Patient-Derived Xenograft Models in Urological Malignancies: Urothelial Cell Carcinoma and Renal Cell Carcinoma
Abstract
:1. Introduction
2. Experimental Procedures in PDX Engraftment
2.1. Host Animal Selection
2.2. Tumor Specimen Collection and Preservation
2.3. Heterotopic Subcutaneous Engraftment
2.4. Orthotopic Engraftment
2.5. Advanced/Metastatic Disease Models
2.6. Success Rates of Engraftment
3. In Vivo Therapy Response
3.1. Comparable Histology
3.2. Retained Molecular Characteristics
3.3. Correlation with Therapy Response and Chemosensitivity
3.4. Future Directions
4. Limitations
4.1. Immunotherapy Testing
4.2. Xenotropic Murine-Derived Viral Infection
4.3. Intratumoral Heterogeneity
5. Alternative Patient-Derived Models: Organoids
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NSG | NOD (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) scid gamma |
NAC | neoadjuvant chemotherapy |
PDX | patient-derived xenograft |
RCC | renal cell carcinoma |
Scid | severe-combined immune deficiency |
UTUC | upper tract urothelial carcinoma |
References
- Tentler, J.J.; Tan, A.C.; Weekes, C.D.; Jimeno, A.; Leong, S.; Pitts, T.M.; Arcaroli, J.J.; Messersmith, W.A.; Eckhardt, S.G. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012, 9, 338–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidalgo, M.; Amant, F.; Biankin, A.V.; Budinska, E.; Byrne, A.T.; Caldas, C.; Clarke, R.B.; de Jong, S.; Jonkers, J.; Maelandsmo, G.M.; et al. Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 2014, 4, 998–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirone, P.; Andresen, C.J.; Eswaraka, J.R.; Lappin, P.B.; Bagi, C.M. Patient-derived xenografts reveal limits to PI3K/mTOR- and MEK-mediated inhibition of bladder cancer. Cancer Chemother. Pharmacol. 2014, 73, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Rygaard, J.; Povlsen, C.O. Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol. Microbiol. Scand. 1969, 77, 758–760. [Google Scholar] [CrossRef] [PubMed]
- Sufrin, G.; McGarry, M.P.; Sandberg, A.A.; Murphy, G.P. Heterotransplantation of human transitional cell carcinoma in athymic mice. J. Urol. 1979, 121, 159–161. [Google Scholar] [CrossRef]
- Naito, S.; Iwakawa, A.; Tanaka, K.; Momose, S.; Hirata, K.; Emoto, K.; Sakamoto, K.; Hara, S. Heterotransplantation of human urinary bladder cancers in nude mice. Investig. Urol. 1981, 18, 285–288. [Google Scholar]
- Katsuoka, Y.; Baba, S.; Hata, M.; Tazaki, H. Transplantation of human renal cell carcinoma to the nude mice: As an intermediate of in vivo and in vitro studies. J. Urol. 1976, 115, 373–376. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Dieleman, J.; Campbell, M.; Chapin, A.; Eldrenkamp, E.; Fan, V.Y.; Haakenstad, A.; Kates, J.; Liu, Y.; Matyasz, T.; Micah, A.; et al. Evolution and patterns of global health financing 1995–2014: Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries. Lancet 2017, 389, 1981–2004. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.M.; Decastro, G.J.; Steinberg, G.D.; Medscape. Urothelial carcinoma of the bladder: Definition, treatment and future efforts. Nat. Rev. Urol. 2011, 8, 631–642. [Google Scholar] [CrossRef]
- Berdik, C. Unlocking bladder cancer. Nature 2017, 551, S34–S35. [Google Scholar] [CrossRef] [PubMed]
- Zarrabi, K.; Paroya, A.; Wu, S. Emerging therapeutic agents for genitourinary cancers. J. Hematol. Oncol. 2019, 12, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von der Maase, H.; Hansen, S.W.; Roberts, J.T.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Bodrogi, I.; Albers, P.; Knuth, A.; Lippert, C.M.; et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: Results of a large, randomized, multinational, multicenter, phase III study. J. Clin. Oncol. 2000, 18, 3068–3077. [Google Scholar] [CrossRef]
- American Cancer Society. Cancer Facts & Figures; American Cancer Society: Atlanta, GA, USA, 2008. [Google Scholar]
- Okada, S.; Vaeteewoottacharn, K.; Kariya, R. Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models. Cells 2019, 8, 889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taghian, A.; Budach, W.; Zietman, A.; Freeman, J.; Gioioso, D.; Ruka, W.; Suit, H.D. Quantitative comparison between the transplantability of human and murine tumors into the subcutaneous tissue of NCr/Sed-nu/nu nude and severe combined immunodeficient mice. Cancer Res. 1993, 53, 5012–5017. [Google Scholar] [PubMed]
- Shultz, L.D.; Goodwin, N.; Ishikawa, F.; Hosur, V.; Lyons, B.L.; Greiner, D.L. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb. Protoc. 2014, 2014, 694–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavia-Jimenez, A.; Tcheuyap, V.T.; Brugarolas, J. Establishing a human renal cell carcinoma tumorgraft platform for preclinical drug testing. Nat. Protoc. 2014, 9, 1848–1859. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T.; Terada, N.; Kobayashi, T.; Ogawa, O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat. Rev. Urol. 2017, 14, 267–283. [Google Scholar] [CrossRef]
- Kato, C.; Fujii, E.; Chen, Y.J.; Endaya, B.B.; Matsubara, K.; Suzuki, M.; Ohnishi, Y.; Tamaoki, N. Spontaneous thymic lymphomas in the non-obese diabetic/Shi-scid, IL-2R gamma (null) mouse. Lab. Anim. 2009, 43, 402–404. [Google Scholar] [CrossRef] [Green Version]
- Tillman, H.; Janke, L.J.; Funk, A.; Vogel, P.; Rehg, J.E. Morphologic and Immunohistochemical Characterization of Spontaneous Lymphoma/Leukemia in NSG Mice. Vet. Pathol. 2019, 57, 160–171. [Google Scholar] [CrossRef]
- Radaelli, E.; Hermans, E.; Omodho, L.; Francis, A.; Vander Borght, S.; Marine, J.C.; van den Oord, J.; Amant, F. Spontaneous Post-Transplant Disorders in NOD.Cg- Prkdcscid Il2rgtm1Sug/JicTac (NOG) Mice Engrafted with Patient-Derived Metastatic Melanomas. PLoS ONE 2015, 10, e0124974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thong, A.E.; Zhao, H.; Ingels, A.; Valta, M.P.; Nolley, R.; Santos, J.; Young, S.R.; Peehl, D.M. Tissue slice grafts of human renal cell carcinoma: An authentic preclinical model with high engraftment rate and metastatic potential. Urol. Oncol. 2014, 32, e23–e30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanics, T.; Bergquist, J.R.; Liu, G.; Kim, M.P.; Kang, Y.; Katz, M.H.; Perez, M.V.R.; Thomas, R.M.; Fleming, J.B.; Truty, M.J. Patient-derived xenograft cryopreservation and reanimation outcomes are dependent on cryoprotectant type. Lab. Investig. 2018, 98, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Porter, L.H.; Lawrence, M.G.; Wang, H.; Clark, A.K.; Bakshi, A.; Obinata, D.; Goode, D.; Papargiris, M.; Clouston, D.; Ryan, A.; et al. Establishing a cryopreservation protocol for patient-derived xenografts of prostate cancer. Prostate 2019, 79, 1326–1337. [Google Scholar] [CrossRef]
- Hoffman, R.M. Patient-derived orthotopic xenografts: Better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 2015, 15, 451–452. [Google Scholar] [CrossRef]
- Linxweiler, J.; Korbel, C.; Muller, A.; Jungel, E.; Blaheta, R.; Heinzelmann, J.; Stockle, M.; Junker, K.; Menger, M.D.; Saar, M. Experimental imaging in orthotopic renal cell carcinoma xenograft models: Comparative evaluation of high-resolution 3D ultrasonography, in-vivo micro-CT and 9.4T MRI. Sci. Rep. 2017, 7, 14249. [Google Scholar] [CrossRef] [Green Version]
- Lorenzatti Hiles, G.; Cates, A.L.; El-Sawy, L.; Day, K.C.; Broses, L.J.; Han, A.L.; Briggs, H.L.; Emamdjomeh, A.; Chou, A.; Abel, E.V.; et al. A surgical orthotopic approach for studying the invasive progression of human bladder cancer. Nat. Protoc. 2019, 14, 738–755. [Google Scholar] [CrossRef]
- Gills, J.; Moret, R.; Zhang, X.; Nelson, J.; Maresh, G.; Hellmers, L.; Canter, D.; Hudson, M.; Halat, S.; Matrana, M.; et al. A patient-derived orthotopic xenograft model enabling human high-grade urothelial cell carcinoma of the bladder tumor implantation, growth, angiogenesis, and metastasis. Oncotarget 2018, 9, 32718–32729. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.; Patel, A.; Heston, W.; Larchian, W. Mouse orthotopic models for bladder cancer research. BJU Int. 2009, 104, 1286–1291. [Google Scholar] [CrossRef]
- Tatum, J.L.; Kalen, J.D.; Jacobs, P.M.; Ileva, L.V.; Riffle, L.A.; Hollingshead, M.G.; Doroshow, J.H. A spontaneously metastatic model of bladder cancer: Imaging characterization. J. Transl. Med. 2019, 17, 425. [Google Scholar] [CrossRef] [Green Version]
- Sivanand, S.; Pena-Llopis, S.; Zhao, H.; Kucejova, B.; Spence, P.; Pavia-Jimenez, A.; Yamasaki, T.; McBride, D.J.; Gillen, J.; Wolff, N.C.; et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci. Transl. Med. 2012, 4, 137–175. [Google Scholar] [CrossRef] [Green Version]
- Grisanzio, C.; Seeley, A.; Chang, M.; Collins, M.; Di Napoli, A.; Cheng, S.C.; Percy, A.; Beroukhim, R.; Signoretti, S. Orthotopic xenografts of RCC retain histological, immunophenotypic and genetic features of tumours in patients. J. Pathol. 2011, 225, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, C.; Costa, C.; Sousa, N.; Amado, F.; Santos, L. Patient-derived bladder cancer xenografts: A systematic review. Transl. Res. 2015, 166, 324–331. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Taylor, R.A.; Toivanen, R.; Pedersen, J.; Norden, S.; Pook, D.W.; Frydenberg, M.; Papargiris, M.M.; Niranjan, B.; Richards, M.G.; et al. A preclinical xenograft model of prostate cancer using human tumors. Nat. Protoc. 2013, 8, 836–848. [Google Scholar] [CrossRef]
- Abe, T.; Tada, M.; Shinohara, N.; Okada, F.; Itoh, T.; Hamada, J.; Harabayashi, T.; Chen, Q.; Moriuchi, T.; Nonomura, K. Establishment and characterization of human urothelial cancer xenografts in severe combined immunodeficient mice. Int. J. Urol. 2006, 13, 47–57. [Google Scholar] [CrossRef]
- Sfakianos, J.P.; Cha, E.K.; Iyer, G.; Scott, S.N.; Zabor, E.C.; Shah, R.H.; Ren, Q.; Bagrodia, A.; Kim, P.H.; Hakimi, A.A.; et al. Genomic Characterization of Upper Tract Urothelial Carcinoma. Eur. Urol. 2015, 68, 970–977. [Google Scholar] [CrossRef] [Green Version]
- Audenet, F.; Isharwal, S.; Cha, E.K.; Donoghue, M.T.A.; Drill, E.N.; Ostrovnaya, I.; Pietzak, E.J.; Sfakianos, J.P.; Bagrodia, A.; Murugan, P.; et al. Clonal Relatedness and Mutational Differences between Upper Tract and Bladder Urothelial Carcinoma. Clin. Cancer Res. 2019, 25, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Gengenbacher, N.; Singhal, M.; Augustin, H.G. Preclinical mouse solid tumour models: Status quo, challenges and perspectives. Nat. Rev. Cancer 2017, 17, 751–765. [Google Scholar] [CrossRef]
- Byrne, A.T.; Alferez, D.G.; Amant, F.; Annibali, D.; Arribas, J.; Biankin, A.V.; Bruna, A.; Budinska, E.; Caldas, C.; Chang, D.K.; et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 2017, 17, 254–268. [Google Scholar] [CrossRef]
- Pan, C.X.; Zhang, H.; Tepper, C.G.; Lin, T.Y.; Davis, R.R.; Keck, J.; Ghosh, P.M.; Gill, P.; Airhart, S.; Bult, C.; et al. Development and Characterization of Bladder Cancer Patient-Derived Xenografts for Molecularly Guided Targeted Therapy. PLoS ONE 2015, 10, e0134346. [Google Scholar] [CrossRef]
- Rubio-Viqueira, B.; Hidalgo, M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin. Pharmacol. Ther. 2009, 85, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Daniel, V.C.; Marchionni, L.; Hierman, J.S.; Rhodes, J.T.; Devereux, W.L.; Rudin, C.M.; Yung, R.; Parmigiani, G.; Dorsch, M.; Peacock, C.D.; et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 2009, 69, 3364–3373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-David, U.; Ha, G.; Tseng, Y.Y.; Greenwald, N.F.; Oh, C.; Shih, J.; McFarland, J.M.; Wong, B.; Boehm, J.S.; Beroukhim, R.; et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 2017, 49, 1567–1575. [Google Scholar] [CrossRef] [Green Version]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556. [Google Scholar] [CrossRef]
- Hakimi, A.A.; Voss, M.H.; Kuo, F.; Sanchez, A.; Liu, M.; Nixon, B.G.; Vuong, L.; Ostrovnaya, I.; Chen, Y.B.; Reuter, V.; et al. Transcriptomic Profiling of the Tumor Microenvironment Reveals Distinct Subgroups of Clear Cell Renal Cell Cancer: Data from a Randomized Phase III Trial. Cancer Discov. 2019, 9, 510–525. [Google Scholar] [CrossRef] [Green Version]
- Beuselinck, B.; Job, S.; Becht, E.; Karadimou, A.; Verkarre, V.; Couchy, G.; Giraldo, N.; Rioux-Leclercq, N.; Molinie, V.; Sibony, M.; et al. Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clin. Cancer Res. 2015, 21, 1329–1339. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Lu, R.; Kapur, P.; Jaiswal, B.S.; Hannan, R.; Zhang, Z.; Pedrosa, I.; Luke, J.J.; Zhang, H.; Goldstein, L.D.; et al. An Empirical Approach Leveraging Tumorgrafts to Dissect the Tumor Microenvironment in Renal Cell Carcinoma Identifies Missing Link to Prognostic Inflammatory Factors. Cancer Discov. 2018, 8, 1142–1155. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Cohen, S.; Moret, R.; Maresh, G.; Gobe, G.C.; Li, L. Patient-derived xenograft models to optimize kidney cancer therapies. Transl. Androl. Urol. 2019, 8, S156–S165. [Google Scholar] [CrossRef]
- Schueler, J.; Klingner, K.; Bug, D.; Zoeller, C.; Maier, A.; Dong, M.; Willecke, K.; Peille, A.L.; Steiner, E.; Landesfeind, M.; et al. Patient derived renal cell carcinoma xenografts exhibit distinct sensitivity patterns in response to antiangiogenic therapy and constitute a suitable tool for biomarker development. Oncotarget 2018, 9, 30946–30961. [Google Scholar] [CrossRef]
- Elbanna, M.; Orillion, A.R.; Damayanti, N.P.; Adelaiye-Ogala, R.; Shen, L.; Miles, K.M.; Chintala, S.; Ciamporcero, E.; Ramakrishnan, S.; Ku, S.Y.; et al. Dual inhibition of angiopoietin-TIE2 and MET alters the tumor microenvironment and prolongs survival in a metastatic model of renal cell carcinoma. Mol. Cancer Ther. 2019. [Google Scholar] [CrossRef] [Green Version]
- Adelaiye-Ogala, R.; Damayanti, N.P.; Orillion, A.R.; Arisa, S.; Chintala, S.; Titus, M.A.; Kao, C.; Pili, R. Therapeutic Targeting of Sunitinib-Induced AR Phosphorylation in Renal Cell Carcinoma. Cancer Res. 2018, 78, 2886–2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damayanti, N.P.; Budka, J.A.; Khella, H.W.Z.; Ferris, M.W.; Ku, S.Y.; Kauffman, E.; Wood, A.C.; Ahmed, K.; Chintala, V.N.; Adelaiye-Ogala, R.; et al. Therapeutic Targeting of TFE3/IRS-1/PI3K/mTOR Axis in Translocation Renal Cell Carcinoma. Clin. Cancer Res. 2018, 24, 5977–5989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Nolley, R.; Chan, A.M.W.; Rankin, E.B.; Peehl, D.M. Cabozantinib inhibits tumor growth and metastasis of a patient-derived xenograft model of papillary renal cell carcinoma with MET mutation. Cancer Biol. Ther. 2017, 18, 863–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelaiye-Ogala, R.; Budka, J.; Damayanti, N.P.; Arrington, J.; Ferris, M.; Hsu, C.C.; Chintala, S.; Orillion, A.; Miles, K.M.; Shen, L.; et al. EZH2 Modifies Sunitinib Resistance in Renal Cell Carcinoma by Kinome Reprogramming. Cancer Res. 2017, 77, 6651–6666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bialucha, C.U.; Collins, S.D.; Li, X.; Saxena, P.; Zhang, X.; Durr, C.; Lafont, B.; Prieur, P.; Shim, Y.; Mosher, R.; et al. Discovery and Optimization of HKT288, a Cadherin-6-Targeting ADC for the Treatment of Ovarian and Renal Cancers. Cancer Discov. 2017, 7, 1030–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Manley, B.J.; Becerra, M.F.; Redzematovic, A.; Casuscelli, J.; Tennenbaum, D.M.; Reznik, E.; Han, S.; Benfante, N.; Chen, Y.B.; et al. Tumor Xenografts of Human Clear Cell Renal Cell Carcinoma But Not Corresponding Cell Lines Recapitulate Clinical Response to Sunitinib: Feasibility of Using Biopsy Samples. Eur. Urol. Focus 2017, 3, 590–598. [Google Scholar] [CrossRef]
- Hong, B.; Yang, Y.; Guo, S.; Duoerkun, S.; Deng, X.; Chen, D.; Yu, S.; Qian, W.; Li, Q.; Li, Q.; et al. Intra-tumour molecular heterogeneity of clear cell renal cell carcinoma reveals the diversity of the response to targeted therapies using patient-derived xenograft models. Oncotarget 2017, 8, 49839–49850. [Google Scholar] [CrossRef]
- Chen, W.; Hill, H.; Christie, A.; Kim, M.S.; Holloman, E.; Pavia-Jimenez, A.; Homayoun, F.; Ma, Y.; Patel, N.; Yell, P.; et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 2016, 539, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Montero, C.M.; Mao, F.J.; Barnard, J.; Parker, Y.; Zamanian-Daryoush, M.; Pink, J.J.; Finke, J.H.; Rini, B.I.; Lindner, D.J. MEK inhibition abrogates sunitinib resistance in a renal cell carcinoma patient-derived xenograft model. Br. J. Cancer 2016, 115, 920–928. [Google Scholar] [CrossRef] [Green Version]
- Lang, H.; Beraud, C.; Bethry, A.; Danilin, S.; Lindner, V.; Coquard, C.; Rothhut, S.; Massfelder, T. Establishment of a large panel of patient-derived preclinical models of human renal cell carcinoma. Oncotarget 2016, 7, 59336–59359. [Google Scholar] [CrossRef] [Green Version]
- Adelaiye, R.; Ciamporcero, E.; Miles, K.M.; Sotomayor, P.; Bard, J.; Tsompana, M.; Conroy, D.; Shen, L.; Ramakrishnan, S.; Ku, S.Y.; et al. Sunitinib dose escalation overcomes transient resistance in clear cell renal cell carcinoma and is associated with epigenetic modifications. Mol. Cancer Ther. 2015, 14, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Ciamporcero, E.; Miles, K.M.; Adelaiye, R.; Ramakrishnan, S.; Shen, L.; Ku, S.; Pizzimenti, S.; Sennino, B.; Barrera, G.; Pili, R. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol. Cancer Ther. 2015, 14, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuller, A.G.; Barry, E.R.; Jones, R.D.; Henry, R.E.; Frigault, M.M.; Beran, G.; Linsenmayer, D.; Hattersley, M.; Smith, A.; Wilson, J.; et al. The MET Inhibitor AZD6094 (Savolitinib, HMPL-504) Induces Regression in Papillary Renal Cell Carcinoma Patient-Derived Xenograft Models. Clin. Cancer Res. 2015, 21, 2811–2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, K.M.; Seshadri, M.; Ciamporcero, E.; Adelaiye, R.; Gillard, B.; Sotomayor, P.; Attwood, K.; Shen, L.; Conroy, D.; Kuhnert, F.; et al. Dll4 blockade potentiates the anti-tumor effects of VEGF inhibition in renal cell carcinoma patient-derived xenografts. PLoS ONE 2014, 9, e112371. [Google Scholar] [CrossRef] [PubMed]
- Ingels, A.; Zhao, H.; Thong, A.E.; Saar, M.; Valta, M.P.; Nolley, R.; Santos, J.; Peehl, D.M. Preclinical trial of a new dual mTOR inhibitor, MLN0128, using renal cell carcinoma tumorgrafts. Int. J. Cancer 2014, 134, 2322–2329. [Google Scholar] [CrossRef] [PubMed]
- Karam, J.A.; Zhang, X.Y.; Tamboli, P.; Margulis, V.; Wang, H.; Abel, E.J.; Culp, S.H.; Wood, C.G. Development and characterization of clinically relevant tumor models from patients with renal cell carcinoma. Eur. Urol. 2011, 59, 619–628. [Google Scholar] [CrossRef]
- Hammers, H.J.; Verheul, H.M.; Salumbides, B.; Sharma, R.; Rudek, M.; Jaspers, J.; Shah, P.; Ellis, L.; Shen, L.; Paesante, S.; et al. Reversible epithelial to mesenchymal transition and acquired resistance to sunitinib in patients with renal cell carcinoma: Evidence from a xenograft study. Mol. Cancer Ther. 2010, 9, 1525–1535. [Google Scholar] [CrossRef] [Green Version]
- Zargar, H.; Espiritu, P.N.; Fairey, A.S.; Mertens, L.S.; Dinney, C.P.; Mir, M.C.; Krabbe, L.M.; Cookson, M.S.; Jacobsen, N.E.; Gandhi, N.M.; et al. Multicenter assessment of neoadjuvant chemotherapy for muscle-invasive bladder cancer. Eur. Urol. 2015, 67, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Russell, P.J.; Raghavan, D.; Gregory, P.; Philips, J.; Wills, E.J.; Jelbart, M.; Wass, J.; Zbroja, R.A.; Vincent, P.C. Bladder cancer xenografts: A model of tumor cell heterogeneity. Cancer Res. 1986, 46, 2035–2040. [Google Scholar]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef]
- Jager, W.; Xue, H.; Hayashi, T.; Janssen, C.; Awrey, S.; Wyatt, A.W.; Anderson, S.; Moskalev, I.; Haegert, A.; Alshalalfa, M.; et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget 2015, 6, 21522–21532. [Google Scholar] [CrossRef] [Green Version]
- Blinova, E.; Roshchin, D.; Kogan, E.; Samishina, E.; Demura, T.; Deryabina, O.; Suslova, I.; Blinov, D.; Zhdanov, P.; Osmanov, U.; et al. Patient-Derived Non-Muscular Invasive Bladder Cancer Xenografts of Main Molecular Subtypes of the Tumor for Anti-Pd-l1 Treatment Assessment. Cells 2019, 8, 526. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.X.; Zhu, Y.; Ma, A.H.; Yu, W.; Zhang, H.; Lin, T.Y.; Shi, W.; Tepper, C.G.; Henderson, P.T.; Airhart, S.; et al. The Phosphatidylinositol 3-Kinase Pathway as a Potential Therapeutic Target in Bladder Cancer. Clin. Cancer Res. 2017, 23, 6580–6591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ler, L.D.; Ghosh, S.; Chai, X.; Thike, A.A.; Heng, H.L.; Siew, E.Y.; Dey, S.; Koh, L.K.; Lim, J.Q.; Lim, W.K.; et al. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Chintala, S.; Ciamporcero, E.; Ramakrishnan, S.; Elbanna, M.; Wang, J.; Hu, Q.; Glenn, S.T.; Murakami, M.; Liu, L.; et al. Genomic profiling is predictive of response to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts. Oncotarget 2016, 7, 76374–76389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, N.; Lee, H.W.; Lim, J.E.; Jeong, D.E.; Song, H.J.; Kim, S.; Nam, D.H.; Sung, H.H.; Jeong, B.C.; Seo, S.I.; et al. Establishment and antitumor effects of dasatinib and PKI-587 in BD-138T, a patient-derived muscle invasive bladder cancer preclinical platform with concomitant EGFR amplification and PTEN deletion. Oncotarget 2016, 7, 51626–51639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, A.; Zhang, H.; Li, Y.; Lin, T.Y.; Wang, F.; Lee, J.; Cheng, M.; Dall’Era, M.; Li, T.; deVere White, R.; et al. Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer. Nanotechnology 2016, 27, 425103. [Google Scholar] [CrossRef]
- Ciamporcero, E.; Shen, H.; Ramakrishnan, S.; Yu Ku, S.; Chintala, S.; Shen, L.; Adelaiye, R.; Miles, K.M.; Ullio, C.; Pizzimenti, S.; et al. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 2016, 35, 1541–1553. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Lv, J.; Chang, S.; Chen, Z.; Lu, W.; Xu, C.; Liu, M.; Pang, X. Inhibiting cytoplasmic accumulation of HuR synergizes genotoxic agents in urothelial carcinoma of the bladder. Oncotarget 2016, 7, 45249–45262. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yao, L.C.; Cheng, M.; Cai, D.; Martinek, J.; Pan, C.X.; Shi, W.; Ma, A.H.; De Vere White, R.W.; Airhart, S.; et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J. 2018, 32, 1537–1549. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Wang, J.; Liu, W.N.; Zhao, Y. Cancer Immunotherapies and Humanized Mouse Drug Testing Platforms. Transl. Oncol. 2019, 12, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.; Fan, H. The saga of XMRV: A virus that infects human cells but is not a human virus. Emerg. Microbes Infect. 2014, 3. [Google Scholar] [CrossRef] [PubMed]
- Naseer, A.; Terry, A.; Gilroy, K.; Kilbey, A.; Watts, C.; Mackay, N.; Bell, M.; Mason, S.; Blyth, K.; Cameron, E.; et al. Frequent infection of human cancer xenografts with murine endogenous retroviruses in vivo. Viruses 2015, 7, 2014–2029. [Google Scholar] [CrossRef]
- Bock, S.; Mullins, C.S.; Klar, E.; Perot, P.; Maletzki, C.; Linnebacher, M. Murine Endogenous Retroviruses Are Detectable in Patient-Derived Xenografts but Not in Patient-Individual Cell Lines of Human Colorectal Cancer. Front. Microbiol. 2018, 9, 789. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Hu, W.; Matulay, J.T.; Silva, M.V.; Owczarek, T.B.; Kim, K.; Chua, C.W.; Barlow, L.J.; Kandoth, C.; Williams, A.B.; et al. Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer. Cell 2018, 173, 515–528.e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullenders, J.; de Jongh, E.; Brousali, A.; Roosen, M.; Blom, J.P.A.; Begthel, H.; Korving, J.; Jonges, T.; Kranenburg, O.; Meijer, R.; et al. Mouse and human urothelial cancer organoids: A tool for bladder cancer research. Proc. Natl. Acad. Sci. USA 2019, 116, 4567–4574. [Google Scholar] [CrossRef] [Green Version]
Study Name | Cancer Type | PDX Tumor Models | Graft Location | PDX Line | Targets | Drugs/Therapies |
---|---|---|---|---|---|---|
Elbanna et al. (2019) [51] | Clear cell renal cell carcinoma | 3 | Orthotopic and subcutaneous heterotopic | RP-R-01, RP-R-02, and RP-R02LM | Angiopoietin 1/2, MET kinase | Trebananib (angiopoietin 1/2 inhibitor), MET kinase inhibitor |
Schueler et al. (2018) [50] | Clear cell, papillary, chromophobe renal cell carcinoma | 44 | Subcutaneous heterotopic | Institutional: University Hospital Frankfurt | VEGF, VHL-associated targets, mTOR | Sunitinib, pazopanib, sorafenib, axitinib, temsirolimus, bevacizumab |
Adelaiye-Ogala et al. (2018) [52] | Clear cell renal cell carcinoma | 2 | Subcutaneous heterotopic | RP-R-02LM, 786-O | Androgen receptor, receptor tyrosine kinase | Enzalutamide, sunitinib |
Damayanti et al. (2018) [53] | Translocation renal cell carcinoma | 1 | Subcutaneous heterotopic | RP-R07 | PI3K/AKT/mTOR pathways | Rapamycin, MLN0128 (mTOR inhibitor), BEZ-235 (PI3K inhibitor) |
Zhao et al. (2017) [54] | Papillary renal cell carcinoma | 1 | Orthotopic and subcutaneous heterotopic | Institutional tumor | MET | Cabozantinib |
Adelaiye-Ogala et al. (2017) [55] | Clear cell renal cell carcinoma | 2 | Ectopic in prostate (metastatic model), Orthotopic, and Subcutaneous heterotopic | RP-R-01, RP-R-02, and RP-R02LM | EZH2, VEGF | HKT288, sunitinib, axitinib, bevacizumab |
Bialucha et al. (2017) [56] | Clear cell renal cell Carcinoma | 3 | Subcutaneous heterotopic | Multiple institutional tumors, commercial vendors | CDH6 | HKT288 (anti-CDH6 antibody drug conjugate) |
Dong et al. (2017) [57] | Renal cell Carcinoma | 33 | Subcutaneous heterotopic | Institutional: Memorial Sloan Kettering Cancer Center (New York) | Receptor tyrosine kinase | Sunitinib |
Hong et al. (2017) [58] | Renal cell Carcinoma | 2 | Subcutaneous heterotopic | Institutional: Peking University Hospital (Peking) | PDGFA, PDGFB, PDGFRA | Sorafenib, sunitinib, axitinib |
Chen et al. (2016) [59] | Renal cell carcinoma | 22 | Orthotopic | Institutional: UT Southwestern (Dallas, TX) | HIF-2 | PT2399 (HIF-2 antagonist), sunitinib |
Diaz-Montero et al. (2016) [60] | Renal cell carcinoma | 2 | Subcutaneous heterotopic | Institutional: Cleveland Clinic (Cleveland, OH) | MEK1/2 | Sunitinib, PD-0325901 (MEK inhibitor) |
Lang et al. (2016) [61] | Renal cell carcinoma | 30 | Orthotopic and Subcutaneous heterotopic | Institutional: Hôpitaux Universitaires de Strasbourg (France) | VHL-associated targets | Sunitinib, sorafenib, everolimus |
Adelaiye et al. (2015) [62] | Clear cell renal cell carcinoma | 2 | Subcutaneous heterotopic | RP-R-01 and RP-R-02 | Receptor tyrosine kinase | Sunitinib |
Ciamporcero et al. (2015) [63] | Renal cell carcinoma | 1 | Subcutaneous heterotopic | RP-R-01 | VEGF and HGF/c-met pathway | Axitinib, crizotinib, sunitinib |
Schuller et al. (2015) [64] | Papillary renal cell carcinoma | 2 | Subcutaneous heterotopic | RCC-43b and RCC-47 PRCC | MET | Savolitinib, sunitinib |
Miles et al. (2014) [65] | Clear cell renal cell carcinoma | 2 | Subcutaneous heterotopic | RP-R-01 and RP-R-02 | DII4, VEGF, | REGN (mAb binding DII4), ziv-aflibercept (VEGF blocker), sunitinib |
Thong et al. (2014) [23] | Renal cell carcinoma | 13 | Orthotopic | Institutional: Stanford Hospital (Stanford, CA) | Receptor tyrosine kinase | Sunitinib |
Ingels et al. (2014) [66] | Renal cell carcinoma | 3 | Orthotopic | Institutional: Stanford (Stanford, CA) | mTOR | MLN0128 (mTOR inhibitor), temsirolimus |
Sivanand et al. (2012) [32] | Renal Cell Carcinoma | 35 | Orthotopic | Institutional: UT Southwestern (Dallas, TX) | VHL-associated targets | Dovitinib, sirolimus, sunitinib |
Karam et al. (2011) [67] | Renal cell carcinoma | 4 | Orthotopic and Subcutaneous heterotopic | Institutional: MD Anderson Cancer Center (Houston, TX) | VHL-associated targets | Sunitinib, everolimus |
Hammers et al. (2010) [68] | Renal cell carcinoma | 1 | Subcutaneous heterotopic | Institutional: Johns Hopkins (Baltimore, MD) | Receptor tyrosine kinase | Sunitinib |
Study Name | Cancer Type | PDX Tumor Models | Graft Location | PDX Line | Target | Drug/Therapy |
---|---|---|---|---|---|---|
Blinova et al. (2019) [73] | Urothelial cell carcinoma | 6 | Subcutaneous heterotopic | Institutional: National Research Medical Center of Radiology (Moscow) | PD-L1 | Durvalumab |
Zeng et al. (2017) [74] | Urothelial cell carcinoma | 3 | Subcutaneous heterotopic | BL0269, BL0293, BL0440 (UC Davis/Jackson Labs) | PI3K pathway | Pictilisib, Cisplatin, gemcitabine |
Ler et al. (2017) [75] | Urothelial cell carcinoma | Not reported | Subcutaneous heterotopic | Institutional: Singapore General Hospital (Singapore) and Chang Gung Memorial Hospital (Taiwan) | EZH2 | GSK503 (EZH2 methyltransferase inhibitor) |
Wei et al. (2016) [76] | Urothelial cell carcinoma | 2 | Subcutaneous heterotopic | Institutional: Roswell Park BLCAb001, BLCAb002 | PI3K/mTOR | Cisplatin, LY414 (dual PI3K/mTOR inhibitor) |
Chang et al. (2016) [77] | Urothelial cell carcinoma | 1 | Subcutaneous heterotopic | Institutional: Samsung Medical Center (Seoul) | SRC and PI3K/AKT/mTOR | Dasatinib, PKI-587 (dual PI3K/mTOR inhibitor) |
Pan et al. (2016) [78] | Urothelial cell carcinoma | 1 | Subcutaneous heterotopic | Institutional (UC Davis) | Bladder cancer cells (PLZ4 ligand) | Disulfide-crosslinked PLZ4-nanomicelle paclitaxel |
Ciamporcero et al. (2016) [79] | Urothelial cell carcinoma | 2 | Subcutaneous heterotopic | Institutional: Roswell Park BLCAb001, BLCAb002 | YAP (Yes-associated protein) | Verteporfin, cisplatin |
Guo et al. (2016) [80] | Urothelial cell carcinoma | 1 | Subcutaneous heterotopic | Institutional: Shanghai Changhai Hospital (Shanghai) | HuR RNA-binding protein | Pyrvinium pamoate combined with cisplatin |
Jager et al. (2015) [72] | Urothelial cell carcinoma | 7 | Renal subcapsular | Institutional: Vancouver General Hospital (Vancouver, Canada) | FGFR3 | R3Mab (anti-FGFR3 antibody) |
Pan et al. (2015) [41] | Urothelial cell carcinoma | 22 | Orthotopic and Subcutaneous heterotopic | Institutional: UC Davis (including PDX-BL0293, PDX-BL0382) | EGFR/HER2, PIK3CA, FGFR3 | Lapatinib, ponatinib, BEZ235 (PI3K/mTOR inhibitor), BGJ398 (FGFR inhibitor) |
Cirone et al. (2014) [3] | Urothelial cell carcinoma | 2 | Subcutaneous heterotopic | Commercial: PDX-BL0293, PDX-BL0382 (UC Davis/Jackson Labs) | PI3K/mTOR, MEK | PF-502 (PI3K/mTOR inhibitor), PD-901 (MEK inhibitor) |
Abe et al. (2006) [36] | Urothelial cell carcinoma | 15 | Subcutaneous heterotopic | Institutional: Hokkaido University Hospital | n/a | Radiation |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tracey, A.T.; Murray, K.S.; Coleman, J.A.; Kim, K. Patient-Derived Xenograft Models in Urological Malignancies: Urothelial Cell Carcinoma and Renal Cell Carcinoma. Cancers 2020, 12, 439. https://doi.org/10.3390/cancers12020439
Tracey AT, Murray KS, Coleman JA, Kim K. Patient-Derived Xenograft Models in Urological Malignancies: Urothelial Cell Carcinoma and Renal Cell Carcinoma. Cancers. 2020; 12(2):439. https://doi.org/10.3390/cancers12020439
Chicago/Turabian StyleTracey, Andrew T., Katie S. Murray, Jonathan A. Coleman, and Kwanghee Kim. 2020. "Patient-Derived Xenograft Models in Urological Malignancies: Urothelial Cell Carcinoma and Renal Cell Carcinoma" Cancers 12, no. 2: 439. https://doi.org/10.3390/cancers12020439
APA StyleTracey, A. T., Murray, K. S., Coleman, J. A., & Kim, K. (2020). Patient-Derived Xenograft Models in Urological Malignancies: Urothelial Cell Carcinoma and Renal Cell Carcinoma. Cancers, 12(2), 439. https://doi.org/10.3390/cancers12020439