Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene
Abstract
:1. Introduction
2. Pathophysiology of APL
3. PML-RARA Typical Isoforms
4. PML-RARA Atypical Isoforms
5. Responsiveness to Treatment of APL Patients Depending on PML-RARA Isoforms
6. APL Molecular Variants
7. Additional Molecular Events to PML-RARA
7.1. Additional Chromosomal Abnormalities
7.2. Gene Mutations at Diagnosis, Relapse and Resistance
8. Standardized Molecular Approaches to Study Minimal Residual Disease
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bennett, J.M.; Catovsky, D.; Daniel, M.T.; Flandrin, G.; Galton, D.A.G.; Gralnick, H.R.; Sultan, C. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br. J. Haematol. 1976, 33, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Golomb, H.M.; Rowley, J.D.; Vardiman, J.W.; Testa, J.R.; Butler, A. “Microgranular” acute promyelocytic leukemia: A distinct clinical, ultrastructural, and cytogenetic entity. Blood 1980, 55, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castoldi, G.L.; Liso, V.; Specchia, G.; Tomasi, P. Acute promyelocytic leukemia: Morphological aspects. Leukemia 1994, 8, 1441–1446. [Google Scholar] [PubMed]
- de Thé, H.; Chomienne, C.; Lanotte, M.; Degos, L.; Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 1990, 347, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Borrow, J.; Goddard, A.D.; Sheer, D.; Solomon, E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 1990, 249, 1577–1580. [Google Scholar] [CrossRef] [PubMed]
- Alcalay, M.; Zangrilli, D.; Pandolfi, P.P.; Longo, L.; Mencarelli, A.; Giacomucci, A.; Rocchi, M.; Biondi, A.; Rambaldi, A.; Lo Coco, F. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor alpha locus. Proc. Natl. Acad. Sci. USA 1991, 88, 1977–1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemons, R.S.; Eilender, D.; Waldmann, R.A.; Rebentisch, M.; Frej, A.K.; Ledbetter, D.H.; Willman, C.; McConnell, T.; O’Connell, P. Cloning and characterization of the t(15;17) translocation breakpoint region in acute promyelocytic leukemia. Genes. Chromosomes Cancer 1990, 2, 79–87. [Google Scholar] [CrossRef]
- Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Thiede, C.; Orlando, S.M.; Iacobelli, S.; Ferrara, F.; Fazi, P.; Cicconi, L.; Di Bona, E.; et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med. 2013, 369, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Bowen, D.; Kell, J.; Knapper, S.; Morgan, Y.G.; Lok, J.; Grech, A.; Jones, G.; et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): Results of a randomised, controlled, phase 3 trial. Lancet. Oncol. 2015, 16, 1295–1305. [Google Scholar] [CrossRef]
- Iland, H.J.; Collins, M.; Bradstock, K.; Supple, S.G.; Catalano, A.; Hertzberg, M.; Browett, P.; Grigg, A.; Firkin, F.; Campbell, L.J.; et al. Use of arsenic trioxide in remission induction and consolidation therapy for acute promyelocytic leukaemia in the Australasian Leukaemia and Lymphoma Group (ALLG) APML4 study: A non-randomised phase 2 trial. Lancet. Haematol. 2015, 2, e357–e366. [Google Scholar] [CrossRef]
- Conneely, S.E.; Stevens, A.M. Advances in Pediatric Acute Promyelocytic Leukemia. Children 2020, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Jensen, K.; Shiels, C.; Freemont, P.S. PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001, 20, 7223–7233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Kao, H.Y. Post-translational modifications of PML: Consequences and implications. Front. Oncol. 2012, 2, 210. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Müller, S.; Ronchetti, S.; Freemont, P.S.; Dejean, A.; Pandolfi, P.P. Role of SUMO-1-modified PML in nuclear body formation. Blood 2000, 95, 2748–2752. [Google Scholar] [CrossRef] [PubMed]
- Salomoni, P.; Pandolfi, P.P. The role of PML in tumor suppression. Cell 2002, 108, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Viale, A.; De Franco, F.; Orleth, A.; Cambiaghi, V.; Giuliani, V.; Bossi, D.; Ronchini, C.; Ronzoni, S.; Muradore, I.; Monestiroli, S.; et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 2009, 457, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Lallemand-Breitenbach, V.; de Thé, H. PML nuclear bodies. Cold Spring Harb. Perspect. Biol. 2010, 2, a000661. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, R.; Pandolfi, P.P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell Biol. 2007, 8, 1006–1016. [Google Scholar] [CrossRef]
- de Thé, H.; Le Bras, M.; Lallemand-Breitenbach, V. Acute promyelocytic leukemia, arsenic, and PML bodies. J. Cell Biol. 2012, 198, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, H.; Ichikawa, H.; Tagata, Y.; Katsumoto, T.; Ohnishi, K.; Akao, Y.; Naoe, T.; Pandolfi, P.P.; Kitabayashi, I. PML-retinoic acid receptor alpha inhibits PML IV enhancement of PU.1-induced C/EBPepsilon expression in myeloid differentiation. Mol. Cell. Biol. 2007, 27, 5819–5834. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.A.; Pandolfi, P.P.; Aikawa, Y.; Tagata, Y.; Ohki, M.; Kitabayashi, I. Physical and functional link of the leukemia-associated factors AML1 and PML. Blood 2005, 105, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.X.; Zou, W.X.; Lin, P.; Chang, K.S. A role for PML3 in centrosome duplication and genome stability. Mol. Cell 2005, 17, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Matt, S.; Hofmann, T.G. Crosstalk between p53 modifiers at PML bodies. Mol. Cell. Oncol. 2018, 5, e1074335. [Google Scholar] [CrossRef] [Green Version]
- Ivanschitz, L.; Takahashi, Y.; Jollivet, F.; Ayrault, O.; Le Bras, M.; de Thé, H. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc. Natl. Acad. Sci. USA 2015, 112, 14278–14283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischof, O.; Kirsh, O.; Pearson, M.; Itahana, K.; Pelicci, P.G.; Dejean, A. Deconstructing PML-induced premature senescence. EMBO J. 2002, 21, 3358–3369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, K.; Bernardi, R.; Morotti, A.; Matsuoka, S.; Saglio, G.; Ikeda, Y.; Rosenblatt, J.; Avigan, D.E.; Teruya-Feldstein, J.; Pandolfi, P.P. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008, 453, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Carracedo, A.; Weiss, D.; Arai, F.; Ala, U.; Avigan, D.E.; Schafer, Z.T.; Evans, R.M.; Suda, T.; Lee, C.H.; et al. A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 2012, 18, 1350–1358. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Tian, Y.; Hu, Q.; Xiao, X.; Chen, S. PML/RARa blocks the differentiation and promotes the proliferation of acute promyelocytic leukemia through activating MYB expression by transcriptional and epigenetic regulation mechanisms. J. Cell. Biochem. 2018, 120, 1210–1220. [Google Scholar] [CrossRef]
- Khan, M.M.; Nomura, T.; Kim, H.; Kaul, S.C.; Wadhwa, R.; Shinagawa, T.; Ichikawa-Iwata, E.; Zhong, S.; Pandolfi, P.P.; Ishii, S. Role of PML and PML-RARalpha in Mad-mediated transcriptional repression. Mol. Cell 2001, 7, 1233–1243. [Google Scholar] [CrossRef]
- Zelent, A.; Guidez, F.; Melnick, A.; Waxman, S.; Licht, J.D. Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene 2001, 20, 7186–7203. [Google Scholar] [CrossRef] [Green Version]
- Collins, S.J. The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia 2002, 16, 1896–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, P.; Nakshatri, H.; Chambon, P. Mouse retinoic acid receptor alpha 2 isoform is transcribed from a promoter that contains a retinoic acid response element. Proc. Natl. Acad. Sci. USA 1991, 88, 10138–10142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, L.; Kao, H.Y.; Chakravarti, D.; Lin, R.J.; Hassig, C.A.; Ayer, D.E.; Schreiber, S.L.; Evans, R.M. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 1997, 89, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Kastner, P.; Lawrence, H.J.; Waltzinger, C.; Ghyselinck, N.B.; Chambon, P.; Chan, S. Positive and negative regulation of granulopoiesis by endogenous RARα. Blood 2001, 97, 1314–1320. [Google Scholar] [CrossRef] [Green Version]
- Lo-Coco, F.; Hasan, S.K. Understanding the molecular pathogenesis of acute promyelocytic leukemia. Best Pr. Res. Clin. Haematol. 2014, 27, 3–9. [Google Scholar] [CrossRef]
- Pandolfi, P.P. Oncogenes and tumor suppressors in the molecular pathogenesis of acute promyelocytic leukemia. Hum. Mol. Genet. 2001, 10, 769–775. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.J.; Evans, R.M. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol. Cell 2000, 5, 821–830. [Google Scholar] [CrossRef]
- Minucci, S.; Maccarana, M.; Cioce, M.; De Luca, P.; Gelmetti, V.; Segalla, S.; Di Croce, L.; Giavara, S.; Matteucci, C.; Gobbi, A.; et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol. Cell 2000, 5, 811–820. [Google Scholar] [CrossRef]
- Saeed, S.; Logie, C.; Francoijs, K.J.; Frigè, G.; Romanenghi, M.; Nielsen, F.G.; Raats, L.; Shahhoseini, M.; Huynen, M.; Altucci, L.; et al. Chromatin accessibility, p300, and histone acetylation define PML-RARα and AML1-ETO binding sites in acute myeloid leukemia. Blood 2012, 120, 3058–3068. [Google Scholar] [CrossRef] [Green Version]
- He, L.Z.; Tribioli, C.; Rivi, R.; Peruzzi, D.; Pelicci, P.G.; Soares, V.; Cattoretti, G.; Pandolfi, P.P. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc. Natl. Acad. Sci. USA 1997, 94, 5302–5307. [Google Scholar] [CrossRef] [Green Version]
- Grisolano, J.L.; Wesselschmidt, R.L.; Pelicci, P.G.; Ley, T.J. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 1997, 89, 376–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaillard, C.; Surianarayanan, S.; Bentley, T.; Warr, M.R.; Fitch, B.; Geng, H.; Passegué, E.; de Thé, H.; Kogan, S.C. Identification of IRF8 as a potent tumor suppressor in murine acute promyelocytic leukemia. Blood Adv. 2018, 2, 2462–2466. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, C.; Tokuyasu, T.A.; Rosen, G.; Sotzen, J.; Vitaliano-Prunier, A.; Roy, R.; Passegué, E.; De Thé, H.; Figueroa, M.E.; Kogan, S.C. Transcription and methylation analyses of preleukemic promyelocytes indicate a dual role for PML/RARA in leukemia initiation. Haematologica 2015, 100, 1064–1075. [Google Scholar] [PubMed] [Green Version]
- Kamashev, D.; Vitoux, D.; de Thé, H. PML–RARA-RXR Oligomers Mediate Retinoid and Rexinoid/cAMP Cross-Talk in Acute Promyelocytic Leukemia Cell Differentiation. J. Exp. Med. 2004, 199, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Martens, J.H.A.; Brinkman, A.B.; Simmer, F.; Francoijs, K.J.; Nebbioso, A.; Ferrara, F.; Altucci, L.; Stunnenberg, H.G. PML-RARalpha/RXR Alters the Epigenetic Landscape in Acute Promyelocytic Leukemia. Cancer Cell 2010, 17, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Gianni, M.; Kopf, E.; Honoré, N.; Chelbi-Alix, M.; Koken, M.; Quignon, F.; Rochette-Egly, C.; de Thé, H. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc. Natl. Acad. Sci. USA 1999, 96, 14807–14812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lallemand-Breitenbach, V.; Jeanne, M.; Benhenda, S.; Nasr, R.; Lei, M.; Peres, L.; Zhou, J.; Zhu, J.; Raught, B.; de Thé, H. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 2008, 10, 547–555. [Google Scholar] [CrossRef]
- Freedman, L.P. Increasing the complexity of coactivation in nuclear receptor signaling. Cell 1999, 97, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Sahin, U.; De Thé, H.; Lallemand-Breitenbach, V. PML nuclear bodies: Assembly and oxidative stress-sensitive sumoylation. Nucleus 2014, 5, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Lallemand-Breitenbach, V.; Zhu, J.; Kogan, S.; Chen, Z.; de Thé, H. Opinion: How patients have benefited from mouse models of acute promyelocytic leukaemia. Nat. Rev. Cancer 2005, 5, 821–827. [Google Scholar] [CrossRef]
- Westervelt, P.; Lane, A.A.; Pollock, J.L.; Oldfather, K.; Holt, M.S.; Zimonjic, D.B.; Popescu, N.C.; DiPersio, J.F.; Ley, T.J. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 2003, 102, 1857–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, J.L.; Westervelt, P.; Kurichety, A.K.; Pelicci, P.G.; Grisolano, J.L.; Ley, T.J. A bcr-3 isoform of RARalpha-PML potentiates the development of PML-RARalpha-driven acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 1999, 96, 15103–15108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wartman, L.D.; Larson, D.E.; Xiang, Z.; Ding, L.; Chen, K.; Lin, L.; Cahan, P.; Klco, J.M.; Welch, J.S.; Li, C.; et al. Sequencing a mouse acute promyelocytic leukemia genome reveals genetic events relevant for disease progression. J. Clin. Investig. 2011, 121, 1445–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, J.L.; Lane, A.A.; Schrimpf, K.; Ley, T.J. Murine acute promyelocytic leukemia cells can be recognized and cleared in vivo by adaptive immune mechanisms. Haematologica 2005, 90, 1042–1049. [Google Scholar]
- Padua, R.A.; Larghero, J.; Robin, M.; le Pogam, C.; Schlageter, M.H.; Muszlak, S.; Fric, J.; West, R.; Rousselot, P.; Phan, T.H.; et al. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nat. Med. 2003, 9, 1413–1417. [Google Scholar] [CrossRef]
- Lallemand-Breitenbach, V.; Guillemin, M.C.; Janin, A.; Daniel, M.T.; Degos, L.; Kogan, S.C.; Bishop, J.M.; de Thé, H. Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J. Exp. Med. 1999, 189, 1043–1052. [Google Scholar] [CrossRef]
- Rego, E.M.; He, L.Z.; Warrell, R.P.; Wang, Z.G.; Pandolfi, P.P. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc. Natl. Acad. Sci. USA 2000, 97, 10173–10178. [Google Scholar] [CrossRef] [Green Version]
- Kosugi, H.; Ito, M.; Yamamoto, Y.; Towatari, M.; Ito, M.; Ueda, R.; Saito, H.; Naoe, T. In vivo effects of a histone deacetylase inhibitor, FK228, on human acute promyelocytic leukemia in NOD / Shi-scid/scid mice. Jpn. J. Cancer Res. 2001, 92, 529–536. [Google Scholar] [CrossRef]
- Matsushita, H.; Yahata, T.; Sheng, Y.; Nakamura, Y.; Muguruma, Y.; Matsuzawa, H.; Tanaka, M.; Hayashi, H.; Sato, T.; Damdinsuren, A.; et al. Establishment of a humanized APL model via the transplantation of PML-RARA-transduced human common myeloid progenitors into immunodeficient mice. PLoS ONE 2014, 9, e111082. [Google Scholar] [CrossRef]
- Reinisch, A.; Thomas, D.; Corces, M.R.; Zhang, X.; Gratzinger, D.; Hong, W.J.; Schallmoser, K.; Strunk, D.; Majeti, R. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat. Med. 2016, 22, 812–821. [Google Scholar] [CrossRef]
- Pandolfi, P.P.; Alcalay, M.; Fagioli, M.; Zangrilli, D.; Mencarelli, A.; Diverio, D.; Biondi, A.; Lo Coco, F.; Rambaldi, A.; Grignani, F. Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBO J. 1992, 11, 1397–1407. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, R.E.; Li, Y.P.; Rao, S.; Paietta, E.; Andersen, J.; Etkind, P.; Bennett, J.M.; Tallman, M.S.; Wiernik, P.H. Characterization of acute promyelocytic leukemia cases with PML-RAR alpha break/fusion sites in PML exon 6: Identification of a subgroup with decreased in vitro responsiveness to all-trans retinoic acid. Blood 1995, 86, 1540–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slack, J.L.; Willman, C.L.; Andersen, J.W.; Li, Y.P.; Viswanatha, D.S.; Bloomfield, C.D.; Tallman, M.S.; Gallagher, R.E. Molecular analysis and clinical outcome of adult APL patients with the type V PML-RARalpha isoform: Results from intergroup protocol 0129. Blood 2000, 95, 398–403. [Google Scholar] [PubMed]
- Zhao, J.; Liang, J.W.; Xue, H.L.; Shen, S.H.; Chen, J.; Tang, Y.J.; Yu, L.S.; Liang, H.H.; Gu, L.J.; Tang, J.Y.; et al. The genetics and clinical characteristics of children morphologically diagnosed as acute promyelocytic leukemia. Leukemia 2019, 33, 1387–1399. [Google Scholar] [CrossRef]
- Goddard, A.D.; Borrow, J.; Freemont, P.S.; Solomon, E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 1991, 254, 1371–1374. [Google Scholar] [CrossRef]
- Alcalay, M.; Zangrilli, D.; Fagioli, M.; Pandolfi, P.P.; Mencarelli, A.; Lo Coco, F.; Biondi, A.; Grignani, F.; Pelicci, P.G. Expression pattern of the RAR alpha-PML fusion gene in acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 1992, 89, 4840–4844. [Google Scholar] [CrossRef] [Green Version]
- Park, T.S.; Kim, J.S.; Song, J.; Lee, K.A.; Yoon, S.; Suh, B.; Lee, J.H.; Lee, H.J.; Kim, J.K.; Choi, J.R. Acute promyelocytic leukemia with insertion of PML exon 7a and partial deletion of exon 3 of RARA: A novel variant transcript related to aggressive course and not detected with real-time polymerase chain reaction analysis. Cancer Genet. Cytogenet. 2009, 188, 103–107. [Google Scholar] [CrossRef]
- Yoshida, H.; Naoe, T.; Fukutani, H.; Kiyoi, H.; Kubo, K.; Ohno, R. Analysis of the joining sequences of the t(15;17) translocation in human acute promyelocytic leukemia: Sequence non-specific recombination between the PML and RARA genes within identical short stretches. Genes. Chromosomes Cancer 1995, 12, 37–44. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Y.; Jiang, M.; Kong, F.; Chen, Z.; Liu, S.; Li, F. Identification of a new cryptic PML-RARα fusion gene without t(15;17) and biallelic CEBPA mutation in a case of acute promyelocytic leukemia: A case detected only by RT-PCR but not cytogenetics and FISH. Cancer Biol. Ther. 2020. [Google Scholar] [CrossRef]
- Barragán, E.; Bolufer, P.; Martín, G.; Cervera, J.; Moreno, I.; Capote, F.J.; Rosique, P.; Sanz, M.A. Identification of two atypical PML-RAR(alpha) transcripts in two patients with acute promyelocytic leukemia. Leuk. Res. 2002, 26, 439–442. [Google Scholar] [CrossRef]
- Bussaglia, E.; Guardia, R.; Nomdedéu, J.F. A large exon 6 break in V-form acute promyelocytic leukemia: Relevance to clinical management. Leukemia 2007, 21, 2356–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, S.; Ababneh, N.; Awidi, A. Identification of atypical PML-RARA breakpoint in a patient with acute promyelocytic leukemia. Acta Haematol. 2007, 118, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Vizmanos, J.L.; Larrráyoz, M.J.; Odero, M.D.; Lasa, R.; González, M.; Novo, F.J.; Calasanz, M.J. Two new molecular PML-RARalpha variants: Implications for the molecular diagnosis of APL. Haematologica 2002, 87, ELT37. [Google Scholar] [PubMed]
- Iaccarino, L.; Divona, M.; Ottone, T.; Cicconi, L.; Lavorgna, S.; Ciardi, C.; Alfonso, V.; Travaglini, S.; Facchini, L.; Cimino, G.; et al. Identification and monitoring of atypical PML/RARA fusion transcripts in acute promyelocytic leukemia. Genes. Chromosomes Cancer 2019, 58, 60–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, M.; Barragán, E.; Bolufer, P.; Chillón, C.; Colomer, D.; Borstein, R.; Calasanz, M.J.; Gómez-Casares, M.T.; Villegas, A.; Marugán, I.; et al. Pretreatment characteristics and clinical outcome of acute promyelocytic leukaemia patients according to the PML-RAR alpha isoforms: A study of the PETHEMA group. Br. J. Haematol. 2001, 114, 99–103. [Google Scholar] [CrossRef]
- Jovanovic, J.V.; Rennie, K.; Culligan, D.; Peniket, A.; Lennard, A.; Harrison, J.; Vyas, P.; Grimwade, D. Development of real-time quantitative polymerase chain reaction assays to track treatment response in retinoid resistant acute promyelocytic leukemia. Front. Oncol. 2011, 1, 35. [Google Scholar] [CrossRef] [Green Version]
- Chillón, M.C.; González, M.; García-Sanz, R.; Balanzategui, A.; González, D.; López-Pérez, R.; Mateos, M.V.; Alaejos, I.; Rayón, C.; Arbeteta, J.; et al. Two new 3′ PML breakpoints in t(15;17)(q22;q21)-positive acute promyelocytic leukemia. Genes. Chromosomes Cancer 2000, 27, 35–43. [Google Scholar] [CrossRef]
- Cenfra, N.; De Cave, F.; Minotti, C.; Ghia, E.; Rago, A.; Codacci Pisanelli, G.; Diverio, D.; Cimino, G. An acute promyelocytic leukaemia patient with a new atypical promyelocytic leukemia breakpoint. Br. J. Haematol. 2008, 142, 854–856. [Google Scholar] [CrossRef]
- Cao, Y.; Yao, L.; Liu, Y.; Gu, Q.; Dong, W.; Wang, Z.; Wang, F.; Lin, R.; Xie, X.; Cen, J.; et al. An Atypical PML-RARA Rearrangement Resulting from Submicroscopic Insertion of the RARA Gene at the PML Locus with Novel Breakpoints within PML Exon 7b and RARA Exon 3. Acta Haematol. 2019, 142, 98–104. [Google Scholar] [CrossRef]
- Yi, Y.; Pei, M.; Xiao, L.; Sun, L.; Li, J.; Liu, S.; Shen, J.; Zhang, G. Acute promyelocytic leukemia with insertion of PML exon 7c: A novel variant transcript related to good prognosis that is not detected with real-time polymerase chain reaction. Leuk. Lymphoma 2013, 54, 2294–2296. [Google Scholar] [CrossRef]
- Kim, M.J.; Cho, S.Y.; Kim, M.H.; Lee, J.J.; Kang, S.Y.; Cho, E.H.; Huh, J.; Yoon, H.J.; Park, T.S.; Lee, W.I.; et al. FISH-negative cryptic PML-RARA rearrangement detected by long-distance polymerase chain reaction and sequencing analyses: A case study and review of the literature. Cancer Genet. Cytogenet. 2010, 203, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Jezísková, I.; Rázga, F.; Gazdová, J.; Doubek, M.; Jurcek, T.; Korístek, Z.; Mayer, J.; Dvoráková, D. A case of a novel PML/RARA short fusion transcript with truncated transcription variant 2 of the RARA gene. Mol. Diagn. Ther. 2010, 14, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Rabade, N.; Raval, G.; Chaudhary, S.; Subramanian, P.G.; Kodgule, R.; Joshi, S.; Tembhare, P.; Hasan, S.K.; Jain, H.; Sengar, M.; et al. Molecular Heterogeneity in Acute Promyelocytic Leukemia—a Single Center Exp. India. Mediterr. J. Hematol. Infect. Dis. 2018, 10, e2018002. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Sun, G.L.; Li, X.S.; Cao, Q.; Lu, Y.; Jiang, G.S.; Jang, G.S.; Zhang, F.Q.; Chai, J.R.; Wang, Z.Y.; et al. Acute promyelocytic leukemia: Clinical relevance of two major PML-RAR alpha isoforms and detection of minimal residual disease by retrotranscriptase/polymerase chain reaction to predict relapse. Blood 1993, 82, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.J.; et al. Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. [Google Scholar] [CrossRef] [Green Version]
- Baba, S.M.; Pandith, A.A.; Shah, Z.A.; Baba, R.A. Pathogenetic implication of fusion genes in acute promyelocytic leukemia and their diagnostic utility. Clin. Genet. 2019, 95, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Brand, N.J.; Chen, A.; Chen, S.J.; Tong, J.H.; Wang, Z.Y.; Waxman, S.; Zelent, A. Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 1993, 12, 1161–1167. [Google Scholar] [CrossRef]
- Corey, S.J.; Locker, J.; Oliveri, D.R.; Shekhter-Levin, S.; Redner, R.L.; Penchansky, L.; Gollin, S.M. A non-classical translocation involving 17q12 (retinoic acid receptor alpha) in acute promyelocytic leukemia (APML) with atypical features. Leukemia 1994, 8, 1350–1353. [Google Scholar]
- Wells, R.A.; Catzavelos, C.; Kamel-Reid, S. Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat. Genet. 1997, 17, 109–113. [Google Scholar] [CrossRef]
- Arnould, C.; Philippe, C.; Bourdon, V.; Gregoire, M.J.; Berger, R.; Jonveaux, P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum. Mol. Genet. 1999, 8, 1741–1749. [Google Scholar] [CrossRef] [Green Version]
- Catalano, A.; Dawson, M.A.; Somana, K.; Opat, S.; Schwarer, A.; Campbell, L.J.; Iland, H. The PRKAR1A gene is fused to RARA in a new variant acute promyelocytic leukemia. Blood 2007, 110, 4073–4076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, T.; Mori, A.; Darmanin, S.; Hashino, S.; Tanaka, J.; Asaka, M. The seventh pathogenic fusion gene FIP1L1-RARA was isolated from a t(4;17)-positive acute promyelocytic leukemia. Haematologica 2008, 93, 1414–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, Y.; Tsuzuki, S.; Tsuzuki, M.; Handa, K.; Inaguma, Y.; Emi, N. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 2010, 116, 4274–4283. [Google Scholar] [CrossRef] [Green Version]
- Won, D.; Shin, S.Y.; Park, C.J.J.; Jang, S.; Chi, H.S.S.; Lee, K.H.H.; Lee, J.O.O.; Seo, E.J.J. OBFC2A/RARA: A novel fusion gene in variant acute promyelocytic leukemia. Blood 2013, 121, 1432–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Li, S.; Zhou, C.; Li, C.; Ru, K.; Rao, Q.; Xing, H.; Tian, Z.; Tang, K.; Mi, Y.; et al. TBLR1 fuses to retinoid acid receptor α in a variant t(3;17)(q26;q21) translocation of acute promyelocytic leukemia. Blood 2014, 124, 936–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhong, H.Y.; Zhang, Y.; Xiao, L.; Bai, L.H.; Liu, S.F.; Zhou, G.B.; Zhang, G.S. GTF2I-RARA is a novel fusion transcript in a t(7;17) variant of acute promyelocytic leukaemia with clinical resistance to retinoic acid. Br. J. Haematol. 2015, 168, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.C.; Jain, N.; Mehrotra, M.; Zhagn, J.; Protopopov, A.; Zuo, Z.; Pemmaraju, N.; DiNardo, C.; Hirsch-Ginsberg, C.; Wang, S.A.; et al. Identification of a novel fusion gene, IRF2BP2-RARA, in acute promyelocytic leukemia. J. Natl. Compr. Canc. Netw. 2015, 13, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.K.; Wang, A.Z.; Wong, T.H.Y.; Wan, T.S.K.; Cheung, J.S.; Raghupathy, R.; Chan, N.P.H.; Ng, M.H.L. FNDC3B is another novel partner fused to RARA in the t(3;17)(q26;q21) variant of acute promyelocytic leukemia. Blood 2017, 129, 2705–2709. [Google Scholar] [CrossRef]
- Such, E.; Cervera, J.; Valencia, A.; Barragán, E.; Ibañez, M.; Luna, I.; Fuster, O.; Perez-Sirvent, M.L.; Senent, L.; Sempere, A.; et al. A novel NUP98/RARG gene fusion in acute myeloid leukemia resembling acute promyelocytic leukemia. Blood 2011, 117, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.S.; Do, Y.R.; Ki, C.S.; Lee, C.; Kim, D.H.; Lee, W.; Ryoo, N.H.; Jeon, D.S. Identification of a novel PML-RARG fusion in acute promyelocytic leukemia. Leukemia 2017, 31, 1992–1995. [Google Scholar] [CrossRef]
- Such, E.; Cordón, L.; Sempere, A.; Villamón, E.; Ibañez, M.; Luna, I.; Gómez-Seguí, I.; López-Pavía, M.; Alonso, C.; Lo-Coco, F.; et al. In vitro all-trans retinoic acid sensitivity of acute myeloid leukemia blasts with NUP98/RARG fusion gene. Ann. Hematol. 2014, 93, 1931–1933. [Google Scholar] [CrossRef] [PubMed]
- Licht, J.D.; Chomienne, C.; Goy, A.; Chen, A.; Scott, A.A.; Head, D.R.; Michaux, J.L.; Wu, Y.; DeBlasio, A.; Miller, W.H. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 1995, 85, 1083–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicci, C.; Ottaviani, E.; Luatti, S.; Grafone, T.; Tonelli, M.; Motta, M.R.; Malagola, M.; Marzocchi, G.; Martinelli, G.; Baccarani, M.; et al. Molecular and cytogenetic characterization of a new case of t(5;17)(q35;q21) variant acute promyelocytic leukemia. Leukemia 2005, 19, 470–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redner, R.L.; Rush, E.A.; Faas, S.; Rudert, W.A.; Corey, S.J. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996, 87, 882–886. [Google Scholar] [CrossRef] [Green Version]
- Ciangola, G.; Gurnari, C.; Paterno, G.; Mirabile, M.; Angelini, M.; Lavorgna, S.; Ottone, T.; Travaglini, S.; Cicconi, L.; LoCoco, F. STAT5b-RARa-positive acute myeloid leukemia: Diagnostic and therapeutic challenges of a rare AML subtype. Leuk. Res. 2019, 78, 21–23. [Google Scholar] [CrossRef]
- Menezes, J.; Acquadro, F.; de la Villa, C.P.P.; García-Sánchez, F.; Álvarez, S.; Cigudosa, J.C. FIP1L1/RARA with breakpoint at FIP1L1 intron 13: A variant translocation in acute promyelocytic leukemia. Haematologica 2011, 96, 1565–1566. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, S.; Ichikawa, S.; Ishikawa, I.; Takahashi, T.; Fujiwara, T.; Harigae, H. Successful treatment of acute promyelocytic leukemia with a t(X;17)(p11.4;q21) and BCOR-RARA fusion gene. Cancer Genet. 2015, 208, 162–163. [Google Scholar] [CrossRef]
- Osumi, T.; Watanabe, A.; Okamura, K.; Nakabayashi, K.; Yoshida, M.; Tsujimoto, S.I.; Uchiyama, M.; Takahashi, H.; Tomizawa, D.; Hata, K.; et al. Acute promyelocytic leukemia with a cryptic insertion of RARA into TBL1XR1. Genes. Chromosomes Cancer 2019, 58, 820–823. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, F.; Hu, H.; Wen, J.; Su, J.; Zhou, Q.; Qu, W. A rare case of acute promyelocytic leukemia with IRF2BP2-RARA fusion; and literature review. Onco Targets Ther. 2019, 12, 6157–6163. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, J.V.; Chillón, M.C.; Vincent-Fabert, C.; Dillon, R.; Voisset, E.; Gutiérrez, N.C.; Sanz, R.G.; Lopez, A.A.M.; Morgan, Y.G.; Lok, J.; et al. The cryptic IRF2BP2-RARA fusion transforms hematopoietic stem/progenitor cells and induces retinoid-sensitive acute promyelocytic leukemia. Leukemia 2017, 31, 747–751. [Google Scholar] [CrossRef]
- Shimomura, Y.; Mitsui, H.; Yamashita, Y.; Kamae, T.; Kanai, A.; Matsui, H.; Ishibashi, T.; Tanimura, A.; Shibayama, H.; Oritani, K.; et al. New variant of acute promyelocytic leukemia with IRF2BP2-RARA fusion. Cancer Sci. 2016, 107, 1165–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazharuddin, S.; Chattopadhyay, A.; Levy, M.Y.; Redner, R.L. IRF2BP2-RARA t(1;17)(q42.3;q21.2) APL blasts differentiate in response to all-trans retinoic acid. Leuk. Lymphoma 2018, 59, 2246–2249. [Google Scholar] [CrossRef] [PubMed]
- Mallardo, M.; Caronno, A.; Pruneri, G.; Raviele, P.R.; Viale, A.; Pelicci, P.G.; Colombo, E. NPMc+ and FLT3_ITD mutations cooperate in inducing acute leukaemia in a novel mouse model. Leukemia 2013, 27, 2248–2251. [Google Scholar] [CrossRef] [PubMed]
- Vassiliou, G.S.; Cooper, J.L.; Rad, R.; Li, J.; Rice, S.; Uren, A.; Rad, L.; Ellis, P.; Andrews, R.; Banerjee, R.; et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat. Genet. 2011, 43, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network; Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.G.; Hoadley, K.; Triche, T.J.; Laird, P.W.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [Google Scholar]
- Riva, L.; Ronchini, C.; Bodini, M.; Lo-Coco, F.; Lavorgna, S.; Ottone, T.; Martinelli, G.; Iacobucci, I.; Tarella, C.; Cignetti, A.; et al. Acute promyelocytic leukemias share cooperative mutations with other myeloid-leukemia subgroups. Blood Cancer J. 2013, 3, e147. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Mermel, C.H.; Robinson, J.T.; Garraway, L.A.; Golub, T.R.; Meyerson, M.; Gabriel, S.B.; Lander, E.S.; Getz, G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014, 505, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Cervera, J.; Montesinos, P.; Hernández-Rivas, J.M.; Calasanz, M.J.; Aventín, A.; Ferro, M.T.; Luño, E.; Sánchez, J.; Vellenga, E.; Rayón, C.; et al. Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Haematologica 2010, 95, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Delgado, M.D.; Albajar, M.; Gomez-Casares, M.T.; Batlle, A.; León, J. MYC oncogene in myeloid neoplasias. Clin. Transl. Oncol. 2013, 15, 87–94. [Google Scholar] [CrossRef]
- Jones, L.; Wei, G.; Sevcikova, S.; Phan, V.; Jain, S.; Shieh, A.; Wong, J.C.Y.; Li, M.; Dubansky, J.; Maunakea, M.L.; et al. Gain of MYC underlies recurrent trisomy of the MYC chromosome in acute promyelocytic leukemia. J. Exp. Med. 2010, 207, 2581–2594. [Google Scholar] [CrossRef] [PubMed]
- Le Beau, M.M.; Davis, E.M.; Patel, B.; Phan, V.T.; Sohal, J.; Kogan, S.C. Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice identify cooperating events and genetic pathways to acute promyelocytic leukemia. Blood 2003, 102, 1072–1074. [Google Scholar] [CrossRef] [PubMed]
- Ronchini, C.; Brozzi, A.; Riva, L.; Luzi, L.; Gruszka, A.M.; Melloni, G.E.M.; Scanziani, E.; Dharmalingam, G.; Mutarelli, M.; Belcastro, V.; et al. PML-RARA-associated cooperating mutations belong to a transcriptional network that is deregulated in myeloid leukemias. Leukemia 2017, 31, 1975–1986. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.; Klaumuenzer, M.; Hanfstein, B.; Mossner, M.; Nolte, F.; Nowak, V.; Oblaender, J.; Hecht, A.; Hütter, G.; Ogawa, S.; et al. SNP array analysis of acute promyelocytic leukemia may be of prognostic relevance and identifies a potential high risk group with recurrent deletions on chromosomal subband 1q31.3. Genes. Chromosomes Cancer 2012, 51, 756–767. [Google Scholar] [CrossRef]
- Gómez-Seguí, I.; Sánchez-Izquierdo, D.; Barragán, E.; Such, E.; Luna, I.; López-Pavía, M.; Ibáñez, M.; Villamón, E.; Alonso, C.; Martín, I.; et al. Single-nucleotide polymorphism array-based karyotyping of acute promyelocytic leukemia. PLoS ONE 2014, 9, e100245. [Google Scholar] [CrossRef]
- Labrador, J.; Luño, E.; Vellenga, E.; Brunet, S.; González-Campos, J.; Chillón, M.C.; Holowiecka, A.; Esteve, J.; Bergua, J.; González-Sanmiguel, J.D.; et al. Clinical significance of complex karyotype at diagnosis in pediatric and adult patients with de novo acute promyelocytic leukemia treated with ATRA and chemotherapy. Leuk. Lymphoma 2018, 60, 1146–1155. [Google Scholar] [CrossRef]
- Mullighan, C.G.; Goorha, S.; Radtke, I.; Miller, C.B.; Coustan-Smith, E.; Dalton, J.D.; Girtman, K.; Mathew, S.; Ma, J.; Pounds, S.B.; et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007, 446, 758–764. [Google Scholar] [CrossRef]
- Ibáñez, M.; Carbonell-Caballero, J.; García-Alonso, L.; Such, E.; Jiménez-Almazán, J.; Vidal, E.; Barragán, E.; López-Pavía, M.; LLop, M.; Martín, I.; et al. The Mutational Landscape of Acute Promyelocytic Leukemia Reveals an Interacting Network of Co-Occurrences and Recurrent Mutations. PLoS ONE 2016, 11, e0148346. [Google Scholar] [CrossRef]
- Shen, Y.; Fu, Y.K.; Zhu, Y.M.; Lou, Y.J.; Gu, Z.H.; Shi, J.Y.; Chen, B.; Chen, C.; Zhu, H.H.; Hu, J.; et al. Mutations of Epigenetic Modifier Genes as a Poor Prognostic Factor in Acute Promyelocytic Leukemia Under Treatment With All-Trans Retinoic Acid and Arsenic Trioxide. EBioMedicine 2015, 2, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Picharski, G.L.; Andrade, D.P.; Fabro, A.L.M.R.; Lenzi, L.; Tonin, F.S.; Ribeiro, R.C.; Figueiredo, B.C. The Impact of Flt3 Gene Mutations in Acute Promyelocytic Leukemia: A Meta-Analysis. Cancers 2019, 11, 1311. [Google Scholar] [CrossRef] [Green Version]
- Barragán, E.; Montesinos, P.; Camos, M.; González, M.; Calasanz, M.J.; Román-Gómez, J.; Gómez-Casares, M.T.; Ayala, R.; López, J.; Fuster, Ó.; et al. Prognostic value of FLT3 mutations in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy. Haematologica 2011, 96, 1470–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esnault, C.; Rahmé, R.; Rice, K.L.; Berthier, C.; Gaillard, C.; Quentin, S.; Maubert, A.L.; Kogan, S.; de Thé, H. FLT3-ITD impedes retinoic acid, but not arsenic, responses in murine acute promyelocytic leukemias. Blood 2019, 133, 1495–1506. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.N.; Tang, Y.L.; Zhang, Y.C.; Zhang, Z.H.; Liu, X.J.; Ke, Z.Y.; Li, Y.; Tan, H.Z.; Huang, L.B.; Luo, X.Q. Arsenic trioxide and all-trans-retinoic acid selectively exert synergistic cytotoxicity against FLT3-ITD AML cells via co-inhibition of FLT3 signaling pathways. Leuk. Lymphoma 2017, 58, 2426–2438. [Google Scholar] [CrossRef] [PubMed]
- Cicconi, L.; Divona, M.; Ciardi, C.; Ottone, T.; Ferrantini, A.; Lavorgna, S.; Alfonso, V.; Paoloni, F.; Piciocchi, A.; Avvisati, G.; et al. PML-RARα kinetics and impact of FLT3-ITD mutations in newly diagnosed acute promyelocytic leukaemia treated with ATRA and ATO or ATRA and chemotherapy. Leukemia 2016, 30, 1987–1992. [Google Scholar] [CrossRef] [PubMed]
- Lehmann-Che, J.; Bally, C.; Letouzé, E.; Berthier, C.; Yuan, H.; Jollivet, F.; Ades, L.; Cassinat, B.; Hirsch, P.; Pigneux, A.; et al. Dual origin of relapses in retinoic-Acid resistant acute promyelocytic leukemia. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iaccarino, L.; Ottone, T.; Alfonso, V.; Cicconi, L.; Divona, M.; Lavorgna, S.; Travaglini, S.; Ferrantini, A.; Falconi, G.; Baer, C.; et al. Mutational landscape of patients with acute promyelocytic leukemia at diagnosis and relapse. Am. J. Hematol. 2019, 94, 1091–1097. [Google Scholar] [CrossRef]
- Madan, V.; Shyamsunder, P.; Han, L.; Mayakonda, A.; Nagata, Y.; Sundaresan, J.; Kanojia, D.; Yoshida, K.; Ganesan, S.; Hattori, N.; et al. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia. Leukemia 2016, 30, 1672–1681. [Google Scholar] [CrossRef]
- Iaccarino, L.; Ottone, T.; Divona, M.; Cicconi, L.; Cairoli, R.; Voso, M.T.; Lo-Coco, F. Mutations affecting both the rearranged and the unrearranged PML alleles in refractory acute promyelocytic leukaemia. Br. J. Haematol. 2016, 172, 909–913. [Google Scholar] [CrossRef]
- Zhu, H.H.; Qin, Y.Z.; Huang, X.J. Resistance to arsenic therapy in acute promyelocytic leukemia. N. Engl. J. Med. 2014, 370, 1864–1866. [Google Scholar] [CrossRef]
- Noguera, N.I.; Catalano, G.; Banella, C.; Divona, M.; Faraoni, I.; Ottone, T.; Arcese, W.; Voso, M.T. Acute Promyelocytic Leukemia: Update on the Mechanisms of Leukemogenesis, Resistance and on Innovative Treatment Strategies. Cancers 2019, 11, 1591. [Google Scholar] [CrossRef] [Green Version]
- Lucena-Araujo, A.R.; Coelho-Silva, J.L.; Pereira-Martins, D.A.; Silveira, D.R.; Koury, L.C.; Melo, R.A.M.; Bittencourt, R.; Pagnano, K.; Pasquini, R.; Nunes, E.C.; et al. Combining gene mutation with gene expression analysis improves outcome prediction in acute promyelocytic leukemia. Blood 2019, 134, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, X.; Ma, S.; Xing, X.; Wang, X.; Zhu, Z. Chemogenomics analysis of drug targets for the treatment of acute promyelocytic leukemia. Ann. Hematol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Jurcic, J.G.; Nimer, S.D.; Scheinberg, D.A.; DeBlasio, T.; Warrell, R.P.; Miller, W.H. Prognostic significance of minimal residual disease detection and PML/RAR-alpha isoform type: Long-term follow-up in acute promyelocytic leukemia. Blood 2001, 98, 2651–2656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimwade, D.; Jovanovic, J.V.; Hills, R.K.; Nugent, E.A.; Patel, Y.; Flora, R.; Diverio, D.; Jones, K.; Aslett, H.; Batson, E.; et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J. Clin. Oncol. 2009, 27, 3650–3658. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.H.; Kakizuka, A.; Frankel, S.R.; Warrell, R.P.; DeBlasio, A.; Levine, K.; Evans, R.M.; Dmitrovsky, E. Reverse transcription polymerase chain reaction for the rearranged retinoic acid receptor alpha clarifies diagnosis and detects minimal residual disease in acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 1992, 89, 2694–2698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo Coco, F.; Diverio, D.; Pandolfi, P.P.; Biondi, A.; Rossi, V.; Avvisati, G.; Rambaldi, A.; Arcese, W.; Petti, M.C.; Meloni, G. Molecular evaluation of residual disease as a predictor of relapse in acute promyelocytic leukaemia. Lancet 1992, 340, 1437–1438. [Google Scholar] [CrossRef]
- Diverio, D.; Pandolfi, P.P.; Biondi, A.; Avvisati, G.; Petti, M.C.; Mandelli, F.; Pelicci, G.; Lo Coco, F. Absence of reverse transcription-polymerase chain reaction detectable residual disease in patients with acute promyelocytic leukemia in long-term remission. Blood 1993, 82, 3556–3559. [Google Scholar] [CrossRef] [Green Version]
- Laczika, K.; Mitterbauer, G.; Korninger, L.; Knöbl, P.; Schwarzinger, I.; Kapiotis, S.; Haas, O.A.; Kyrle, P.A.; Pont, J.; Oehler, L. Rapid achievement of PML-RAR alpha polymerase chain reaction (PCR)-negativity by combined treatment with all-trans-retinoic acid and chemotherapy in acute promyelocytic leukemia: A pilot study. Leukemia 1994, 8, 1–5. [Google Scholar]
- Diverio, D.; Rossi, V.; Avvisati, G.; De Santis, S.; Pistilli, A.; Pane, F.; Saglio, G.; Martinelli, G.; Petti, M.C.; Santoro, A.; et al. Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARalpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter “AIDA” trial. GIMEMA-AIEOP Multicente. Blood 1998, 92, 784–789. [Google Scholar] [CrossRef]
- Burnett, A.K.; Grimwade, D.; Solomon, E.; Wheatley, K.; Goldstone, A.H. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: Result of the Randomized MRC Trial. Blood 1999, 93, 4131–4143. [Google Scholar] [CrossRef]
- Mandelli, F.; Diverio, D.; Avvisati, G.; Luciano, A.; Barbui, T.; Bernasconi, C.; Broccia, G.; Cerri, R.; Falda, M.; Fioritoni, G.; et al. Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell’Adulto and Associazione Italiana di Ematologia ed Oncologia Pe. Blood 1997, 90, 1014–1021. [Google Scholar] [PubMed]
- Meloni, G.; Diverio, D.; Vignetti, M.; Avvisati, G.; Capria, S.; Petti, M.C.; Mandelli, F.; Lo Coco, F. Autologous bone marrow transplantation for acute promyelocytic leukemia in second remission: Prognostic relevance of pretransplant minimal residual disease assessment by reverse-transcription polymerase chain reaction of the PML/RAR alpha fusion gene. Blood 1997, 90, 1321–1325. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; Martín, G.; Rayón, C.; Esteve, J.; González, M.; Díaz-Mediavilla, J.; Bolufer, P.; Barragán, E.; Terol, M.J.; González, J.D.; et al. A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARalpha-positive acute promyelocytic leukemia. PETHEMA group. Blood 1999, 94, 3015–3021. [Google Scholar] [PubMed]
- Lengfelder, E.; Reichert, A.; Schoch, C.; Haase, D.; Haferlach, T.; Löffler, H.; Staib, P.; Heyll, A.; Seifarth, W.; Saussele, S.; et al. Double induction strategy including high dose cytarabine in combination with all-trans retinoic acid: Effects in patients with newly diagnosed acute promyelocytic leukemia. German AML Cooperative Group. Leukemia 2000, 14, 1362–1370. [Google Scholar] [CrossRef] [Green Version]
- Grimwade, D.; Lo Coco, F. Acute promyelocytic leukemia: A model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia 2002, 16, 1959–1973. [Google Scholar] [CrossRef] [Green Version]
- Holter Chakrabarty, J.L.; Rubinger, M.; Le-Rademacher, J.; Wang, H.L.; Grigg, A.; Selby, G.B.; Szer, J.; Rowe, J.M.; Weisdorf, D.J.; Tallman, M.S. Autologous is superior to allogeneic hematopoietic cell transplantation for acute promyelocytic leukemia in second complete remission. Biol. Blood Marrow Transpl. 2014, 20, 1021–1025. [Google Scholar] [CrossRef] [Green Version]
- Cheson, B.D.; Bennett, J.M.; Kopecky, K.J.; Büchner, T.; Willman, C.L.; Estey, E.H.; Schiffer, C.A.; Doehner, H.; Tallman, M.S.; Lister, T.A.; et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J. Clin. Oncol. 2003, 21, 4642–4649. [Google Scholar] [CrossRef]
- Lengfelder, E.; Lo-Coco, F.; Ades, L.; Montesinos, P.; Grimwade, D.; Kishore, B.; Ramadan, S.M.; Pagoni, M.; Breccia, M.; Huerta, A.J.G.; et al. Arsenic trioxide-based therapy of relapsed acute promyelocytic leukemia: Registry results from the European LeukemiaNet. Leukemia 2015, 29, 1084–1091. [Google Scholar] [CrossRef]
- Grimwade, D.; Howe, K.; Langabeer, S.; Burnett, A.; Goldstone, A.; Solomon, E. Minimal residual disease detection in acute promyelocytic leukemia by reverse-transcriptase PCR: Evaluation of PML-RAR alpha and RAR alpha-PML assessment in patients who ultimately relapse. Leukemia 1996, 10, 61–66. [Google Scholar]
- Martinelli, G.; Remiddi, C.; Visani, G.; Farabegoli, P.; Testoni, N.; Zaccaria, A.; Manfroi, S.; Cenacchi, A.; Russo, D.; Bandini, G. Molecular analysis of PML-RAR alpha fusion mRNA detected by reverse transcription-polymerase chain reaction assay in long-term disease-free acute promyelocytic leukaemia patients. Br. J. Haematol. 1995, 90, 966–968. [Google Scholar] [CrossRef]
- Lo Coco, F.; Diverio, D.; Falini, B.; Biondi, A.; Nervi, C.; Pelicci, P.G. Genetic diagnosis and molecular monitoring in the management of acute promyelocytic leukemia. Blood 1999, 94, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Gabert, J.; Beillard, E.; van der Velden, V.H.J.; Bi, W.; Grimwade, D.; Pallisgaard, N.; Barbany, G.; Cazzaniga, G.; Cayuela, J.M.; Cavé, H.; et al. Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—A Europe Against Cancer program. Leukemia 2003, 17, 2318–2357. [Google Scholar] [CrossRef] [PubMed]
- Santamaría, C.; Chillón, M.C.; Fernández, C.; Martín-Jiménez, P.; Balanzategui, A.; García Sanz, R.; San Miguel, J.F.; González, M.G. Using quantification of the PML-RARalpha transcript to stratify the risk of relapse in patients with acute promyelocytic leukemia. Haematologica 2007, 92, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, Y.F.; Wu, C.F.; Xu, F.; Shen, Z.X.; Zhu, Y.M.; Li, J.M.; Tang, W.; Zhao, W.L.; Wu, W.; et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 2009, 106, 3342–3347. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.H.; Wu, D.P.; Jin, J.; Li, J.Y.; Ma, J.; Wang, J.X.; Jiang, H.; Chen, S.J.; Huang, X.J. Oral tetra-arsenic tetra-sulfide formula versus intravenous arsenic trioxide as first-line treatment of acute promyelocytic leukemia: A multicenter randomized controlled trial. J. Clin. Oncol. 2013, 31, 4215–4221. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.H.; Huang, X.J. Oral arsenic and retinoic acid for non-high-risk acute promyelocytic leukemia. N. Engl. J. Med. 2014, 371, 2239–2241. [Google Scholar] [CrossRef]
- Chendamarai, E.; Balasubramanian, P.; George, B.; Viswabandya, A.; Abraham, A.; Ahmed, R.; Alex, A.A.; Ganesan, S.; Lakshmi, K.M.; Sitaram, U.; et al. Role of minimal residual disease monitoring in acute promyelocytic leukemia treated with arsenic trioxide in frontline therapy. Blood 2012, 119, 3413–3419. [Google Scholar] [CrossRef] [Green Version]
- Grimwade, D.; Jovanovic, J.V.; Hills, R.K. Can we say farewell to monitoring minimal residual disease in acute promyelocytic leukaemia? Best Pr. Res. Clin. Haematol. 2014, 27, 53–61. [Google Scholar] [CrossRef]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béné, M.C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.A.; Lo Coco, F.; Martín, G.; Avvisati, G.; Rayón, C.; Barbui, T.; Díaz-Mediavilla, J.; Fioritoni, G.; González, J.D.; Liso, V.; et al. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: A joint study of the PETHEMA and GIMEMA cooperative groups. Blood 2000, 96, 1247–1253. [Google Scholar]
- Brunetti, C.; Anelli, L.; Zagaria, A.; Minervini, A.; Minervini, C.F.; Casieri, P.; Coccaro, N.; Cumbo, C.; Tota, G.; Impera, L.; et al. Droplet Digital PCR Is a Reliable Tool for Monitoring Minimal Residual Disease in Acute Promyelocytic Leukemia. J. Mol. Diagn. 2017, 19, 437–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiNardo, C.D.; Wei, A.H. How I treat acute myeloid leukemia in the era of new drugs. Blood 2020, 135, 85–96. [Google Scholar] [CrossRef] [PubMed]
Type, Reported Cases | PML, Breakpoint | PML, Splice Site | Genomic Insertions | RARA, Breakpoint | RARA, Splice Site | Reference |
---|---|---|---|---|---|---|
Typical isoforms | ||||||
Bcr1 (58–75% of pts) | Intron 6 | CAGgtaggg | Intron 2 | ctctagCCA | [61,75,76] | |
Bcr2 (5–10% of pts) | Exon 6 | GAAgtgagg | Intron 2 | ctctagCCA | [61,75,76] | |
Bcr3 (15–33% of pts) | Intron 3 | CAGgtgagt | Intron 2 | ctctagCCA | [61,75,76] | |
Atypical isoforms | ||||||
Bcr1 | ||||||
2 pts | Exon 7a | TCGgtgagt | Intron 2 | ctctagCCA | [70,77] | |
1 pt | Exon 7a | TGGtgatca | T + chr17:12049-12168 (119 nt) | Intron 2 | ctctagCCA | [74] |
1 pt | Exon 7a | CAGctcgga | chr17: 40342767-40342865 (100 nt) | Intron 2 | ctctagCCA | [78] |
1 pt | Exon 7a | TCGgtgagt | chr15:74036990-74037095 (106 nt) + ATCT | Exon 3 | cagcccTCC | [67] |
1 pt | Exon 7b | GGAtccgct | Intron 2 | ctctagCCA | [77] | |
1 pt | Exon 7b | CGCcttcgc | Exon 3 | agcagcAGT | [79] | |
1 pt | Exon 7c | GATcgctgg | tctgtgctctgtacaacag (19 nt, reverse inserted sequence originated from PML Exon 7c complementary sequence) | Intron 2 | ctctagCCA | [80] |
Bcr2 | ||||||
2 pts | Exon 6 | GAGctcccc | Intron 2 | ctctagCCA | [72,73] | |
1 pt | Exon 6 | GCCagtggc | chr17: 40338105-40338139 (35 nt) | Intron 2 | ctctagCCA | [70] |
1 pt | Exon 6 | GGCaaggtt | ccttg (5 nt from RARA) | Intron 2 | ctctagCCA | [71] |
1 pt | Exon 6 | GGAggggaa | chr17: 15582-15596 (15 nt) | Intron 2 | ctctagCCA | [74] |
1 pt | Exon 6 | CCGgagcag | aagcccgtcttccttttag (19 nt from RARA) | Intron 2 | ctctagCCA | [69] |
1 pt | Exon 6 | GAGctcccc | gagtccttctgcaggaagaggagagattg (29 nt from RARA) | Intron 2 | ctctagCCA | [63] |
1 pt | Exon 6 | TCCccggag | tcccctcttctctctctag (19 nt from RARA) | Intron 2 | ctctagCCA | |
1 pt | Exon 6 | CTAgcccca | tggacacacaggttggag (18 nt from RARA) | Intron 2 | ctctagCCA | |
1 pt | Exon 6 | TAGccccag | tcttagag (8 nt from RARA) | Intron 2 | ctctagCCA | |
1 pt | Exon 6 | GTCatagga | chr17:40343445-40343571 (127 nt) | Intron 2 | ctctagCCA | |
1 pt | Exon 6 | GAAgtgagg | Intron 2 | ctctagCCA | ||
1 pt | Exon 6 | CCCaacagc | gaaggactggacacacaggttggag (25 nt from RARA) | Intron 2 | ctctagCCA | |
1 pt | Exon 6 | GCAaccacg | gag | Intron 2 | ctctagCCA | |
1 pt | Exon 6 | AACcacgtg | gcccggcacacatacaat (18 nt from RARA) | Intron 2 | ctctagCCA | |
1 pt | Exon 6 | ACGtggcca | gagcca | Intron 2 | ctctagCCA | |
1 pt | Exon 6 | CGTggccag | actctttcttagag (14 nt from RARA) | Intron 2 | ctctagCCA | |
1 pt | Exon 6 | TGGccagtg | gag | Intron 2 | ctctagCCA | |
1 pt | Exon 6 | GCGccgggg | Intron 2 | ctctagCCA | ||
1 pt | Exon 6 | GCCggggag | chr17:40342828-40342867 (40 nt) | Intron 2 | ctctagCCA | |
1 pt | Exon 6 | CCGgggagg | agtttggg (8 nt from RARA) | Intron 2 | ctctagCCA | |
Bcr3 | ||||||
2 pts | Intron 4 | CTGgtgaga | Intron 2 | ctctagCCA | [73,74] | |
1 pt | Intron 4 | unknown | Intron 2 | unknown | [81] | |
1 pt | Intron 4 | CTGgtgaga | chr15:74050024-74050143 (120 nt) | Intron 2 | ctctagCCA | [74] |
1 pt | Intron 4 | CTGgtgaga | cccccagtt | Exon 1 of RARA2 | catctgCAG | [82] |
1 pt | Intron 4 | CTGgtgaga | chr17:40343186-40343225 (40 nt) | Intron 2 | ctctagCCA | [83] |
APL molecular Variants | Translocations | ATRA Sensitivity | ATO Sensitivity | No. of Cases Reported | Gene Other Than PML, Breakpoint | Gene Other Than PML, Splice Site | Genomic Insertions | RARA, Breakpoint | RARA, Splice Site | Reference |
---|---|---|---|---|---|---|---|---|---|---|
ZBTB16 (PLZF)-RARA | t(11;17)(q23;q21) | Poorly responsive | Poorly responsive | >30 [85] | Intron 3 | CAGgtaggc | Intron 2 | ctctagCCA | [102] | |
Intron 4 | CTGgtgagt | Intron 2 | ctctagCCA | [102] | ||||||
NPM1-RARA | t(5;17)(q35;q21) | Sensitive | ND | 5 [103] | Intron 5 | CAGgtagag | Intron 2 | ctctagCCA | [103] | |
Intron 5 | CAGgtagag | 79 nt with no homology to sequences in the GenBank or EMBL databases | Intron 2 | ctctagCCA | [104] | |||||
Intron 4 | TAGgtatgt | Intron 2 | ctctagCCA | [103] | ||||||
NUMA1 (NUMA)-RARA | t(11;17)(q13;q21) | Sensitive | ND | 1 | Intron 23 | CAGgtgagg | Intron 2 | ctctagCCA | [89] | |
STAT5B-RARA | der(17) | Poorly responsive | Poorly responsive | 11 [105] | Intron 15 | CTCgtgagt | Intron 2 | ctctagCCA | [90,105] | |
PRKAR1A-RARA | t(17;17)(q21;q24) or del(17)(q21;q24) | Sensitive | Sensitive | 1 | Intron 2 | AAGgtaaaa | Intron 2 | ctctagCCA | [91] | |
FIP1L1-RARA | t(4;17)(q12;q21) | Sensitive in 1 case | ND | 2 | Intron 15 | ATGgtaagt | Intron 2 | ctctagCCA | [92] | |
Intron 13 | CGGgtaaat | Intron 2 | ctctagCCA | [106] | ||||||
BCOR-RARA | t(X;17)(p11;q21) | Sensitive in 2 cases | Insensitive in 1 case | 2 | Intron 12 | CAGgtatga | Intron 2 | ctctagCCA | [93] | |
Exon 12 | CAGgtagaa | Intron 2 | ctctagCCA | [107] | ||||||
NABP1 (OBFC2A)-RARA | t(2;17)(q32;q21) | Sensitive in vitro | ND | 1 | Intron 5 | TGGgtaaga | Intron 2 | ctctagCCA | [94] | |
TBL1XR1 (TBLR1)-RARA | t(3;17)(q26;q21) | Insensitive | ND | 4 [108] | Intron 5 | CAAgtgagc | Intron 2 | ctctagCCA | [95] | |
Intron 5 | CAAgtgagc | * | Intron 2 | ctctagCCA | [108] | |||||
GTF2I-RARA | t(7;17)(q11;q21) | Sensitive | Sensitive | 1 | Intron 6 | TAGgtaagt | Intron 2 | ctctagCCA | [96] | |
IRF2BP2-RARA | t(1;17)(q42;q21) | Sensitive | Sensitive | 5 [109] | Exon 2 | TGTcccctg | Intron 2 | ctctagCCA | [97,109] | |
Exon 1 | AAGgtgcgg | Intron 2 | ctctagCCA | [110] | ||||||
Intron 1 | CAGgtaggg | Intron 2 | ctctagCCA | [111] | ||||||
Exon 1 | CAGgcaggt | Intron 2 | ctctagCCA | [111,112] | ||||||
FNDC3B-RARA | t(3;17)(q26;q21) | Sensitive | ND | 1 | Intron 24 | AAGgtgtgt | Intron 2 | ctctagCCA | [98] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liquori, A.; Ibañez, M.; Sargas, C.; Sanz, M.Á.; Barragán, E.; Cervera, J. Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene. Cancers 2020, 12, 624. https://doi.org/10.3390/cancers12030624
Liquori A, Ibañez M, Sargas C, Sanz MÁ, Barragán E, Cervera J. Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene. Cancers. 2020; 12(3):624. https://doi.org/10.3390/cancers12030624
Chicago/Turabian StyleLiquori, Alessandro, Mariam Ibañez, Claudia Sargas, Miguel Ángel Sanz, Eva Barragán, and José Cervera. 2020. "Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene" Cancers 12, no. 3: 624. https://doi.org/10.3390/cancers12030624
APA StyleLiquori, A., Ibañez, M., Sargas, C., Sanz, M. Á., Barragán, E., & Cervera, J. (2020). Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene. Cancers, 12(3), 624. https://doi.org/10.3390/cancers12030624