman, G.; Pérol, M.; Barlesi, F.; Otto, J.; Monnet, I.; Cortot, A.B.; Wislez, M.; Lena, H.; et al. Crizotinib in Patients with Advanced ROS1-Rearranged Non-Small Cell Lung Cancer (NSCLC). Preliminary Results of the ACSé Phase II Trial. J. Clin. Oncol. 2015, 33, 8065. [Google Scholar] [CrossRef]
- Michels, S.; Massutí, B.; Schildhaus, H.-U.; Franklin, J.; Sebastian, M.; Felip, E.; Grohé, C.; Rodriguez-Abreu, D.; Abdulla, D.S.; Bischoff, H.; et al. Safety and Efficacy of Crizotinib in Patients with Advanced or Metastatic ROS1-Rearranged Lung Cancer (EUCROSS): A European Phase II Clinical Trial. J. Thorac. Oncol. 2019, 14, 1266–1276. [Google Scholar] [CrossRef]
- Dziadziuszko, R.; Le, A.T.; Wrona, A.; Jassem, J.; Camidge, D.R.; Varella-Garcia, M.; Aisner, D.L.; Doebele, R.C. An Activating KIT Mutation Induces Crizotinib Resistance in ROS1-Positive Lung Cancer. J. Thorac. Oncol. 2016, 11, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- McCoach, C.E.; Le, A.T.; Gowan, K.; Jones, K.; Schubert, L.; Doak, A.; Estrada-Bernal, A.; Davies, K.D.; Merrick, D.T.; Bunn, P.A.; et al. Resistance Mechanisms to Targeted Therapies in ROS1þ and ALKþ Non–Small Cell Lung Cancer. Clin. Cancer Res. 2018, 24, 3334–3347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facchinetti, F.; Loriot, Y.; Cassin-Kuo, M.-S.; Mahjoubi, L.; Lacroix, L.; Planchard, D.; Besse, B.; Farace, F.; Auger, N.; Remon, J.; et al. Crizotinib-Resistant ROS1 Mutations Reveal a Predictive Kinase Inhibitor Sensitivity Model for ROS1-and ALK-Rearranged Lung Cancers. Clin. Cancer Res. 2016, 22, 5983–5991. [Google Scholar] [CrossRef] [Green Version]
- Drilon, A.; Somwar, R.; Wagner, J.P.; Vellore, N.A.; Eide, C.A.; Zabriskie, M.S.; Arcila, M.E.; Hechtman, J.F.; Wang, L.; Smith, R.S.; et al. A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. Clin. Cancer Res. 2016, 22, 2351–2358. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.M.; Katayama, R.; McTigue, M.; Liu, W.; Deng, Y.-L.; Brooun, A.; Friboulet, L.; Huang, D.; Falk, M.D.; Timofeevski, S.; et al. Acquired Resistance to Crizotinib from a Mutation in CD74–ROS1. N. Engl. J. Med. 2013, 368, 2395–2401. [Google Scholar] [CrossRef] [Green Version]
- Gainor, J.F.; Friboulet, L.; Yoda, S.; Alghalandis, L.D.; Farago, A.F.; Logan, J.; Schultz, K.; Sequist, L.V.; Engelman, J.A.; Shaw, A.T. Frequency and Spectrum of ROS1 Resistance Mutations in ROS1-Positive Lung Cancer Patients Progressing on Crizotinib. J. Clin. Oncol. 2016, 34, 9072. [Google Scholar] [CrossRef]
- Zou, H.Y.; Li, Q.; Engstrom, L.D.; West, M.; Appleman, V.; Wong, K.A.; McTigue, M.; Deng, Y.L.; Liu, W.; Brooun, A.; et al. PF-06463922 is a Potent and Selective Next-Generation ROS1/ALK Inhibitor Capable of Blocking Crizotinib-Resistant ROS1 Mutations. Proc. Natl. Acad. Sci. USA 2015, 112, 3493–3498. [Google Scholar] [CrossRef] [Green Version]
- Song, A.; Kim, T.M.; Kim, D.-W.; Kim, S.; Keam, B.; Lee, S.-H.; Heo, D.S. Molecular Changes Associated with Acquired Resistance to Crizotinib in ROS1-Rearranged Non-Small Cell Lung Cancer. Clin. Cancer Res. 2015, 21, 2379–2387. [Google Scholar] [CrossRef] [Green Version]
- Dagogo-Jack, I.; Rooney, M.; Nagy, R.J.; Lin, J.J.; Chin, E.; Ferris, L.A.; Ackil, J.; Lennerz, J.K.; Lanman, R.B.; Gainor, J.F.; et al. Molecular Analysis of Plasma from Patients with ROS1-Positive NSCLC. J. Thorac. Oncol. 2019, 14, 816–824. [Google Scholar] [CrossRef]
- Katayama, R.; Shaw, A.T.; Khan, T.M.; Mino-Kenudson, M.; Solomon, B.J.; Halmos, B.; Jessop, N.A.; Wain, J.C.; Yeo, A.T.; Benes, C.; et al. Mechanisms of Acquired Crizotinib Resistance in ALK-Rearranged Lung Cancers. Sci. Transl. Med. 2012, 4, 120ra17. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Koivunen, J.; Ogino, A.; Yanagita, M.; Nikiforow, S.; Zheng, W.; Lathan, C.; Marcoux, J.P.; Du, J.; Okuda, K.; et al. A Novel ALK Secondary Mutation and EGFR Signaling Cause Resistance to ALK Kinase Inhibitors. Cancer Res. 2011, 71, 6051–6060. [Google Scholar] [CrossRef] [Green Version]
- Doebele, R.C.; Pilling, A.B.; Aisner, D.L.; Kutateladze, T.G.; Le, A.T.; Weickhardt, A.J.; Kondo, K.L.; Linderman, D.J.; Heasley, L.E.; Franklin, W.A.; et al. Mechanisms of Resistance to Crizotinib in Patients with ALK Gene Rearranged Non–Small Cell Lung Cancer. Clin. Cancer Res. 2012, 18, 1472–1482. [Google Scholar] [CrossRef] [Green Version]
- Markham, A. Brigatinib: First Global Approval. Drugs 2017, 77, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Camidge, D.R.; Kim, H.R.; Ahn, M.-J.; Yang, J.C.; Han, J.-Y.; Lee, J.S.; Hochmair, M.; Li, J.Y.-C.; Chang, G.-C.; Lee, K.H.; et al. Brigatinib versus Crizotinib in ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2027–2039. [Google Scholar] [CrossRef]
- Gettinger, S.N.; Bazhenova, L.A.; Langer, C.J.; Salgia, R.; Gold, K.A.; Rosell, R.; Shaw, A.T.; Weiss, G.J.; Tugnait, M.; Narasimhan, N.I.; et al. Activity and Safety of Brigatinib in Alk-Rearranged Non-Small-Cell Lung Cancer and Other Malignancies: A Single-Arm, Open-Label, Phase 1/2 Trial. Lancet Oncol. 2016, 17, 1683–1696. [Google Scholar] [CrossRef]
- Chong, C.R.; Bahcall, M.; Capelletti, M.; Kosaka, T.; Ercan, D.; Sim, T.; Sholl, L.M.; Nishino, M.; Johnson, B.E.; Gray, N.S.; et al. Identification of Existing Drugs That Effectively Target NTRK1 and ROS1 Rearrangements in Lung Cancer. Clin. Cancer Res. 2016, 23, 204–213. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, A.; Sobhani, N.; Bagby, S.; Casadei-Gardini, A.; Roviello, G. Cabozantinib as a Second-Line Treatment Option in Hepatocellular Carcinoma. Expert Rev. Clin. Pharmacol. 2020, 13, 1–7. [Google Scholar] [CrossRef]
- D’Angelo, A.; Bagby, S.; Di Pierro, G.; Chirra, M.; Nobili, S.; Mini, E.; Villari, D.; Roviello, G. An Overview of the Clinical Use of Cabozantinib in the Treatment of Advanced Non-Clear-Cell Renal Cell Carcinoma (NCCRCC). Crit. Rev. Oncol. 2020, 149, 102921. [Google Scholar] [CrossRef]
- Elisei, R.; Schlumberger, M.J.; Müller, S.P.; Schöffski, P.; Brose, M.S.; Shah, M.H.; Licitra, L.; Jarzab, B.; Medvedev, V.; Kreissl, M.C.; et al. Cabozantinib in Progressive Medullary Thyroid Cancer. J. Clin. Oncol. 2013, 31, 3639–3646. [Google Scholar] [CrossRef] [Green Version]
- Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.J.; Hutson, T.E.; Lee, J.-L.; Peltola, K.; et al. Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1814–1823. [Google Scholar] [CrossRef]
- Sun, T.Y.; Niu, X.; Chakraborty, A.; Neal, J.W.; Wakelee, H. Lengthy Progression-Free Survival and Intracranial Activity of Cabozantinib in Patients with Crizotinib and Ceritinib-Resistant ROS1-Positive Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2019, 14, e21–e24. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.M.; Kim, H.R.; Lee, J.S.; Lee, K.H.; Lee, Y.-G.; Min, Y.J.; Cho, E.K.; Lee, S.S.; Kim, B.-S.; Choi, M.Y.; et al. Open-Label, Multicenter, Phase II Study of Ceritinib in Patients with Non–Small-Cell Lung Cancer Harboring ROS1 Rearrangement. J. Clin. Oncol. 2017, 35, 2613–2618. [Google Scholar] [CrossRef] [PubMed]
- Crinò, L.; Ahn, M.-J.; De Marinis, F.; Groen, H.J.M.; Wakelee, H.; Hida, T.; Mok, T.; Spigel, D.; Felip, E.; Nishio, M.; et al. Multicenter Phase II Study of Whole-Body and Intracranial Activity with Ceritinib in Patients with ALK-Rearranged Non–Small-Cell Lung Cancer Previously Treated with Chemotherapy and Crizotinib: Results From ASCEND-2. J. Clin. Oncol. 2016, 34, 2866–2873. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Expanding the Roster of ROS1 Inhibitors. J. Clin. Oncol. 2017, 35, 2595–2597. [Google Scholar] [CrossRef]
- Facchinetti, F.; Tiseo, M.; Di Maio, M.; Graziano, P.; Bria, E.; Rossi, G.; Novello, S. Tackling ALK in Non-Small Cell Lung Cancer: The Role of Novel Inhibitors. Transl. Lung Cancer Res. 2016, 5, 301–321. [Google Scholar] [CrossRef] [Green Version]
- Muller, I.B.; De Langen, A.J.; Honeywell, R.J.; Giovannetti, E.; Peters, G.J. Overcoming Crizotinib Resistance in ALK-Rearranged NSCLC with the Second-Generation ALK-Inhibitor Ceritinib. Expert Rev. Anticancer. Ther. 2016, 16, 147–157. [Google Scholar] [CrossRef]
- Facchinetti, F.; Friboulet, L. Profile of Entrectinib and Its Potential in the Treatment of ROS1-Positive NSCLC: Evidence to Date. Lung Cancer 2019, 10, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Ardini, E.; Menichincheri, M.; Banfi, P.; Bosotti, R.; De Ponti, C.; Pulci, R.; Ballinari, D.; Ciomei, M.; Texido, G.; Degrassi, A.; et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol. Cancer Ther. 2016, 15, 628–639. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Offin, M.; Harnicar, S.; Li, B.T.; Drilon, A. Entrectinib: An Orally Available, Selective Tyrosine Kinase Inhibitor for the Treatment of NTRK, ROS1, and ALK Fusion-Positive Solid Tumors. Ther. Clin. Risk Manag. 2018, 14, 1247–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drilon, A.; Siena, S.; Ou, S.H.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Wheler, J.J.; Liu, S.V.; et al. Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017, 7, 400–409. [Google Scholar] [CrossRef] [Green Version]
- Drilon, A.; Siena, S.; Dziadziuszko, R.; Barlesi, F.; Krebs, M.G.; Shaw, A.T.; De Braud, F.; Rolfo, C.; Ahn, M.-J.; Wolf, J.; et al. Entrectinib in ROS1 Fusion-Positive Non-Small-Cell Lung Cancer: Integrated Analysis of Three Phase 1–2 Trials. Lancet Oncol. 2020, 21, 261–270. [Google Scholar] [CrossRef]
- Pfizer’s Next-Generation ALK/ROS1 Inhibitor, Lorlatinib, Granted Breakthrough Therapy Designation from FDA for ALK-Positive Metastatic Non-Small Cell Lung Cancer, Pfizer. Available online: https://www.pfizer.com/news/press-release/press-release/detail/pfizer_s_next_generation_alk_ros1_inhibitor_lorlatinib_granted_breakthrough_therapy_designation_from_fda_for_alk_positive_metastatic_non_small_cell_lung_cancer (accessed on 17 September 2020).
- Shaw, A.T.; Solomon, B.J.; Chiari, R.; Riely, G.J.; Besse, B.; Soo, R.A.; Kao, S.; Lin, C.-C.; Bauer, T.M.; Clancy, J.S.; et al. Lorlatinib in Advanced ROS1-Positive Non-Small-Cell Lung Cancer: A Multicentre, Open-Label, Single-Arm, Phase 1–2 Trial. Lancet Oncol. 2019, 20, 1691–1701. [Google Scholar] [CrossRef]
- Solomon, B.J.; Besse, B.; Bauer, T.M.; Felip, E.; Soo, R.A.; Camidge, D.R.; Chiari, R.; Bearz, A.; Lin, C.-C.; Gadgeel, S.M.; et al. Lorlatinib in Patients with ALK-Positive Non-Small-Cell Lung Cancer: Results from a Global Phase 2 Study. Lancet Oncol. 2018, 19, 1654–1667. [Google Scholar] [CrossRef]
- Drilon, A.; Ou, S.H.I.; Cho, B.C.; Kim, D.W.; Lee, J.; Lin, J.J.; Zhu, V.W.; Ahn, M.J.; Camidge, D.R.; Nguyen, J.; et al. Repotrectinib (Tpx-0005) is a Next-Generation ros1/Trk/Alk Inhibitor That Potently Inhibits ROS1/TRK/ALK Solvent-Front Mutations. Cancer Discov. 2018, 8, 1227–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Zhai, D.; Deng, W.; Rogers, E.; Huang, Z.; Whitten, J.; Li, Y. TPX-0005, a Novel ALK/ROS1/TRK Inhibitor, Effectively Inhibited a Broad Spectrum of Mutations Including Solvent Front ALK G1202R, ROS1 G2032R and TRKA G595R Mutants. Eur. J. Cancer 2016, 69, S32. [Google Scholar] [CrossRef]
- Cho, B.C.; Drilon, A.E.; Doebele, R.C.; Kim, D.-W.; Lin, J.J.; Lee, J.; Ahn, M.-J.; Zhu, V.W.; Ejadi, S.; Camidge, D.R.; et al. Safety and Preliminary Clinical Activity of Repotrectinib in Patients with Advanced ROS1 Fusion-Positive Non-Small Cell Lung Cancer (TRIDENT-1 Study). J. Clin. Oncol. 2019, 37, 9011. [Google Scholar] [CrossRef]
- Lovly, C.M.; Heuckmann, J.M.; De Stanchina, E.; Chen, H.; Thomas, R.K.; Liang, C.; Pao, W. Insights into ALK-Driven Cancers Revealed through Development of Novel ALK Tyrosine Kinase Inhibitors. Cancer Res. 2011, 71, 4920–4931. [Google Scholar] [CrossRef] [Green Version]
- Davare, M.A.; Saborowski, A.; Eide, C.A.; Tognon, C.; Smith, R.L.; Elferich, J.; Agarwal, A.; Tyner, J.W.; Shinde, U.P.; Lowe, S.W.; et al. Foretinib Is a Potent Inhibitor of Oncogenic ROS1 Fusion Proteins. Proc. Natl. Acad. Sci. USA 2013, 110, 19519–19524. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.T.; Friboulet, L.; Leshchiner, I.; Gainor, J.F.; Bergqvist, S.; Brooun, A.; Burke, B.J.; Deng, Y.-L.; Liu, W.; Dardaei, L.; et al. Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F. N. Engl. J. Med. 2016, 374, 54–61. [Google Scholar] [CrossRef] [Green Version]
- McCoach, C.E.; Bivona, T.G.; Blakely, C.M.; Doebele, R.C. Neoadjuvant Oncogene-Targeted Therapy in Early Stage Non–Small-Cell Lung Cancer as a Strategy to Improve Clinical Outcome and Identify Early Mechanisms of Resistance. Clin. Lung Cancer 2016, 17, 466–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.-L.; Chen, Y.-L.; Yang, S.-C.; Ho, C.-L.; Wei, F.; Wong, D.T.; Su, W.-C.; Lin, C.-C. Liquid Biopsy Genotyping in Lung Cancer: Ready for Clinical Utility? Oncotarget 2017, 8, 18590–18608. [Google Scholar] [CrossRef] [Green Version]
- Killock, D. Lorlatinib in ROS1-Positive NSCLC. Nat. Rev. Clin. Oncol. 2020, 17, 7. [Google Scholar] [CrossRef]
No | Gene | Alias | Description | Estimated Frequency in NSCLC | Reference |
---|---|---|---|---|---|
1 | CD74 | Cluster of differentiation 74 | 32–42% | [13] | |
2 | SLC34A2 | Solute carrier family 34 member 2 gene | 12–18% | [13] | |
3 | EZR | Ezrin gene | 6–15% | [2] | |
4 | TMP3 | Tropomyosin 3 gene | 3–15% | [2] | |
5 | SDC4 | Syndecan 4 gene | 7–11% | [2] | |
6 | FIG | GOPC | Fused in Glioblastoma | 2–3% | [11] |
7 | TMEM106B | Transmembrane protein 106B | 1% | [11] | |
8 | CCDC6 | Coiled-coil domain containing 6 gene | 1% | [14] | |
9 | LIMA1 | EPLIN | LIM domain and actin-binding 1 gene | 1% | [5] |
10 | WNK1 | Lysine deficient protein kinase 1 | 1% | [20] | |
11 | LRIG3 | Leucine-rich repeats and immunoglobulin-like domains 3 gene | 1% | [2] | |
12 | TDP52L1 | Tumour protein D52 like 1 gene | 1% | [11] | |
13 | CLTC | Clathrin heavy chain gene | 1% | [16] | |
14 | MSN | Moesin gene | 1% | [5] | |
15 | KDELR2 | ELP-1 ERD2.2 | Endoplasmic reticulum protein retention receptor 2 gene | 1% | [14] |
16 | MYO5C | Myosin VA (heavy chain 12, myoxin) | 1% | [19] | |
17 | TFG | TRK-fused gene | 1% | [23] | |
18 | RBPMS | RNA-binding protein with multiple splicing | 1% | [21] |
Clinical Trial Identifier | Study Design | Intervention/s | Setting | Primary Endpoint | Phase | Status |
---|---|---|---|---|---|---|
NCT03399487 | 46 Participants, Single group assignment, Non-Randomized, Open label | LDK378 (Ceritinib) | Second line | ORR | 2 | Recruiting |
NCT03972189 | 111 Participants, Single group assignment, Non-Randomized, Open label | TQ-B3101 | Second line | ORR | 2 | Recruiting |
NCT02927340 | 30 Participants, Single group assignment, Non-Randomized, Open label | Lorlatinib | First or later line | DCR | 2 | Recruiting |
NCT01639508 | 68 Participants, Single group assignment, Non-Randomized, Open label | Cabozantinib | Second line | ORR | 2 | Recruiting |
NCT01970865 | 334 Participants, Non-Randomized, Open label | PF-06463922 Crizotinib | First or later line | DLT (phase 1) OR (phase 2) | 2 | Active, not recruiting |
NCT04302025 | 60 Participants, Single group assignment, Non-Randomized, Open label | Alectinib Entrectinib Vemurafenib Cobimetinib | Second or later line | MPR | 2 | Not yet recruiting |
NCT04084717 | 50 Participants, Parallel assignment, Non-Randomized, Open label | Crizotinib | Second line | RR | 2 | Not yet recruiting |
NCT03088930 | 18 Participants, Single group assignment, Non-Randomized, Open label | Crizotinib | Second line | RR | 2 | Recruiting |
NCT03087448 | 69 Participants, Single group assignment, Non-Randomized, Open label | Ceritinib (Phase 1) Trametinib (Phase 2) | Second or later line | MTD | 1–2 | Recruiting |
NCT02183870 | 30 Participants, Single group assignment, Non-Randomized, Open label | Crizotinib | Any prior treatment | ORR | 2 | Active, not recruiting |
NCT01964157 | 32 Participants Single group assignment Non-randomized Open label | LDK378 | Second or later line | ORR | 2 | Recruiting |
NCT04292119 | 96 Participants Randomised Parallel Assignment Open label | Lorlatinib, Binimetinib, Crizotinib | Any prior treatment | MTD, OR | 1–2 | Recruiting |
NCT03608007 | 69 Participants Single group assignment Non-randomised Open label | X-396 Capsule (Ensartinib) | Second line | OR | 2 | Recruiting |
NCT03718117 | 70 Participants Cohort, Prospective | Crizotinib | Any prior treatment | Demographics | / | Active, not recruiting |
NCT04005144 | 18 Participants Non-randomized Single group assignment Open label | Brigatinib + Binimetinib | Second-line or later | AE, DLT | 1 | Recruiting |
NCT02568267 | 300 Participants Non-randomised Parallel Assignment Open label | Entrectinib | Any prior treatment | OR | 2 | Recruiting |
Technique | Advantages | Disadvantages |
---|---|---|
IHC | High sensitivity Economic Easy to use Short turnaround Low number of cells required Employed on conventional AFC | Subjective evaluation Tissue fixation procedure Antibody chemical properties |
FISH | Long time trustworthiness Reliability “Gold standard” tool | Moderately expansive Difficult to use Labour intense False-negative results |
RT-PCR | Good specificity Good sensitivity Low amount of starting material | FFPE samples only Error-prone More validation required Good quality of starting material |
NGS | Detection of novel fusions Parallel identification FFPE or biopsy specimen | More validation required Turnaround time Specimen depletion |
Mutation | ROS1 fusion | Location | Mechanism |
---|---|---|---|
D2033N | CD74-ROS1 | Kinase hinge | Modification of electrostatic forces |
G2032R | CD74-ROS1 | Kinase hinge | Steric interference |
L2026M | CD74-ROS1 | Inhibitor binding site | Hindrance of drug binding |
L2155S | SLC34A2-ROS1 | Not known | Protein malfunction |
S1986F/Y | EZR-ROS1 | Not known | Obstruction of the active site of the enzyme |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Angelo, A.; Sobhani, N.; Chapman, R.; Bagby, S.; Bortoletti, C.; Traversini, M.; Ferrari, K.; Voltolini, L.; Darlow, J.; Roviello, G. Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies. Cancers 2020, 12, 3293. https://doi.org/10.3390/cancers12113293
D’Angelo A, Sobhani N, Chapman R, Bagby S, Bortoletti C, Traversini M, Ferrari K, Voltolini L, Darlow J, Roviello G. Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies. Cancers. 2020; 12(11):3293. https://doi.org/10.3390/cancers12113293
Chicago/Turabian StyleD’Angelo, Alberto, Navid Sobhani, Robert Chapman, Stefan Bagby, Carlotta Bortoletti, Mirko Traversini, Katia Ferrari, Luca Voltolini, Jacob Darlow, and Giandomenico Roviello. 2020. "Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies" Cancers 12, no. 11: 3293. https://doi.org/10.3390/cancers12113293
APA StyleD’Angelo, A., Sobhani, N., Chapman, R., Bagby, S., Bortoletti, C., Traversini, M., Ferrari, K., Voltolini, L., Darlow, J., & Roviello, G. (2020). Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies. Cancers, 12(11), 3293. https://doi.org/10.3390/cancers12113293