ARH1 in Health and Disease
Abstract
:1. ARH Family
1.1. Properties of ARHs
1.2. Function and Substrates of ARHs
2. Structure and Enzymatic Activity of ARH1
2.1. Structure and Stereospecific Activity of ARH1
2.2. ARH1 Protein Expression and Cellular Distribution
2.3. Arginine-Specific Mono-ADP-Ribosylation Cycle
3. Functions of ARH1 in Disease
3.1. Defense Mechanism against the Action of Cholera Toxin
3.2. Tumor-Suppressor Function of ARH1
3.2.1. Increased Tumor Formation in Arh1-Deficient and Arh1-Heterozygous Mice
3.2.2. ARH1 Heterozygosity and Tumorigenesis
3.3. Membrane Repair Function of ARH1
4. Proteomics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oka, S.; Kato, J.; Moss, J. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 2006, 281, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Kato, J.; Vekhter, D.; Heath, J.; Zhu, J.; Barbieri, J.T.; Moss, J. Mutations of the functional ARH1 allele in tumors from ARH1 heterozygous mice and cells affect ARH1 catalytic activity, cell proliferation and tumorigenesis. Oncogenesis 2015, 4, e151. [Google Scholar] [CrossRef] [Green Version]
- Takada, T.; Iida, K.; Moss, J. Cloning and site-directed mutagenesis of human ADP-ribosylarginine hydrolase. J. Biol. Chem. 1993, 268, 17837–17843. [Google Scholar]
- Moss, J.; Tsai, S.C.; Adamik, R.; Chen, H.C.; Stanley, S.J. Purification and characterization of ADP-ribosylarginine hydrolase from turkey erythrocytes. Biochemistry 1988, 27, 5819–5823. [Google Scholar] [CrossRef]
- Stevens, L.A.; Kato, J.; Kasamatsu, A.; Oda, H.; Lee, D.Y.; Moss, J. The ARH and Macrodomain Families of alpha-ADP-ribose-acceptor Hydrolases Catalyze alpha-NAD(+) Hydrolysis. ACS Chem. Biol. 2019, 4, 2576–2584. [Google Scholar] [CrossRef]
- Rack, J.G.M.; Ariza, A.; Drown, B.S.; Henfrey, C.; Bartlett, E.; Shirai, T.; Hergenrother, P.J.; Ahel, I. (ADP-ribosyl)hydrolases: Structural Basis for Differential Substrate Recognition and Inhibition. Cell Chem. Biol. 2018, 25, 1533–1546. [Google Scholar] [CrossRef] [Green Version]
- Konczalik, P.; Moss, J. Identification of critical, conserved vicinal aspartate residues in mammalian and bacterial ADP-ribosylarginine hydrolases. J. Biol. Chem. 1999, 274, 16736–16740. [Google Scholar] [CrossRef] [Green Version]
- Munnur, D.; Ahel, I. Reversible mono-ADP-ribosylation of DNA breaks. FEBS J. 2017, 284, 4002–4016. [Google Scholar] [CrossRef] [Green Version]
- Munnur, D.; Bartlett, E.; Mikolcevic, P.; Kirby, I.T.; Matthias Rack, J.G.; Mikoc, A.; Cohen, M.S.; Ahel, I. Reversible ADP-ribosylation of RNA. Nucleic Acids Res. 2019, 47, 5658–5669. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, I.J.; Moss, J. Glycosylphosphatidylinositol-anchored and secretory isoforms of mono-ADP-ribosyltransferases. J. Biol. Chem. 1998, 273, 23617–23620. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, I.J.; Kim, H.J.; Moss, J. Cloning and characterization of a novel membrane-associated lymphocyte NAD:arginine ADP-ribosyltransferase. J. Biol. Chem. 1996, 271, 22052–22057. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, I.J.; Moss, J. Mono-ADP-ribosylation: A reversible posttranslational modification of proteins. Adv. Pharmacol. 1996, 35, 247–280. [Google Scholar]
- Corda, D.; Di Girolamo, M. Mono-ADP-ribosylation: A tool for modulating immune response and cell signaling. Sci. STKE 2002, 2002, pe53. [Google Scholar] [CrossRef]
- Vyas, S.; Matic, I.; Uchima, L.; Rood, J.; Zaja, R.; Hay, R.T.; Ahel, I.; Chang, P. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat. Commun. 2014, 5, 4426. [Google Scholar] [CrossRef] [Green Version]
- Abplanalp, J.; Hottiger, M.O. Cell fate regulation by chromatin ADP-ribosylation. Semin. Cell Dev. Biol. 2017, 63, 114–122. [Google Scholar] [CrossRef]
- Rosenthal, F.; Feijs, K.L.; Frugier, E.; Bonalli, M.; Forst, A.H.; Imhof, R.; Winkler, H.C.; Fischer, D.; Caflisch, A.; Hassa, P.O.; et al. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat. Struct. Mol. Biol. 2013, 20, 502–507. [Google Scholar] [CrossRef]
- Moss, J.; Oppenheimer, N.J.; West, R.E., Jr.; Stanley, S.J. Amino acid specific ADP-ribosylation: Substrate specificity of an ADP-ribosylarginine hydrolase from turkey erythrocytes. Biochemistry 1986, 25, 5408–5414. [Google Scholar] [CrossRef]
- Fontana, P.; Bonfiglio, J.J.; Palazzo, L.; Bartlett, E.; Matic, I.; Ahel, I. Serine ADP-ribosylation reversal by the hydrolase ARH3. Elife 2017, 6, e28533. [Google Scholar] [CrossRef]
- Abplanalp, J.; Leutert, M.; Frugier, E.; Nowak, K.; Feurer, R.; Kato, J.; Kistemaker, H.V.A.; Filippov, D.V.; Moss, J.; Caflisch, A.; et al. Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat. Commun. 2017, 8, 2055. [Google Scholar] [CrossRef] [Green Version]
- Feijs, K.L.; Forst, A.H.; Verheugd, P.; Luscher, B. Macrodomain-containing proteins: Regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat. Rev. Mol. Cell Biol. 2013, 14, 443–451. [Google Scholar] [CrossRef]
- Kasamatsu, A.; Nakao, M.; Smith, B.C.; Comstock, L.R.; Ono, T.; Kato, J.; Denu, J.M.; Moss, J. Hydrolysis of O-acetyl-ADP-ribose isomers by ADP-ribosylhydrolase 3. J. Biol. Chem. 2011, 286, 21110–21117. [Google Scholar] [CrossRef] [Green Version]
- Bu, X.; Kato, J.; Moss, J. Emerging roles of ADP-ribosyl-acceptor hydrolases (ARHs) in tumorigenesis and cell death pathways. Biochem. Pharmacol. 2019, 167, 44–49. [Google Scholar] [CrossRef]
- Ono, T.; Kasamatsu, A.; Oka, S.; Moss, J. The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. Proc. Natl. Acad. Sci. USA 2006, 103, 16687–16691. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.J.; Towers, N.; Saldanha, J.W.; Shang, C.A.; Mahmood, S.R.; Taylor, W.R.; Mohun, T.J. The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly. Dev. Biol. 2016, 416, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Moss, J.; Stanley, S.J.; Nightingale, M.S.; Murtagh, J.J., Jr.; Monaco, L.; Mishima, K.; Chen, H.C.; Williamson, K.C.; Tsai, S.C. Molecular and immunological characterization of ADP-ribosylarginine hydrolases. J. Biol. Chem. 1992, 267, 10481–10488. [Google Scholar]
- Kato, J.; Zhu, J.; Liu, C.; Moss, J. Enhanced sensitivity to cholera toxin in ADP-ribosylarginine hydrolase-deficient mice. Mol. Cell. Biol. 2007, 27, 5534–5543. [Google Scholar] [CrossRef] [Green Version]
- Ishiwata-Endo, H.; Kato, J.; Tonouchi, A.; Chung, Y.W.; Sun, J.; Stevens, L.A.; Zhu, J.; Aponte, A.M.; Springer, D.A.; San, H.; et al. Role of a TRIM72 ADP-ribosylation cycle in myocardial injury and membrane repair. JCI Insight 2018, 3, e97898. [Google Scholar] [CrossRef]
- Massaeli, H.; Viswanathan, D.; Pillai, D.G.; Mesaeli, N. Endoplasmic reticulum stress enhances endocytosis in calreticulin deficient cells. Biochim. Biophys. Acta Mol. Cell. Res. 2019, 1866, 727–736. [Google Scholar] [CrossRef]
- Clarke, M.S.; Caldwell, R.W.; Chiao, H.; Miyake, K.; McNeil, P.L. Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circ. Res. 1995, 76, 927–934. [Google Scholar] [CrossRef]
- Fabrizio, G.; Di Paola, S.; Stilla, A.; Giannotta, M.; Ruggiero, C.; Menzel, S.; Koch-Nolte, F.; Sallese, M.; Di Girolamo, M. ARTC1-mediated ADP-ribosylation of GRP78/BiP: A new player in endoplasmic-reticulum stress responses. Cell. Mol. Life Sci. 2015, 72, 1209–1225. [Google Scholar] [CrossRef]
- Martello, R.; Leutert, M.; Jungmichel, S.; Bilan, V.; Larsen, S.C.; Young, C.; Hottiger, M.O.; Nielsen, M.L. Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue. Nat. Commun. 2016, 7, 12917. [Google Scholar] [CrossRef] [Green Version]
- Laing, S.; Koch-Nolte, F.; Haag, F.; Buck, F. Strategies for the identification of arginine ADP-ribosylation sites. J. Proteomics 2011, 75, 169–176. [Google Scholar] [CrossRef]
- Tsai, Y.L.; Zhang, Y.; Tseng, C.C.; Stanciauskas, R.; Pinaud, F.; Lee, A.S. Characterization and mechanism of stress-induced translocation of 78-kilodalton glucose-regulated protein (GRP78) to the cell surface. J. Biol. Chem. 2015, 290, 8049–8064. [Google Scholar] [CrossRef] [Green Version]
- Amoroso, M.R.; Matassa, D.S.; Laudiero, G.; Egorova, A.V.; Polishchuk, R.S.; Maddalena, F.; Piscazzi, A.; Paladino, S.; Sarnataro, D.; Garbi, C.; et al. TRAP1 and the proteasome regulatory particle TBP7/Rpt3 interact in the endoplasmic reticulum and control cellular ubiquitination of specific mitochondrial proteins. Cell Death Differ. 2012, 19, 592–604. [Google Scholar] [CrossRef]
- Paone, G.; Stevens, L.A.; Levine, R.L.; Bourgeois, C.; Steagall, W.K.; Gochuico, B.R.; Moss, J. ADP-ribosyltransferase-specific modification of human neutrophil peptide-1. J. Biol. Chem. 2006, 281, 17054–17060. [Google Scholar] [CrossRef]
- Stevens, L.A.; Barbieri, J.T.; Piszczek, G.; Otuonye, A.N.; Levine, R.L.; Zheng, G.; Moss, J. Nonenzymatic conversion of ADP-ribosylated arginines to ornithine alters the biological activities of human neutrophil peptide-1. J. Immunol. 2014, 193, 6144–6151. [Google Scholar] [CrossRef] [Green Version]
- Matic, I.; Ahel, I.; Hay, R.T. Reanalysis of phosphoproteomics data uncovers ADP-ribosylation sites. Nat. Methods 2012, 9, 771–772. [Google Scholar] [CrossRef]
- Rissiek, B.; Menzel, S.; Leutert, M.; Cordes, M.; Behr, S.; Jank, L.; Ludewig, P.; Gelderblom, M.; Rissiek, A.; Adriouch, S.; et al. Ecto-ADP-ribosyltransferase ARTC2.1 functionally modulates FcgammaR1 and FcgammaR2B on murine microglia. Sci. Rep. 2017, 7, 16477. [Google Scholar] [CrossRef] [Green Version]
- Leutert, M.; Menzel, S.; Braren, R.; Rissiek, B.; Hopp, A.K.; Nowak, K.; Bisceglie, L.; Gehrig, P.; Li, H.; Zolkiewska, A.; et al. Proteomic Characterization of the Heart and Skeletal Muscle Reveals Widespread Arginine ADP-Ribosylation by the ARTC1 Ectoenzyme. Cell Rep. 2018, 24, 1916–1929. [Google Scholar] [CrossRef] [Green Version]
- Kato, J.; Zhu, J.; Liu, C.; Stylianou, M.; Hoffmann, V.; Lizak, M.J.; Glasgow, C.G.; Moss, J. ADP-ribosylarginine hydrolase regulates cell proliferation and tumorigenesis. Cancer Res. 2011, 71, 5327–5335. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Lv, Y.; Han, X.; Xu, D.; Han, W. Understanding the differences of the ligand binding/unbinding pathways between phosphorylated and non-phosphorylated ARH1 using molecular dynamics simulations. Sci. Rep. 2017, 7, 12439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Ren, Z.; Kang, X.; Zhang, L.; Li, X.; Wang, Y.; Xue, T.; Shen, Y.; Liu, Y. Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of FER in human hepatocellular carcinoma cells. BMC Cancer 2009, 9, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butepage, M.; Eckei, L.; Verheugd, P.; Luscher, B. Intracellular Mono-ADP-Ribosylation in Signaling and Disease. Cells 2015, 4, 569–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, J.; Jacobson, M.K.; Stanley, S.J. Reversibility of arginine-specific mono(ADP-ribosyl)ation: Identification in erythrocytes of an ADP-ribose-L-arginine cleavage enzyme. Proc. Natl. Acad. Sci. USA 1985, 82, 5603–5607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchiya, M.; Tanigawa, Y.; Mishima, K.; Shimoyama, M. Determination of ADP-ribosyl arginine anomers by reverse-phase high-performance liquid chromatography. Anal. Biochem. 1986, 157, 381–384. [Google Scholar] [CrossRef]
- Moss, J.; Zolkiewska, A.; Okazaki, I. ADP-ribosylarginine hydrolases and ADP-ribosyltransferases. Partners in ADP-ribosylation cycles. Adv. Exp. Med. Biol. 1997, 419, 25–33. [Google Scholar] [CrossRef]
- Friedrich, M.; Bohlig, L.; Kirschner, R.D.; Engeland, K.; Hauschildt, S. Identification of two regulatory binding sites which confer myotube specific expression of the mono-ADP-ribosyltransferase ART1 gene. BMC Mol. Biol. 2008, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.; Chinnaiyan, A.M. ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia 2004, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bu, X.; Kato, J.; Hong, J.A.; Merino, M.J.; Schrump, D.S.; Lund, F.E.; Moss, J. CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells. Carcinogenesis 2018, 39, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, I.J.; Zolkiewska, A.; Takada, T.; Moss, J. Characterization of mammalian ADP-ribosylation cycles. Biochimie 1995, 77, 319–325. [Google Scholar] [CrossRef]
- Moss, J.; Vaughan, M. Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J. Biol. Chem. 1977, 252, 2455–2457. [Google Scholar] [PubMed]
- Vaughan, M.; Moss, J. Mechanism of action of choleragen. J. Supramol. Struct. 1978, 8, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Coburn, J.; Gill, D.M. ADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S. Infect. Immun. 1991, 59, 4259–4262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, A.K.; Frank, D.W.; Misra, R.P.; Schmidt, G.; Barbieri, J.T. Pseudomonas aeruginosa exoenzyme S ADP-ribosylates Ras at multiple sites. J. Biol. Chem. 1998, 273, 7332–7337. [Google Scholar] [CrossRef] [Green Version]
- Weng, B.; Thompson, W.C.; Kim, H.J.; Levine, R.L.; Moss, J. Modification of the ADP-ribosyltransferase and NAD glycohydrolase activities of a mammalian transferase (ADP-ribosyltransferase 5) by auto-ADP-ribosylation. J. Biol. Chem. 1999, 274, 31797–31803. [Google Scholar] [CrossRef] [Green Version]
- Glowacki, G.; Braren, R.; Firner, K.; Nissen, M.; Kuhl, M.; Reche, P.; Bazan, F.; Cetkovic-Cvrlje, M.; Leiter, E.; Haag, F.; et al. The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse. Protein Sci. 2002, 11, 1657–1670. [Google Scholar] [CrossRef] [Green Version]
- Murry, C.E.; Wiseman, R.W.; Schwartz, S.M.; Hauschka, S.D. Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Investig. 1996, 98, 2512–2523. [Google Scholar] [CrossRef] [Green Version]
- Verderio, C.; Bruzzone, S.; Zocchi, E.; Fedele, E.; Schenk, U.; De Flora, A.; Matteoli, M. Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J. Neurochem. 2001, 78, 646–657. [Google Scholar] [CrossRef]
- Adriouch, S.; Hubert, S.; Pechberty, S.; Koch-Nolte, F.; Haag, F.; Seman, M. NAD+ released during inflammation participates in T cell homeostasis by inducing ART2-mediated death of naive T cells in vivo. J. Immunol. 2007, 179, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Hubert, S.; Rissiek, B.; Klages, K.; Huehn, J.; Sparwasser, T.; Haag, F.; Koch-Nolte, F.; Boyer, O.; Seman, M.; Adriouch, S. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J. Exp. Med. 2010, 207, 2561–2568. [Google Scholar] [CrossRef]
- Lemckert, F.A.; Bournazos, A.; Eckert, D.M.; Kenzler, M.; Hawkes, J.M.; Butler, T.L.; Ceely, B.; North, K.N.; Winlaw, D.S.; Egan, J.R.; et al. Lack of MG53 in human heart precludes utility as a biomarker of myocardial injury or endogenous cardioprotective factor. Cardiovasc. Res. 2016, 110, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Weisleder, N.; Takizawa, N.; Lin, P.; Wang, X.; Cao, C.; Zhang, Y.; Tan, T.; Ferrante, C.; Zhu, H.; Chen, P.J.; et al. Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy. Sci. Transl. Med. 2012, 4, 139ra185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeting of the Strategic Advisory Group of Experts on immunization, April 2017—Conclusions and recommendations. Wkly. Epidemiol. Rec. 2017, 92, 301–320.
- Cassel, D.; Pfeuffer, T. Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. USA 1978, 75, 2669–2673. [Google Scholar] [CrossRef] [Green Version]
- Vanden Broeck, D.; Horvath, C.; De Wolf, M.J. Vibrio cholerae: Cholera toxin. Int. J. Biochem. Cell Biol. 2007, 39, 1771–1775. [Google Scholar] [CrossRef]
- Moss, J.; Vaughan, M. Activation of adenylate cyclase by choleragen. Annu. Rev. Biochem. 1979, 48, 581–600. [Google Scholar] [CrossRef]
- Holmgren, J. Actions of cholera toxin and the prevention and treatment of cholera. Nature 1981, 292, 413–417. [Google Scholar] [CrossRef]
- Gill, D.M.; Meren, R. ADP-ribosylation of membrane proteins catalyzed by cholera toxin: Basis of the activation of adenylate cyclase. Proc. Natl. Acad. Sci. USA 1978, 75, 3050–3054. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Kato, J.; Zhu, J.; Oda, H.; Ishiwata-Endo, H.; Moss, J. Enhanced sensitivity to cholera toxin in female ADP-ribosylarginine hydrolase (ARH1)-deficient mice. PLoS ONE 2018, 13, e0207693. [Google Scholar] [CrossRef]
- Sevilimedu, V.; Pressley, K.D.; Snook, K.R.; Hogges, J.V.; Politis, M.D.; Sexton, J.K.; Duke, C.H.; Smith, B.A.; Swander, L.C.; Baker, K.K.; et al. Gender-based differences in water, sanitation and hygiene-related diarrheal disease and helminthic infections: A systematic review and meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 2016, 637–648. [Google Scholar] [CrossRef]
- Han, M.K.; Cho, Y.S.; Kim, Y.S.; Yim, C.Y.; Kim, U.H. Interaction of two classes of ADP-ribose transfer reactions in immune signaling. J. Biol. Chem. 2000, 275, 20799–20805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laubach, J.P.; Tai, Y.T.; Richardson, P.G.; Anderson, K.C. Daratumumab granted breakthrough drug status. Expert Opin. Investig. Drugs 2014, 23, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Kato, J.R.; Bu, X.N.; Moss, J. Estrogen promotes tumorigenesis by ADP-ribosyl-acceptor hydrolase 1 (ARH1)-deficient cells and mice. Cancer Res. 2014, 74, 2445. [Google Scholar] [CrossRef]
- Hinderer, S.; Schenke-Layland, K. Cardiac fibrosis—A short review of causes and therapeutic strategies. Adv. Drug Deliv. Rev. 2019, 146, 77–82. [Google Scholar] [CrossRef]
- Cai, C.; Masumiya, H.; Weisleder, N.; Pan, Z.; Nishi, M.; Komazaki, S.; Takeshima, H.; Ma, J. MG53 regulates membrane budding and exocytosis in muscle cells. J. Biol. Chem. 2009, 284, 3314–3322. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Chen, K.; Lin, P.; Lieber, G.; Nishi, M.; Yan, R.; Wang, Z.; Yao, Y.; Li, Y.; Whitson, B.A.; et al. Treatment of acute lung injury by targeting MG53-mediated cell membrane repair. Nat. Commun. 2014, 5, 4387. [Google Scholar] [CrossRef] [Green Version]
- Di Lisa, F.; Menabo, R.; Canton, M.; Barile, M.; Bernardi, P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem. 2001, 276, 2571–2575. [Google Scholar] [CrossRef] [Green Version]
- Hwang, M.; Ko, J.K.; Weisleder, N.; Takeshima, H.; Ma, J. Redox-dependent oligomerization through a leucine zipper motif is essential for MG53-mediated cell membrane repair. Am. J. Physiol. Cell Physiol. 2011, 301, C106–C114. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.L.; Zhang, F.J.; Qian, L.B.; Kong, F.J.; Sun, J.F.; Zhou, C.; Peng, Y.N.; Xu, H.J.; Wang, W.N.; Wen, C.Y.; et al. Hypercholesterolemia blocked sevoflurane-induced cardioprotection against ischemia-reperfusion injury by alteration of the MG53/RISK/GSK3beta signaling. Int. J. Cardiol. 2013, 168, 3671–3678. [Google Scholar] [CrossRef]
- Zolkiewska, A.; Moss, J. Integrin alpha 7 as substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. J. Biol. Chem. 1993, 268, 25273–25276. [Google Scholar]
- Stevens, L.A.; Levine, R.L.; Gochuico, B.R.; Moss, J. ADP-ribosylation of human defensin HNP-1 results in the replacement of the modified arginine with the noncoded amino acid ornithine. Proc. Natl. Acad. Sci. USA 2009, 106, 19796–19800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, B.; Pacheco-Rodriguez, G.; Kato, J.; Darling, T.N.; Vaughan, M.; Moss, J. Sex-specific lung diseases: Effect of oestrogen on cultured cells and in animal models. Eur. Respir. Rev. 2013, 22, 302–311. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Sample | ADP-Ribosylation Sites | Protein Accesion | Protein Description |
---|---|---|---|---|
Glg1 | C2C12 myotubes | R94 | tr|F8WHM5|F8WHM5_MOUSE | Golgi apparatus protein 1 (Fragment) |
Skeletal muscle | R94, R313, R909, R1071 | tr|F8WHM5|F8WHM5_MOUSE | Golgi apparatus protein 1 (Fragment) | |
Heart | R94 | tr|F8WHM5|F8WHM5_MOUSE | Golgi apparatus protein 1 (Fragment) | |
Hspg2 | C2C12 myotubes | R588 | tr|B1B0C7|B1B0C7_MOUSE | Basement membrane-specific heparan sulfate proteoglycan core protein |
Skeletal muscle | R588, R1956, R2957, R4018, R4148 | tr|B1B0C7|B1B0C7_MOUSE | Basement membrane-specific heparan sulfate proteoglycan core protein | |
Heart | R588 | tr|B1B0C7|B1B0C7_MOUSE | Basement membrane-specific heparan sulfate proteoglycan core protein | |
Itga7 | C2C12 myotubes | R149, R898 | sp|Q61738-2|ITA7_MOUSE | Isoform Alpha-7X1A of Integrin alpha-7 |
Skeletal muscle | R548 | tr|G3X9Q1|G3X9Q1_MOUSE | Integrin alpha 7 | |
Heart | R608, R896 | sp|Q61738-2|ITA7_MOUSE | Isoform Alpha-7X1A of Integrin alpha-7 | |
Nid1 | C2C12 myotubes | R318 | sp|P10493|NID1_MOUSE | Nidogen-1 |
Skeletal muscle | R318, R349, R799 | sp|P10493|NID1_MOUSE | Nidogen-1 | |
Heart | R318 | sp|P10493|NID1_MOUSE | Nidogen-1 | |
Pdia3 | C2C12 myotubes | R39, R62 | tr|F6Q404|F6Q404_MOUSE | Protein disulfide-isomerase A3 (Fragment) |
Skeletal muscle | R39 | tr|F6Q404|F6Q404_MOUSE | Protein disulfide-isomerase A3 (Fragment) | |
Heart | R62 | sp|P27773|PDIA3_MOUSE | Protein disulfide-isomerase A3 | |
Trim72 | C2C12 myotubes | R118 | sp|Q1XH17|TRI72_MOUSE | Tripartite motif-containing protein 72 |
Skeletal muscle | R115, R118, R207, R371 | sp|Q1XH17|TRI72_MOUSE | Tripartite motif-containing protein 72 | |
Heart | R118, R260, R207 | sp|Q1XH17|TRI72_MOUSE | Tripartite motif-containing protein 72 |
Number of ADP-Ribosylated Protein | ADP-Ribosylated Amino Acid | ||||||
---|---|---|---|---|---|---|---|
Arg | Glu | Lys | Ser | Asp | Met | ||
C2C12 cells | Wild-type | 33 | 0 | 1 | 1 | 1 | 0 |
Skeletal muscle | Wild-type | 303 | 0 | 2 | 1 | 1 | 0 |
Art1-KO | 6 | 2 | 2 | 4 | 1 | 0 | |
Heart | Wild-type | 60 | 5 | 5 | 7 | 2 | 1 |
Art1-KO | 0 | 4 | 4 | 7 | 2 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishiwata-Endo, H.; Kato, J.; Stevens, L.A.; Moss, J. ARH1 in Health and Disease. Cancers 2020, 12, 479. https://doi.org/10.3390/cancers12020479
Ishiwata-Endo H, Kato J, Stevens LA, Moss J. ARH1 in Health and Disease. Cancers. 2020; 12(2):479. https://doi.org/10.3390/cancers12020479
Chicago/Turabian StyleIshiwata-Endo, Hiroko, Jiro Kato, Linda A. Stevens, and Joel Moss. 2020. "ARH1 in Health and Disease" Cancers 12, no. 2: 479. https://doi.org/10.3390/cancers12020479
APA StyleIshiwata-Endo, H., Kato, J., Stevens, L. A., & Moss, J. (2020). ARH1 in Health and Disease. Cancers, 12(2), 479. https://doi.org/10.3390/cancers12020479