Animal Modeling of Pediatric Liver Cancer
Abstract
:1. Introduction
2. Models Generated with Subcutaneous Injection of Widely Available and Patient-Derived Cell Lines
3. Models Generated with Splenic Injection of Widely Available Cell Lines
4. Intrahepatic Cell Line-Derived Xenograft Models
5. Patient-Derived Xenograft Models
6. Genetically Engineered Mouse Models
7. Models Generated with Hydrodynamic Tail Vein Injection with the Sleeping Beauty Transposon System
8. Modeling pediatric HCC and Other Rare Liver Cancers
9. Conclusions
Funding
Conflicts of Interest
References
- Allan, B.J.; Parikh, P.P.; Diaz, S.; Perez, E.A.; Neville, H.L.; Sola, J.E. Predictors of survival and incidence of hepatoblastoma in the paediatric population. HPB 2013, 15, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Lim, I.P.; Bondoc, A.J.; Geller, J.I.; Tiao, G.M. Hepatoblastoma—The Evolution of Biology, Surgery, and Transplantation. Children 2018, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Czauderna, P.; Lopez-Terrada, D.; Hiyama, E.; Häberle, B.; Malogolowkin, M.H.; Meyers, R.L. Hepatoblastoma state of the art: Pathology, genetics, risk stratification, and chemotherapy. Curr. Opin. Pediatr. 2014, 26, 19–28. [Google Scholar] [CrossRef]
- Hiyama, E. Pediatric hepatoblastoma: Diagnosis and treatment. Transl. Pediatrics 2014, 3, 293–299. [Google Scholar]
- Spector, L.G.; Birch, J. The epidemiology of hepatoblastoma. Pediatric Blood Cancer 2012, 59, 776–779. [Google Scholar] [CrossRef]
- Lupo, P.J.; Schraw, J.M.; Desrosiers, T.A.; Nembhard, W.N.; Langlois, P.H.; Canfield, M.A.; Copeland, G.; Meyer, R.E.; Brown, A.L.; Chambers, T.M.; et al. Association Between Birth Defects and Cancer Risk Among Children and Adolescents in a Population-Based Assessment of 10 Million Live Births. JAMA Oncol. 2019, 5. [Google Scholar] [CrossRef]
- Hubbard, A.K.; Spector, L.G.; Fortuna, G.; Marcotte, E.L.; Poynter, J.N. Trends in International Incidence of Pediatric Cancers in Children Under 5 Years of Age: 1988–2012. JNCI Cancer Spectr. 2019, 3, pkz007. [Google Scholar] [CrossRef] [Green Version]
- Ellerkamp, V.; Armeanu-Ebinger, S.; Wenz, J.; Warmann, S.W.; Schäfer, J.; Ruck, P.; Fuchs, J. Successful Establishment of an Orthotopic Hepatoblastoma In Vivo Model in NOD/LtSz-scid IL2Rγnull Mice. PLoS ONE 2011, 6, e23419. [Google Scholar] [CrossRef]
- Zsíros, J.; Maibach, R.; Shafford, E.; Brugieres, L.; Brock, P.; Czauderna, P.; Roebuck, D.; Childs, M.; Zimmermann, A.; Laithier, V.; et al. Successful Treatment of Childhood High-Risk Hepatoblastoma With Dose-Intensive Multiagent Chemotherapy and Surgery: Final Results of the SIOPEL-3HR Study. J. Clin. Oncol. 2010, 28, 2584–2590. [Google Scholar] [CrossRef]
- Watanabe, K. Current chemotherapeutic approaches for hepatoblastoma. Int. J. Clin. Oncol. 2013, 18, 955–961. [Google Scholar] [CrossRef]
- Sivaprakasam, P.; Gupta, A.A.; Greenberg, M.L.; Capra, M.; Nathan, P.C. Survival and long-term outcomes in children with hepatoblastoma treated with continuous infusion of cisplatin and doxorubicin. J. Pediatr. Hematol. Oncol. 2011, 33, e226–e230. [Google Scholar] [CrossRef]
- Zsiros, J.; Brugieres, L.; Brock, P.; Roebuck, D.; Maibach, R.; Zimmermann, A.; Childs, M.; Pariente, D.; Laithier, V.; Otte, J.-B.; et al. Dose-dense cisplatin-based chemotherapy and surgery for children with high-risk hepatoblastoma (SIOPEL-4): A prospective, single-arm, feasibility study. Lancet Oncol. 2013, 14, 834–842. [Google Scholar] [CrossRef] [Green Version]
- Doi, I. Establishment of a cell line and its clonal sublines from a patient with hepatoblastoma. Gan 1976, 67, 1–10. [Google Scholar]
- Tanaka, M.; Kawamura, K.; Fang, M.; Higashino, K.; Kishimoto, S.; Nakabayashi, H.; Sato, J. Production of fibronectin by HUH6 C15 cell line established from a human hepatoblastoma. Biochem. Biophys. Res. Commun. 1983, 110, 837–841. [Google Scholar] [CrossRef]
- Pietsch, T.; Fonatsch, C.; Albrecht, S.; Maschek, H.; Wolf, H.; von Schweinitz, D. Characterization of the continuous cell line HepT1 derived from a human hepatoblastoma. Lab. Investig. 1996, 74, 809–818. [Google Scholar]
- Rikhi, R.; Spady, K.K.; Hoffman, R.I.; Bateman, M.S.; Bateman, M.; Howard, L. Hepatoblastoma: A Need for Cell Lines and Tissue Banks to Develop Targeted Drug Therapies. Front. Pediatr. 2016, 4, 22. [Google Scholar] [CrossRef]
- Schnater, M.J.; Bruder, E.; Bertschin, S.; Woodtli, T.; de Theije, C.; Pietsch, T.; Aronson, D.C.; von Schweinitz, D.; Lamers, W.H.; Köhler, E.S. Subcutaneous and intrahepatic growth of human hepatoblastoma in immunodeficient mice. J. Hepatol. 2006, 45, 377–386. [Google Scholar] [CrossRef]
- Ong, L.-C.; Song, I.-C.; Jin, Y.; Kee, I.H.; Siew, E.; Yu, S.; Thng, C.-H.; Huynh, H.; Chow, P.K. Effective inhibition of xenografts of hepatocellular carcinoma (HepG2) by rapamycin and bevacizumab in an intrahepatic model. Mol. Imaging Biol. 2009, 11, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Woodfield, S.E.; Shi, Y.; Patel, R.H.; Jin, J.; Major, A.; Sarabia, S.F.; Starosolski, Z.; Zorman, B.; Gupta, S.S.; Chen, Z.; et al. A Novel Cell Line Based Orthotopic Xenograft Mouse Model That Recapitulates Human Hepatoblastoma. Sci. Rep. 2017, 7, 17751. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, J.; Schmidt, D.; Pietsch, T.; Miller, K.; von Schweinitz, D. Successful transplantation of human hepatoblastoma into immunodeficient mice. J. Pediatr. Surg. 1996, 31, 1241–1246. [Google Scholar] [CrossRef]
- Hata, Y.; Uchino, J.; Sato, K.; Sasaki, F.; Une, Y.; Naito, H.; Manabe, K.; Kuwahara, T.; Kasai, Y. Establishment of an experimental model of human hepatoblastoma. Cancer 1982, 50, 97–101. [Google Scholar] [CrossRef]
- Desdouets, C.; Fabre, M.; Gauthier, F.; Bréchot, C.; Sobczak-Thépot, J. Proliferation and differentiation of a human hepatoblastoma transplanted in the Nude mouse. J. Hepatol. 1995, 23, 569–577. [Google Scholar] [CrossRef]
- Nicolle, D.; Fabre, M.; Simon-Coma, M.; Gorse, A.; Kappler, R.; Nonell, L.; Mallo, M.; Haidar, H.; Deas, O.; Mussini, C.; et al. Patient-derived mouse xenografts from pediatric liver cancer predict tumor recurrence and advise clinical management. Hepatology 2016, 64, 1121–1135. [Google Scholar] [CrossRef] [Green Version]
- Bissig-Choisat, B.; Kettlun-Leyton, C.; Legras, X.D.; Zorman, B.; Barzi, M.; Chen, L.L.; Amin, M.D.; Huang, Y.-H.; Pautler, R.G.; Hampton, O.A.; et al. Novel patient-derived xenograft and cell line models for therapeutic testing of pediatric liver cancer. J. Hepatol. 2016, 65, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.H.; Robinton, D.A.; Seligson, M.T.; Wu, L.; Li, L.; Rakheja, D.; Comerford, S.A.; Ramezani, S.; Sun, X.; Parikh, M.S.; et al. Lin28b is sufficient to drive liver cancer and necessary for its maintenance in murine models. Cancer Cell 2014, 26, 248–261. [Google Scholar] [CrossRef] [Green Version]
- Comerford, S.A.; Hinnant, E.A.; Chen, Y.; Bansal, H.; Klapproth, S.; Rakheja, D.; Finegold, M.J.; Lopez-Terrada, D.; O’Donnell, K.A.; Tomlinson, G.E.; et al. Hepatoblastoma modeling in mice places Nrf2 within a cancer field established by mutant β-catenin. JCI Insight 2016, 1, e88549. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Finkelstein, D.; Gao, C.; Shi, L.; Wang, Y.; Lopez-Terrada, D.; Wang, K.; Utley, S.; Pounds, S.; Neale, G.; et al. Multi-organ Mapping of Cancer Risk. Cell 2016, 166, 1132–1146. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Calvisi, D.F.; Ranganathan, S.; Cigliano, A.; Zhou, L.; Singh, S.; Jiang, L.; Fan, B.; Terracciano, L.; Armeanu–Ebinger, S.; et al. Activation of β-Catenin and Yap1 in Human Hepatoblastoma and Induction of Hepatocarcinogenesis in Mice. Gastroenterology 2014, 147, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Leveille-Webster, C.; Arias, I. Establishment and serial quantification of intrahepatic xenografts of human hepatocellular carcinoma in severe combined immunodeficiency mice, and development of therapeutic strategies to overcome multidrug resistance. Clin. Cancer Res. 1996, 2, 695–706. [Google Scholar]
- Eklund, J.W.; Trifilio, S.; Mulcahy, M.F. Chemotherapy dosing in the setting of liver dysfunction. Oncol. Williston Park N. Y. 2005, 19, 1057–1063. [Google Scholar]
- Twelves, C.; Glynne-Jones, R.; Cassidy, J.; Schüller, J.; Goggin, T.; Roos, B.; Banken, L.; Utoh, M.; Weidekamm, E.; Reigner, B. Effect of hepatic dysfunction due to liver metastases on the pharmacokinetics of capecitabine and its metabolites. Clin. Cancer Res. 1999, 5, 1696–1702. [Google Scholar]
- Gao, H.; Korn, J.M.; Ferretti, S.; Monahan, J.E.; Wang, Y.; Singh, M.; Zhang, C.; Schnell, C.; Yang, G.; Zhang, Y.; et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 2015, 21, 1318–1325. [Google Scholar] [CrossRef]
- Shachaf, C.; Kopelman, A.M.; Arvanitis, C.; Karlsson, Å.; Beer, S.; Mandl, S.; Bachmann, M.H.; Borowsky, A.D.; Ruebner, B.; Cardiff, R.D.; et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004, 431, 1112–1117. [Google Scholar] [CrossRef]
- Shultz, L.D.; Ishikawa, F.; Greiner, D.L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 2007, 7, 118–130. [Google Scholar] [CrossRef]
- Marongiu, F.; Doratiotto, S.; Montisci, S.; Pani, P.; Laconi, E. Liver repopulation and carcinogenesis: Two sides of the same coin? Am. J. Pathol. 2008, 172, 857–864. [Google Scholar] [CrossRef] [Green Version]
- Sandgren, E.P.; Palmiter, R.D.; Heckel, J.L.; Daugherty, C.C.; Brinster, R.L.; Degen, J.L. Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell 1991, 66, 245–256. [Google Scholar] [CrossRef]
- Rhim, J.; Sandgren, E.; Degen, J.; Palmiter, R.; Brinster, R. Replacement of diseased mouse liver by hepatic cell transplantation. Science 1994, 263, 1149–1152. [Google Scholar] [CrossRef]
- Sandgren, E.; Palmiter, R.; Heckel, J.; Brinster, R.; Degen, J. DNA rearrangement causes hepatocarcinogenesis in albumin-plasminogen activator transgenic mice. Proc. Natl. Acad. Sci. USA 1992, 89, 11523–11527. [Google Scholar] [CrossRef] [Green Version]
- Overturf, K.; Al-Dhalimy, M.; Tanguay, R.; Brantly, M.; Ou, C.-N.; Finegold, M.; Grompe, M. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 1996, 12, 266–273. [Google Scholar] [CrossRef]
- Demers, S.I.; Russo, P.; Lettre, F.; Tanguay, R.M. Frequent mutation reversion inversely correlates with clinical severity in a genetic liver disease, hereditary tyrosinemia. Hum. Pathol. 2003, 34, 1313–1320. [Google Scholar] [CrossRef]
- Grompe, M.; Overturf, K.; Al-Dhalimy, M.; Finegold, M. Therapeutic trials in the murine model of hereditary tyrosinaemia type I: A progress report. J. Inherit. Metab. Dis 1998, 21, 518–531. [Google Scholar] [CrossRef]
- Grompe, M.; Lindstedt, S.; Al-Dhalimy, M.; Kennaway, N.G.; Papaconstantinou, J.; Torres-Ramos, C.A.; Ou, C.-N.; Finegold, M. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 1995, 10, 453–460. [Google Scholar] [CrossRef]
- Mieles, L.; Esquivel, C.; Thiel, V.D.; Koneru, B.; Makowka, L.; Tzakis, A.; Starzl, T. Liver transplantation for tyrosinemia. Digest Dis. Sci. 1990, 35, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.; Rogers, B.; Sifers, R.; Finegold, M.; Clift, S.; DeMayo, F.; Bullock, D.; Woo, S. Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J. Clin. Investig. 1989, 83, 1183–1190. [Google Scholar] [CrossRef] [Green Version]
- Giovannoni, I.; Callea, F.; Stefanelli, M.; Mariani, R.; Santorelli, F.; Francalanci, P. Alpha-1-antitrypsin deficiency: From genoma to liver disease. PiZ mouse as model for the development of liver pathology in human. Liver Int. Off. J. Int. Assoc. Study Liver 2014, 35, 198–206. [Google Scholar] [CrossRef]
- Liu, F.; Song, Y.; Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999, 6, 1258–1266. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Calvisi, D.F. Hydrodynamic transfection for generation of novel mouse models for liver cancer research. Am. J. Pathol. 2014, 184, 912–923. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Ahituv, N. The hydrodynamic tail vein assay as a tool for the study of liver promoters and enhancers. Methods Mol. Biol. 2013, 1015, 279–289. [Google Scholar]
- Li, H.; Wolfe, A.; Septer, S.; Edwards, G.; Zhong, X.; Abdulkarim, A.; Ranganathan, S.; Apte, U. Deregulation of Hippo kinase signalling in human hepatic malignancies. Liver Int. 2011, 32, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lu, J.; Edmunds, L.R.; Kulkarni, S.; Dolezal, J.; Tao, J.; Ranganathan, S.; Jackson, L.; Fromherz, M.; Beer-Stolz, D.; et al. Coordinated Activities of Multiple Myc-dependent and Myc-independent Biosynthetic Pathways in Hepatoblastoma. J. Biol. Chem. 2016, 291, 26241–26251. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Calvisi, D.F.; Kiss, A.; Cigliano, A.; Schaff, Z.; Che, L.; Ribback, S.; Dombrowski, F.; Zhao, D.; Chen, X. Central role of mTORC1 downstream of YAP/TAZ in hepatoblastoma development. Oncotarget 2017, 8, 73433–73447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, M.; Xin, B.; Watanabe, K.; Ooshio, T.; Fujii, K.; Chen, X.; Okada, Y.; Abe, H.; Taguchi, Y.; Miyokawa, N.; et al. Oncogenic Determination of a Broad Spectrum of Phenotypes of Hepatocyte-Derived Mouse Liver Tumors. Am. J. Pathol. 2017, 187, 2711–2725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Lezal, J.; Kulkarni, S.; Lu, J.; Mandel, J.; Jackson, L.E.; Alencastro, F.; Duncan, A.W.; Prochownik, E.V. Myc and ChREBP transcription factors cooperatively regulate normal and neoplastic hepatocyte proliferation in mice. J. Biol. Chem. 2018, 293, 14740–14757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, Q.; Molina, L.; Li, J.; Michael, A.O.; Russell, J.O.; Preziosi, M.E.; Singh, S.; Poddar, M.; Matz-Soja, M.; Ranganathan, S.; et al. β-Catenin and Yes-Associated Protein 1 Cooperate in Hepatoblastoma Pathogenesis. Am. J. Pathol. 2019, 189, 1091–1104. [Google Scholar] [CrossRef]
- Zhang, W.; Meyfeldt, J.; Wang, H.; Kulkarni, S.; Lu, J.; Mandel, J.A.; Marburger, B.; Liu, Y.; Gorka, J.E.; Ranganathan, S.; et al. β-Catenin mutations as determinants of hepatoblastoma phenotypes in mice. J. Biol. Chem. 2019, 294, 17524–17542. [Google Scholar] [CrossRef]
- Fausto, N.; Campbell, J. Mouse Models of Hepatocellular Carcinoma. Semin. Liver Dis. 2010, 30, 87–98. [Google Scholar] [CrossRef]
- Heindryckx, F.; Colle, I.; Vlierberghe, H. Experimental mouse models for hepatocellular carcinoma research. Int. J. Exp. Pathol. 2009, 90, 367–386. [Google Scholar] [CrossRef]
- Tao, J.; Xu, E.; Zhao, Y.; Singh, S.; Li, X.; Couchy, G.; Chen, X.; Zucman-Rossi, J.; Chikina, M.; Monga, S.P. Modeling a human hepatocellular carcinoma subset in mice through coexpression of met and point-mutant β-catenin. Hepatology 2016, 64, 1587–1605. [Google Scholar] [CrossRef]
- Cairo, S.; Armengol, C.; Reynies, A.; Wei, Y.; Thomas, E.; Renard, C.-A.; Goga, A.; Balakrishnan, A.; Semeraro, M.; Gresh, L.; et al. Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer. Cancer Cell 2008, 14, 471–484. [Google Scholar] [CrossRef]
- Khanna, R.; Verma, S. Pediatric hepatocellular carcinoma. World J. Gastroenterol. 2018, 24, 3980–3999. [Google Scholar] [CrossRef]
- Yuri, T.; Danbara, N.; Shikata, N.; Fujimoto, S.; Nakano, T.; Sakaida, N.; Uemura, Y.; Tsubura, A. Malignant rhabdoid tumor of the liver: Case report and literature review. Pathol. Int. 2004, 54, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Garvin, A.; Re, G.; Tarnowski, B.; Hazen-Martin, D.; Sens, D. The G401 cell line, utilized for studies of chromosomal changes in Wilms’ tumor, is derived from a rhabdoid tumor of the kidney. Am. J. Pathol. 1993, 142, 375–380. [Google Scholar] [PubMed]
- Knutson, S.K.; Warholic, N.M.; Wigle, T.J.; Klaus, C.R.; Allain, C.J.; Raimondi, A.; Scott, M.; Chesworth, R.; Moyer, M.P.; Copeland, R.A.; et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc. Natl. Acad. Sci. USA 2013, 110, 7922–7927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soffer, S.Z.; Kim, E.; Huang, J.; McCrudden, K.; Yokoi, A.; Moore, J.T.; Manley, C.; O’Toole, K.; Middlesworth, W.; Stolar, C.; et al. Resistance of a VEGF-producing tumor to anti-VEGF antibody: Unimpeded growth of human rhabdoid tumor xenografts. J. Pediatr. Surg. 2002, 37, 528–532. [Google Scholar] [CrossRef]
- Houghton, P.J.; Morton, C.L.; Tucker, C.; Payne, D.; Favours, E.; Cole, C.; Gorlick, R.; Kolb, A.E.; Zhang, W.; Lock, R.; et al. The pediatric preclinical testing program: Description of models and early testing results. Pediatr. Blood Cancer 2006, 49, 928–940. [Google Scholar] [CrossRef]
- Falk, H.; Herbert, J.; Crowley, S.; Ishak, K.G.; Thomas, L.B.; Popper, H.; Caldwell, G.G. Epidemiology of Hepatic Angiosarcoma in the United States: 1964–1974. Environ. Health Perspect. 1981, 41, 107. [Google Scholar] [CrossRef]
- Abraham, J.A.; Hornicek, F.J.; Kaufman, A.M.; Harmon, D.C.; Springfield, D.S.; Raskin, K.A.; Mankin, H.J.; Kirsch, D.G.; Rosenberg, A.E.; Nielsen, P.G.; et al. Treatment and Outcome of 82 Patients with Angiosarcoma. Ann. Surg. Oncol. 2007, 14, 1953–1967. [Google Scholar] [CrossRef]
- Dill, M.T.; Rothweiler, S.; Djonov, V.; Hlushchuk, R.; Tornillo, L.; Terracciano, L.; Meili-Butz, S.; Radtke, F.; Heim, M.H.; Semela, D. Disruption of Notch1 induces vascular remodeling, intussusceptive angiogenesis, and angiosarcomas in livers of mice. Gastroenterology 2012, 142, 967–977. [Google Scholar] [CrossRef]
- Rothweiler, S.; Dill, M.T.; Terracciano, L.; Makowska, Z.; Quagliata, L.; Hlushchuk, R.; Djonov, V.; Heim, M.H.; Semela, D. Generation of a murine hepatic angiosarcoma cell line and reproducible mouse tumor model. Lab. Investig. 2014, 95, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Techavichit, P.; Masand, P.M.; Himes, R.W.; Abbas, R.; Goss, J.A.; Vasudevan, S.A.; Finegold, M.J.; Heczey, A. Undifferentiated Embryonal Sarcoma of the Liver (UESL): A Single-Center Experience and Review of the Literature. J. Pediatr. Hematol. Oncol. 2016, 38, 261–268. [Google Scholar] [CrossRef]
Model | Attributes | Deficits | Primary References |
---|---|---|---|
Subcutaneous model | Tumors easily implanted and monitored | Model does not accurately recapitulate tumor microenvironment and vascularization | [15,17] |
Splenic injection model | First published model of intrahepatic tumorigenesis | Tumors grow as small, multifocal nodules, which makes quantifying tumor burden difficult | [8,17] |
Intrahepatic model | Tumors recapitulate liver microenvironment and show expression of genes and proteins indicative of standard disease | Use of cell lines grown extensively in vitro | [18,19] |
Subcutaneous PDX model | Fresh patient samples more closely resemble primary disease | Model does not accurately recapitulate tumor microenvironment and vascularization | [20,21,22,23] |
Intrahepatic PDX model | Fresh patient samples closely resemble primary disease and tumors recapitulate liver microenvironment | Limited access to patient samples for model generation | [24] |
LIN28B GEM model | Use of immunocompetent animals and specific exploration of LIN28B | Only models LIN28B overexpressing tumors | [25] |
myc/CTNNB1 GEM model | Use of immunocompetent animals and specific exploration of myc and CTNNB1 | Less than half of animals develop tumors and most do not survive long after birth for further studies | [26] |
Prom1 Cre-recombination GEM model | Facilitates studies of tumor initiation during development | Not a liver-specific GEM model | [27] |
CTNNB1/Yap-1 hydrodynamic tail vein injection/Sleeping Beauty transposon model | Manipulation of genes of interest without the work required for generation of a GEM model | Most animals develop nodules that eventually encompass the entire liver with tumor, which may make quantifying tumor burden difficult | [28] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitlock, R.S.; Yang, T.; Vasudevan, S.A.; Woodfield, S.E. Animal Modeling of Pediatric Liver Cancer. Cancers 2020, 12, 273. https://doi.org/10.3390/cancers12020273
Whitlock RS, Yang T, Vasudevan SA, Woodfield SE. Animal Modeling of Pediatric Liver Cancer. Cancers. 2020; 12(2):273. https://doi.org/10.3390/cancers12020273
Chicago/Turabian StyleWhitlock, Richard S., Tianyou Yang, Sanjeev A. Vasudevan, and Sarah E. Woodfield. 2020. "Animal Modeling of Pediatric Liver Cancer" Cancers 12, no. 2: 273. https://doi.org/10.3390/cancers12020273
APA StyleWhitlock, R. S., Yang, T., Vasudevan, S. A., & Woodfield, S. E. (2020). Animal Modeling of Pediatric Liver Cancer. Cancers, 12(2), 273. https://doi.org/10.3390/cancers12020273