Synergistic Anti-Tumour Effect of Syk Inhibitor and Olaparib in Squamous Cell Carcinoma: Roles of Syk in EGFR Signalling and PARP1 Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Antibodies
2.2. Cell Culture
2.3. Immunoblotting
2.4. Real-tTime PCR
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Confocal Microscopic Analysis
2.7. Crystal Violet Assay
2.8. Intracellular ATP Assay
2.9. MTT Assay
2.10. Cell Death Assays by Annexin V/PI Staining and Flow Cytometry
2.11. Tissue Samples and Immunohistochemistry
2.12. Statistical Analysis
3. Results
3.1. SFK-Dependent Syk Activation Mediates Downstream Signal Pathways of EGFR in SCC
3.2. Syk Mediates EGF-Induced IL-8 Upregulation But Is Not Involved in the Regulation of Cell Fate
3.3. Syk Regulates Intracellular EGFR Movement in a Cell Type-Specific Manner
3.4. Syk Activity Is Associated with Clinicopathologic Features and Outcome of Patients with Oral SCC
3.5. Syk and EGFR Regulate PARP1 Activation and Syk Inhibitor Exerts a Synergistic Anti-Tumour Effect with Olaparib
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Higashiyama, S.; Iwabuki, H.; Morimoto, C.; Hieda, M.; Inoue, H.; Matsushita, N. Membrane-anchored growth factors, the epidermal growth factor family: Beyond receptor ligands. Cancer Sci. 2008, 99, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.L.; Dunn, E.F.; Harari, P.M. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat. Rev. Clin. Oncol. 2010, 7, 493–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aran, V.; Omerovic, J. Current approaches in NSCLC targeting K-RAS and EGFR. Int. J. Mol. Sci. 2019, 20, 5701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, G.; Remo, A.; Porras, A.; Pancione, M. Immune resistance and EGFR antagonists in colorectal cancer. Cancers 2019, 11, 1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerrigan, A.M.; Brown, G.D. Syk-coupled C-type lectins in immunity. Trends Immunol. 2011, 32, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Huang, D.Y.; Chu, C.L.; Lin, Y.L.; Lin, W.W. The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3. Sci. Signal. 2013, 6, ra71. [Google Scholar] [CrossRef]
- Turner, M.; Schweighoffer, E.; Colucci, F.; Di Santo, J.P.; Tybulewicz, V.L. Tyrosine kinase SYK: Essential functions for immunoreceptor signalling. Immunol. Today 2000, 21, 148–154. [Google Scholar] [CrossRef]
- Riccaboni, M.; Bianchi, I.; Petrillo, P. Spleen tyrosine kinases: Biology, therapeutic targets and drugs. Drug Discov. Today 2010, 15, 517–530. [Google Scholar] [CrossRef]
- Kang, Y.; Jiang, X.; Qin, D.; Wang, L.; Yang, J.; Wu, A.; Huang, F.; Ye, Y.; Wu, J. Efficacy and safety of multiple dosages of fostamatinib in adult patients with rheumatoid arthritis: A systematic review and meta-analysis. Front. Pharmacol. 2019, 10, 897. [Google Scholar] [CrossRef] [Green Version]
- Szilveszter, K.P.; Németh, T.; Mócsai, A. Tyrosine kinases in autoimmune and inflammatory skin diseases. Front. Immunol. 2019, 10, 1862. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Mamorska-Dyga, A. Syk inhibitors in clinical development for hematological malignancies. J. Hematol. Oncol. 2017, 10, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartaula-Brevik, S.; Lindstad Brattås, M.K.; Tvedt, T.H.A.; Reikvam, H.; Bruserud, Ø. Splenic tyrosine kinase (SYK) inhibitors and their possible use in acute myeloid leukemia. Expert. Opin. Investig. Drugs 2018, 27, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Krisenko, M.O.; Geahlen, R.L. Calling in SYK: SYK’s dual role as a tumor promoter and tumor suppressor in cancer. Biochim. Biophys. Acta 2015, 1853, 254–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, N.L.; Huang, D.Y.; Wang, L.F.; Kannagi, R.; Fan, Y.C.; Lin, W.W. Spleen tyrosine kinase mediates EGFR signaling to regulate keratinocyte terminal differentiation. J. Investig. Dermatol. 2016, 136, 192–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundu, S.K.; Nestor, M. Targeted therapy in head and neck cancer. Tumour. Biol. 2012, 33, 707–721. [Google Scholar] [CrossRef]
- Wong, C.H.; Ma, B.B.; Hui, C.W.; Tao, Q.; Chan, A.T. Preclinical evaluation of afatinib (BIBW2992) in esophageal squamous cell carcinoma (ESCC). Am. J. Cancer Res. 2015, 5, 3588–3599. [Google Scholar]
- Khalil, A.; Jameson, M.J. The EGFR inhibitor gefitinib enhanced the response of human oral squamous cell carcinoma to cisplatin in vitro. Drugs R D 2017, 17, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.T.; Ji, H.; Greening, D.W.; Speirs, R.W.; Rigopoulos, A.; Pillay, V.; Murone, C.; Vitali, A.; Stühler, K.; Johns, T.G.; et al. Global protein profiling reveals anti-EGFR monoclonal antibody 806-modulated proteins in A431 tumor xenografts. Growth Factors 2013, 31, 154–164. [Google Scholar] [CrossRef]
- Iberri, D.J.; Colevas, A.D. Balancing safety and efficacy of epidermal growth factor receptor inhibitors in patients with squamous cell carcinoma of the head and neck. Oncologist 2015, 20, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Stratigos, A.; Garbe, C.; Lebbe, C.; Malvehy, J.; del Marmol, V.; Pehamberger, H.; Peris, K.; Becker, J.C.; Zalaudek, I.; Saiag, P.; et al. Diagnosis and treatment of invasive squamous cell carcinoma of the skin: European consensus-based interdisciplinary guideline. Eur. J. Cancer 2015, 51, 1989–2007. [Google Scholar] [CrossRef]
- Nowsheen, S.; Bonner, J.A.; Yang, E.S. The poly(ADP-ribose) polymerase inhibitor ABT-888 reduces radiation-induced nuclear EGFR and augments head and neck tumor response to radiotherapy. Radiother. Oncol. 2011, 99, 331–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, N.L.; Huang, D.Y.; Hsieh, S.L.; Hsiao, C.H.; Lee, T.A.; Lin, W.W. EGFR-driven up-regulation of decoy receptor 3 in keratinocytes contributes to the pathogenesis of psoriasis. Biochim. Biophys. Acta 2013, 1832, 1538–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biscardi, J.S.; Maa, M.C.; Tice, D.A.; Cox, M.E.; Leu, T.H.; Parsons, S.J. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J. Biol. Chem. 1999, 274, 8335–8343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishioka, T.; Kim, H.S.; Luo, L.Y.; Huang, Y.; Guo, J.; Chen, C.Y. Sensitization of epithelial growth factor receptors by nicotine exposure to promote breast cancer cell growth. Breast Cancer Res. 2011, 13, R113. [Google Scholar] [CrossRef] [Green Version]
- Asbagh, L.A.; Vazquez, I.; Vecchione, L.; Budinska, E.; De Vriendt, V.; Baietti, M.F.; Steklov, M.; Jacobs, B.; Hoe, N.; Singh, S.; et al. The tyrosine phosphatase PTPRO sensitizes colon cancer cells to anti-EGFR therapy through activation of SRC-mediated EGFR signaling. Oncotarget 2014, 5, 10070–10083. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, C.; Sanmamed, M.F.; Rodríguez-Ruiz, M.E.; Teijeira, Á.; Oñate, C.; González, Á.; Ponz, M.; Schalper, K.A.; Pérez-Gracia, J.L.; Melero, I. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat. Rev. 2017, 60, 24–31. [Google Scholar] [CrossRef]
- Boussios, S.; Karihtala, P.; Moschetta, M.; Abson, C.; Karathanasi, A.; Zakynthinakis-Kyriakou, N.; Ryan, J.E.; Sheriff, M.; Rassy, E.; Pavlidis, N. Veliparib in ovarian cancer: A new synthetically lethal therapeutic approach. Investig. New Drugs 2020, 38, 181–193. [Google Scholar] [CrossRef]
- Sachdev, E.; Tabatabai, R.; Roy, V.; Rimel, B.J.; Mita, M.M. PARP inhibition in cancer: An update on clinical development. Target Oncol. 2019, 14, 657–679. [Google Scholar] [CrossRef]
- Güster, J.D.; Weissleder, S.V.; Busch, C.J.; Kriegs, M.; Petersen, C.; Knecht, R.; Dikomey, E.; Rieckmann, T. The inhibition of PARP but not EGFR results in the radiosensitization of HPV/p16-positive HNSCC cell lines. Radiother. Oncol. 2014, 113, 345–351. [Google Scholar] [CrossRef]
- Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer 2005, 5, 341–354. [Google Scholar] [CrossRef]
- Saleh, M.N.; Raisch, K.P.; Stackhouse, M.A.; Grizzle, W.E.; Bonner, J.A.; Mayo, M.S.; Kim, H.G.; Meredith, R.F.; Wheeler, R.H.; Buchsbaum, D.J. Combined modality therapy of A431 human epidermoid cancer using anti-EGFr antibody C225 and radiation. Cancer Biother. Radiopharm. 1999, 14, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Johns, T.G.; Luwor, R.B.; Murone, C.; Walker, F.; Weinstock, J.; Vitali, A.A.; Perera, R.M.; Jungbluth, A.A.; Stockert, E.; Old, L.J.; et al. Antitumor efficacy of cytotoxic drugs and the monoclonal antibody 806 is enhanced by the EGF receptor inhibitor AG1478. Proc. Natl. Acad. Sci. USA 2003, 100, 15871–15876. [Google Scholar] [CrossRef] [Green Version]
- Althubiti, M. Spleen tyrosine kinase inhibition modulates p53 activity. J. Cell Death 2017, 10. [Google Scholar] [CrossRef] [PubMed]
- Bailet, O.; Fenouille, N.; Abbe, P.; Robert, G.; Rocchi, S.; Gonthier, N.; Denoyelle, C.; Ticchioni, M.; Ortonne, J.P.; Ballotti, R.; et al. Spleen tyrosine kinase functions as a tumor suppressor in melanoma cells by inducing senescence-like growth arrest. Cancer Res. 2009, 69, 2748–2756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zyss, D.; Montcourrier, P.; Vidal, B.; Anguille, C.; Merezegue, F.; Sahuquet, A.; Coopman, P.J. The Syk tyrosine kinase localizes to the centrosomes and negatively affects mitotic progression. Cancer Res. 2005, 65, 10872–10880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prinos, P.; Garneau, D.; Lucier, J.F.; Gendron, D.; Couture, S.; Boivin, M.; Elela, S.A. Alternative splicing of SYK regulates mitosis and cell survival. Nat. Struct. Mol. Biol. 2011, 18, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Udyavar, A.R.; Hoeksema, M.D.; Clark, J.E.; Zou, Y.; Tang, Z.; Li, Z.; Quaranta, V. Co-expression network analysis identifies spleen tyrosine kinase (SYK) as a candidate oncogenic driver in a subset of small-cell lung cancer. BMC Syst. Biol. 2013, 7 (Suppl. 5), S1. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Park, S.E.; Shim, S.M.; Park, S.; Kim, K.K.; Jeong, S.Y.; Choi, E.K.; Hwang, J.J.; Jin, D.H.; Chung, C.D.; et al. Bay 61-3606 Sensitizes TRAIL-induced apoptosis by downregulating Mcl-1 in breast cancer cells. PLoS ONE 2015, 10, e0146073. [Google Scholar] [CrossRef] [Green Version]
- Gokhale, A.S.; Haddad, R.I.; Cavacini, L.A.; Wirth, L.; Weeks, L.; Hallar, M.; Faucher, J.; Posner, M.R. Serum concentrations of interleukin-8, vascular endothelial growth factor, and epidermal growth factor receptor in patients with squamous cell cancer of the head and neck. Oral Oncol. 2005, 41, 70–76. [Google Scholar] [CrossRef]
- John, M.A.; Li, Y.; Zhou, X.; Denny, P.; Ho, C.M.; Montemagno, C.; Shi, W.; Qi, F.; Wu, B.; Sinha, U.; et al. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 2004, 30, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Nowsheen, S.; Bonner, J.A.; Lobuglio, A.F.; Trummell, H.; Whitley, A.C.; Dobelbower, M.C.; Yang, E.S. Cetuximab augments cytotoxicity with poly (ADP-ribose) polymerase inhibition in head and neck cancer. PLoS ONE 2011, 6, e24148. [Google Scholar] [CrossRef] [PubMed]
- Hagan, M.P.; Yacoub, A.; Dent, P. Radiation-induced PARP activation is enhanced through EGFR-ERK signaling. J. Cell Biochem. 2007, 101, 1384–1393. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, M.; Gleißner, L.; Riepen, B.; Hoffer, K.; Wurlitzer, M.; Petersen, C.; Dikomey, E.; Rothkamm, K.; Schlüter, H.; Kriegs, M. Quantitative proteomics unveiled: Regulation of DNA double strand break repair by EGFR involves PARP1. Radiother. Oncol. 2015, 116, 423–430. [Google Scholar]
- Nowsheen, S.; Cooper, T.; Stanley, J.A.; Yang, E.S. Synthetic lethal interactions between EGFR and PARP inhibition in human triple negative breast cancer cells. PLoS ONE 2012, 7, e46614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitta, M.; Kozono, D.; Kennedy, R.; Stommel, J.; Ng, K.; Zinn, P.O.; Kushwaha, D.; Kesari, S.; Inda, M.M.; Wykosky, J.; et al. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy. PLoS ONE 2010, 5, e10767. [Google Scholar] [CrossRef]
- Dong, Q.; Du, Y.; Li, H.; Liu, C.; Wei, Y.; Chen, M.K.; Zhao, X.; Chu, Y.Y.; Qiu, Y.; Qin, L.; et al. EGFR and c-MET cooperate to enhance resistance to PARP inhibitors in hepatocellular carcinoma. Cancer Res. 2019, 79, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, H.; Hou, Y.; Ma, X.; Ye, M.; Huang, R.; Hu, B.; Cao, H.; Xu, L.; Liu, M.; et al. Adaptive EGF expression sensitizes pancreatic cancer cells to ionizing radiation through activation of the cyclin D1/p53/PARP pathway. Int. J. Oncol. 2019, 54, 1466–1480. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Wu, H.G.; Jeon, S.R. Epidermal growth factor-induced cell death and radiosensitization in epidermal growth factor receptor-overexpressing cancer cell lines. Anticancer Res. 2015, 35, 245–253. [Google Scholar]
- Pfäffle, H.N.; Wang, M.; Gheorghiu, L.; Ferraiolo, N.; Greninger, P.; Borgmann, K.; Settleman, J.; Benes, C.H.; Sequist, L.V.; Zou, L.; et al. EGFR-activating mutations correlate with a Fanconi anemia-like cellular phenotype that includes PARP inhibitor sensitivity. Cancer Res. 2013, 73, 6254–6263. [Google Scholar]
- Soodgupta, D.; White, L.S.; Yang, W.; Johnston, R.; Andrews, J.M.; Kohyama, M.; Murphy, K.M.; Mosammaparast, N.; Payton, J.E.; Bednarski, J.J. RAG-Mediated DNA breaks attenuate PU.1 activity in early B cells through activation of a SPIC-BCLAF1 complex. Cell Rep. 2019, 29, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Pugh, J.L.; Nemat-Gorgani, N.; Norman, P.J.; Guethlein, L.A.; Parham, P. Human NK cells downregulate Zap70 and Syk in response to prolonged activation or DNA damage. J. Immunol. 2018, 200, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Lazebnik, Y.A.; Kaufmann, S.H.; Desnoyers, S.; Poirier, G.G.; Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994, 371, 346–347. [Google Scholar] [CrossRef] [PubMed]
- Malireddi, R.K.; Ippagunta, S.; Lamkanfi, M.; Kanneganti, T.D. Cutting edge: Proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes. J. Immunol. 2010, 185, 3127–3130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erener, S.; Pétrilli, V.; Kassner, I.; Minotti, R.; Castillo, R.; Santoro, R.; Hassa, P.O.; Tschopp, J.; Hottiger, M.O. Inflammasome-activated caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-κB target genes. Mol. Cell 2012, 46, 200–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, D.W. Epidermal growth factor inhibits growth of A431 human epidermoid carcinoma in serum-free cell culture. J. Cell Biol. 1982, 93, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulli, L.F.; Palmer, K.C.; Chen, Y.Q.; Reddy, K.B. Epidermal growth factor-induced apoptosis in A431 cells can be reversed by reducing the tyrosine kinase activity. Cell Growth Differ. 1996, 7, 173–178. [Google Scholar]
- Andersen, P.; Pedersen, M.W.; Woetmann, A.; Villingshøj, M.; Stockhausen, M.T.; Odum, N.; Poulsen, H.S. EGFR induces expression of IRF-1 via STAT1 and STAT3 activation leading to growth arrest of human cancer cells. Int. J. Cancer 2008, 122, 342–349. [Google Scholar] [CrossRef]
- Suzuki, Y.; Demoliere, C.; Kitamura, D.; Takeshita, H.; Deuschle, U.; Watanabe, T. HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J. Immunol. 1997, 158, 2736–2744. [Google Scholar]
- Jackson, N.M.; Ceresa, B.P. EGFR-mediated apoptosis via STAT3. Exp. Cell Res. 2017, 356, 93–103. [Google Scholar] [CrossRef]
- Mathew, M.P.; Tan, E.; Saeui, C.T.; Bovonratwet, P.; Sklar, S.; Bhattacharya, R.; Yarema, K.J. Metabolic flux-driven sialylation alters internalization, recycling, and drug sensitivity of the epidermal growth factor receptor (EGFR) in SW1990 pancreatic cancer cells. Oncotarget 2016, 7, 66491–66511. [Google Scholar] [CrossRef]
- Hendriks, B.S.; Griffiths, G.J.; Benson, R.; Kenyon, D.; Lazzara, M.; Swinton, J.; Beck, S.; Hickinson, M.; Beusmans, J.M.; Lauffenburger, D.; et al. Decreased internalisation of erbB1 mutants in lung cancer is linked with a mechanism conferring sensitivity to gefitinib. Syst. Biol. 2006, 153, 457–466. [Google Scholar] [CrossRef] [PubMed]
Characteristics | P-Syk Expression | p Value | |
---|---|---|---|
Low (n = 68) | High (n = 37) | ||
Gender | 0.488 | ||
Male | 60 (88%) | 35 (95%) | |
Female | 8 (12%) | 2 (5%) | |
Mean Age (years) ± SD | 53.5 ± 14.5 | 56.7 ± 12.1 | 0.255 |
Age | 0.628 | ||
<65 years | 51 (75%) | 30 (81%) | |
≧65 years | 17 (25%) | 7 (19%) | |
Grading of SCC | 0.002 | ||
Well to moderately differentiated | 58 (85%) | 21 (57%) | |
Poorly differentiated | 10 (15%) | 16 (43%) | |
Lymphovascular invasion | 0.018 | ||
Negative | 49 (72%) | 17 (47%) | |
Positive | 19 (28%) | 19 (53%) | |
Perineural invasion | 0.153 | ||
Negative | 35 (51%) | 13 (36%) | |
Positive | 33 (49%) | 23 (64%) | |
Tumor size and extent | 1.000 | ||
T1+T2 | 46 (68%) | 25 (68%) | |
T3+T4 | 22 (32%) | 12 (32%) | |
Lymph node metastasis | 0.669 | ||
Negative | 45 (67%) | 23 (62%) | |
Positive | 22 (33%) | 14 (38%) | |
Stage (AJCC 7th Ed) | 1.000 | ||
I + II | 33 (50%) | 18 (49%) | |
III + IV | 33 (50%) | 19 (51%) |
Variables | Overall Survival | p Value | |
---|---|---|---|
Hazard Ratio | 95% CI | ||
Gender | 0.388 | ||
Male | 1 | - | - |
Female | 1.509 | 0.593–3.840 | |
Age | 0.013 | ||
<65 years | 1 | - | - |
≧65 years | 2.257 | 1.191–4.277 | |
Grading of SCC | 0.537 | ||
Well-moderately differentiated | 1 | - | - |
Poorly differentiated | 1.216 | 0.653–2.266 | |
Lymphovascular invasion | 0.608 | ||
Negative | 1 | ||
Positive | 1.173 | 0.637–2.158 | |
Perineural invasion | 0.423 | ||
Negative | 1 | ||
Positive | 1.288 | 0.694–2.393 | |
Tumor size and extent | <0.001 | ||
T1+T2 | 1 | - | - |
T3+T4 | 4.636 | 2.562–8.389 | |
Lymph node metastasis | 0.002 | ||
Negative | 1 | - | - |
Positive | 2.606 | 1.432–4.742 | |
Stage (AJCC 7th Ed) | <0.001 | ||
I + II | 1 | - | - |
III + IV | 4.053 | 2.104–7.808 | |
P-Syk expression | 0.025 | ||
Low | 1 | - | - |
High | 2.024 | 1.094–3.742 |
Variables | Overall Survival | p Value | |
---|---|---|---|
Hazard Ratio | 95% CI | ||
Gender | 0.279 | ||
Male | 1 | - | - |
Female | 1.887 | 0.597–5.960 | |
Age | 0.001 | ||
<65 years | 1 | - | - |
≧65 years | 4.153 | 1.774–9.724 | |
Grading of SCC | 0.393 | ||
Well-moderately differentiated | 1 | - | - |
Poorly differentiated | 0.710 | 0.324–1.558 | |
Lymphovascular invasion | 0.809 | ||
Negative | 1 | ||
Positive | 1.108 | 0.480–2.557 | |
Perineural invasion | 0.586 | ||
Negative | 1 | ||
Positive | 1.246 | 0.566–2.743 | |
Tumor size and extent | 0.015 | ||
T1+T2 | 1 | - | - |
T3+T4 | 3.429 | 1.267–9.276 | |
Lymph node metastasis | 0.070 | ||
Negative | 1 | - | - |
Positive | 2.572 | 0.927–7.139 | |
Stage (AJCC 7th Ed) | 0.668 | ||
I + II | 1 | - | - |
III + IV | 1.356 | 0.337–5.447 | |
P-Syk expression | 0.002 | ||
Low | 1 | - | - |
High | 3.393 | 1.581–7.283 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.-Y.; Chen, W.-Y.; Chen, C.-L.; Wu, N.-L.; Lin, W.-W. Synergistic Anti-Tumour Effect of Syk Inhibitor and Olaparib in Squamous Cell Carcinoma: Roles of Syk in EGFR Signalling and PARP1 Activation. Cancers 2020, 12, 489. https://doi.org/10.3390/cancers12020489
Huang D-Y, Chen W-Y, Chen C-L, Wu N-L, Lin W-W. Synergistic Anti-Tumour Effect of Syk Inhibitor and Olaparib in Squamous Cell Carcinoma: Roles of Syk in EGFR Signalling and PARP1 Activation. Cancers. 2020; 12(2):489. https://doi.org/10.3390/cancers12020489
Chicago/Turabian StyleHuang, Duen-Yi, Wei-Yu Chen, Chi-Long Chen, Nan-Lin Wu, and Wan-Wan Lin. 2020. "Synergistic Anti-Tumour Effect of Syk Inhibitor and Olaparib in Squamous Cell Carcinoma: Roles of Syk in EGFR Signalling and PARP1 Activation" Cancers 12, no. 2: 489. https://doi.org/10.3390/cancers12020489
APA StyleHuang, D. -Y., Chen, W. -Y., Chen, C. -L., Wu, N. -L., & Lin, W. -W. (2020). Synergistic Anti-Tumour Effect of Syk Inhibitor and Olaparib in Squamous Cell Carcinoma: Roles of Syk in EGFR Signalling and PARP1 Activation. Cancers, 12(2), 489. https://doi.org/10.3390/cancers12020489