A Fluorescence-Based Wireless Capsule Endoscopy System for Detecting Colorectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Screening Intestine
3.2. Data Logger
3.3. Power Consumption
3.4. Wireless Communication
3.5. Comparison with Other WCE Systems
4. Summary and Outlook
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pomerai, D.D.; Daniells, C.; David, H.; Allan, J.; Duce, I.; Mutwakil, M.; Thomas, D.; Sewell, P.; Tattersall, J.; Jones, D.; et al. Wireless capsule endoscopy. Nature 2000, 405, 417–418. [Google Scholar] [PubMed]
- Alam, M.W.; Hasan, M.M.; Mohammed, S.K.; Deeba, F.; Wahid, K.A. Are Current Advances of Compression Algorithms for Capsule Endoscopy Enough? A Technical Review. IEEE Rev. Biomed. Eng. 2017, 10, 26–43. [Google Scholar] [CrossRef] [PubMed]
- El-Matary, W. Wireless Capsule Endoscopy: Indications, Limitations, and Future Challenges. J. Pediatr. Gastroenterol. Nutr. 2008, 46, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Xin, W.; Yan, G.; Chen, J. A video wireless capsule endoscopy system powered wirelessly: Design, analysis and experiment. In Proceedings of the Measurement Science and Technology; Institute of Physics Publishing: Bristol, UK, 2011; Volume 22. [Google Scholar]
- Li, B.; Meng, M.Q.H. Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments. Comput. Biol. Med. 2009, 39, 141–147. [Google Scholar] [CrossRef]
- Alam, M.W.; Sohag, M.H.A.; Khan, A.H.; Sultana, T.; Wahid, K.A. IoT-Based Intelligent Capsule Endoscopy System: A Technical Review. In Intelligent Data Analysis for Biomedical Applications; Hemanth, J., Gupta, D., Balas, V.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–20. ISBN 978-0-12-815553-0. [Google Scholar]
- Iakovidis, D.K.; Koulaouzidis, A. Software for enhanced video capsule endoscopy: Challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 172–186. [Google Scholar] [CrossRef]
- Suman, S.; Hussin, F.; Malik, A.; Ho, S.; Hilmi, I.; Leow, A.; Goh, K.-L. Feature Selection and Classification of Ulcerated Lesions Using Statistical Analysis for WCE Images. Appl. Sci. 2017, 7, 1097. [Google Scholar] [CrossRef] [Green Version]
- Gray, M.; Moore, J.M.; Brock, A. A re-review of caspule endoscopies of patients referred for deep enteroscopy changes their management. Gastrointest. Interv. 2014, 3, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Levinthal, G.N.; Burke, C.A.; Santisi, J.M. The accuracy of an endoscopy nurse in interpreting capsule endoscopy. Am. J. Gastroenterol. 2003, 98, 2669–2671. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [Green Version]
- WHO | Early Diagnosis and Screening. Available online: https://www.who.int/cancer/prevention/diagnosis-screening/en/ (accessed on 1 February 2020).
- Cancer Research, UK. Why is early diagnosis important? Available online: https://www.cancerresearchuk.org/about-cancer/cancer-symptoms/why-is-early-diagnosis-important (accessed on 1 February 2020).
- CT Colonography. Available online: https://www.radiologyinfo.org/en/info.cfm?pg=ct_colo (accessed on 25 January 2020).
- Ginnerup Pedersen, B.; Rosenkilde, M.; Christiansen, T.E.M.; Laurberg, S. Extracolonic findings at computed tomography colonography are a challenge. Gut 2003, 52, 1744–1747. [Google Scholar] [CrossRef]
- Holme, Ø.; Løberg, M.; Kalager, M.; Bretthauer, M.; Hernán, M.A.; Aas, E.; Eide, T.J.; Skovlund, E.; Lekven, J.; Schneede, J.; et al. Sigmoidoscopy Screening for Colorectal Cancer. Ann. Intern. Med. 2018, 168, 1–24. [Google Scholar]
- Burki, T. Flexible sigmoidoscopy screening for colorectal cancer. Lancet. Oncol. 2018, 19, e291. [Google Scholar] [CrossRef]
- Glick, S. Double-Contrast Barium Enema for Colorectal Cancer Screening. Am. J. Roentgenol. 2000, 174, 1529–1537. [Google Scholar] [CrossRef] [Green Version]
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget Stool DNA Testing for Colorectal-Cancer Screening. N. Engl. J. Med. 2014, 370, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Wieten, E.; Schreuders, E.H.; Grobbee, E.J.; Nieboer, D.; Bramer, W.M.; Lansdorp-Vogelaar, I.; Bruno, M.J.; Kuipers, E.J.; Spaander, M.C.W. Incidence of faecal occult blood test interval cancers in population-based colorectal cancer screening: A systematic review and meta-analysis. Gut 2019, 68, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Howard, R.; Machado-Aranda, D. Frailty as a Predictor of Colonoscopic Procedural Risk: Robust Associations from Fragile Patients. Dig. Dis. Sci. 2018, 63, 3159–3160. [Google Scholar] [CrossRef] [Green Version]
- American Society of Clinical Oncology Colorectal Cancer. Statistics | Cancer.Net. Available online: https://www.cancer.net/cancer-types/colorectal-cancer/statistics (accessed on 1 February 2020).
- Haustein, E.; Schwille, P. Trends in fluorescence imaging and related techniques to unravel biological information. HFSP J. 2007, 1, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Gautier, A.; Tebo, A.G. Fluorogenic Protein-Based Strategies for Detection, Actuation, and Sensing. BioEssays 2018, 40, 1800118. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.F.L.; Hackenberger, C.P.R. Fluorescent labelling in living cells. Curr. Opin. Biotechnol. 2017, 48, 61–68. [Google Scholar] [CrossRef]
- Borisova, E.G.; Angelova, L.P.; Pavlova, E.P. Endogenous and exogenous fluorescence skin cancer diagnostics for clinical applications. IEEE J. Sel. Top. Quantum Electron. 2014, 20. [Google Scholar] [CrossRef]
- Van Dam, G.M.; Themelis, G.; Crane, L.M.A.; Harlaar, N.J.; Pleijhuis, R.G.; Kelder, W.; Sarantopoulos, A.; De Jong, J.S.; Arts, H.J.G.; Van Der Zee, A.G.J.; et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-&alpha targeting first in-human results. Nat. Med. 2011, 17, 1315–1319. [Google Scholar]
- Luo, S.; Zhang, E.; Su, Y.; Cheng, T.; Shi, C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011, 32, 7127–7138. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.W.; Wahid, K.A.; Goel, R.K.; Lukong, K.E.; Alam, M.W.; Wahid, K.A.; Goel, R.K.; Lukong, K.E. Development of a low-cost and portable smart fluorometer for detecting breast cancer cells. Biomed. Opt. Express 2019, 10, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.W.; Wahid, K.A.; Fahmid Islam, M.; Bernhard, W.; Geyer, C.R.; Vizeacoumar, F.J. A Low-Cost and Portable Smart Instrumentation for Detecting Colorectal Cancer Cells. Appl. Sci. 2019, 9, 3510. [Google Scholar] [CrossRef] [Green Version]
- Fluorescein (FITC/DTAF)—Jackson ImmunoResearch. Available online: https://www.jacksonimmuno.com/technical/products/conjugate-selection/fitc (accessed on 25 March 2020).
- Yannuzzi, L.A.; Rohrer, K.T.; Tindel, L.J.; Sobel, R.S.; Costanza, M.A.; Shields, W.; Zang, E. Fluorescein Angiography Complication Survey. Ophthalmology 1986, 93, 611–617. [Google Scholar] [CrossRef]
- Lipson, B.K.; Yannuzzi, L.A. Complications of intravenous fluorescein injections. Int. Ophthalmol. Clin. 1989, 29, 200–205. [Google Scholar] [CrossRef]
- Acerbi, F.; Broggi, M.; Schebesch, K.M.; Höhne, J.; Cavallo, C.; De Laurentis, C.; Eoli, M.; Anghileri, E.; Servida, M.; Boffano, C.; et al. Fluorescein-guided surgery for resection of high-grade gliomas: A multicentric prospective phase II study (FLUOGLIO). Clin. Cancer Res. 2018, 24, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Spiguel, L.; Shaw, C.; Katz, A.; Guo, L.; Chen, H.-C.; Lee, B.T.; Singhal, D. Fluorescein Isothiocyanate. Ann. Plast. Surg. 2017, 78, S296–S298. [Google Scholar] [CrossRef]
- Xiao, S.Y.; Zhang, J.; Zhu, Z.Q.; Li, Y.P.; Zhong, W.Y.; Chen, J.B.; Pan, Z.Y.; Xia, H.C. Application of fluorescein sodium in breast cancer brain-metastasis surgery. Cancer Manag. Res. 2018, 10, 4325–4331. [Google Scholar] [CrossRef] [Green Version]
- Kiesslich, R.; Neurath, M.F. Endoscopic detection of early lower gastrointestinal cancer. Best Pract. Res. Clin. Gastroenterol. 2005, 19, 941–961. [Google Scholar] [CrossRef]
- Belykh, E.; Martirosyan, N.L.; Yagmurlu, K.; Miller, E.J.; Eschbacher, J.M.; Izadyyazdanabadi, M.; Bardonova, L.A.; Byvaltsev, V.A.; Nakaji, P.; Preul, M.C. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front. Surg. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wang, H.; Ge, P.; Zhao, J.; Li, W.; Gu, H.; Wang, G.; Luo, Y.; Chen, D. Gross Total Resection of Glioma with the Intraoperative Fluorescence-guidance of Fluorescein Sodium. Int. J. Med. Sci 2012, 2012, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pèlegrin, A.; Folli, S.; Buchegger, F.; Mach, J.-P.; Wagnières, G.; Van Den Bergh, H. Antibody–fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer 1991, 67, 2529–2537. [Google Scholar] [CrossRef]
- Hasan, M.M.; Alam, M.W.; Wahid, K.A.; Miah, S.; Lukong, K.E. A Low-Cost digital microscope with real-Time fluorescent imaging capability. PLoS ONE 2016, 11, e0167863. [Google Scholar] [CrossRef]
- AZ13DP-8 Energizer Battery Company | Battery Products | DigiKey. Available online: https://www.digikey.ca/products/en/battery-products/batteries-non-rechargeable-primary/90?k=coin+battery&k=&pkeyword=coin+battery&sv=0&pv1989=0&pv33=164442&sf=0&FV=-8%7C90&quantity=&ColumnSort=0&page=1&pageSize=25 (accessed on 24 November 2019).
- Voska, M.; Zavoral, M.; Grega, T.; Majek, O.; Martinek, J.; Tacheci, I.; Benes, M.; Vojtechova, G.; Drastich, P.; Bures, J.; et al. Accuracy of colon capsule endoscopy for colorectal neoplasia detection in individuals referred for a screening colonoscopy. Gastroenterol. Res. Pract. 2019, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieg, A.; Friedrich, K.; Sieg, U. Is PillCam COLON capsule endoscopy ready for colorectal cancer screening a prospective feasibility study in a community gastroenterology practice. Am. J. Gastroenterol. 2009, 104, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Rácz, I.; Jánoki, M.; Saleh, H. Colon Cancer Detection by ‘Rendezvous Colonoscopy’: Successful Removal of Stuck Colon Capsule by Conventional Colonoscopy. Case Rep. Gastroenterol. 2010, 4, 19–24. [Google Scholar] [CrossRef] [PubMed]
- D’Haens, G.; Löwenberg, M.; Samaan, M.A.; Franchimont, D.; Ponsioen, C.; van den Brink, G.R.; Fockens, P.; Bossuyt, P.; Amininejad, L.; Rajamannar, G.; et al. Safety and Feasibility of Using the Second-Generation Pillcam Colon Capsule to Assess Active Colonic Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2015, 13, 1480–1486. [Google Scholar] [CrossRef]
- Chen, C.; Pomalaza-Ráez, C. Design and Evaluation of a Wireless Body Sensor System for Smart Home Health Monitoring. In Proceedings of the GLOBECOM—IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4 December 2009. [Google Scholar]
- Li, R.; Guo, Y.X.; Du, G. A Conformal Circularly Polarized Antenna for Wireless Capsule Endoscope Systems. IEEE Trans. Antennas Propag. 2018, 66, 2119–2124. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.X.; Xiao, S. Circularly polarized helical antenna for ISM-band ingestible capsule endoscope systems. IEEE Trans. Antennas Propag. 2014, 62, 6027–6039. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, J.; Yoon, Y.J.; Park, S.; Cheon, C.; Kim, K.; Nam, S. A wideband spiral antenna for ingestible capsule endoscope systems: Experimental results in a human phantom and a pig. IEEE Trans. Biomed. Eng. 2011, 58, 1734–1741. [Google Scholar]
- Means, D.L.; Chan, K.W. Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions; Office of Engineering and Technology Federal Communications Commission: Washington, DC, USA, 2001. [Google Scholar]
- Khan, T.H.; Wahid, K.A. An advanced physiological data logger for medical imaging applications. Eurasip J. Embed. Syst. 2012, 2012, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cave, D.R.; Fleischer, D.E.; Leighton, J.A.; Faigel, D.O.; Heigh, R.I.; Sharma, V.K.; Gostout, C.J.; Rajan, E.; Mergener, K.; Foley, A.; et al. A multicenter randomized comparison of the Endocapsule and the Pillcam SB. Gastrointest. Endosc. 2008, 68, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Aasen, T.D.; Wilhoite, D.; Rahman, A.; Devani, K.; Young, M.; Swenson, J. No significant difference in clinically relevant findings between Pillcam ® SB3 and Pillcam ® SB2 capsules in a United States veteran population. World J. Gastrointest. Endosc. 2019, 11, 124–132. [Google Scholar] [CrossRef]
- PillCamTM SB 3 System | Medtronic. Available online: https://www.medtronic.com/covidien/en-us/products/capsule-endoscopy/pillcam-sb-3-system.html (accessed on 3 February 2020).
- Eisen, G.M.; Eliakim, R.; Zaman, A.; Schwartz, J.; Faigel, D.; Rondonotti, E.; Villa, F.; Weizman, E.; Yassin, K.; de Franchis, R. The Accuracy of PillCam ESO Capsule Endoscopy Versus Conventional Upper Endoscopy for the Diagnosis of Esophageal Varices: A Prospective Three-Center Pilot Study. Endoscopy 2006, 38, 31–35. [Google Scholar] [CrossRef] [PubMed]
- PillCamTM COLON 2 System | Medtronic. Available online: https://www.medtronic.com/covidien/en-us/products/capsule-endoscopy/pillcam-colon-2-system.html (accessed on 3 February 2020).
- MiroCam. Available online: http://www.medivators.com/products/gi-physician-products/mirocam-capsule-endoscope (accessed on 24 June 2017).
- Capsule Endoscopy | ENDOCAPSULE 10 System | Olympus Medical Systems. Available online: https://www.olympus-europa.com/medical/en/Products-and-Solutions/Products/Product/ENDOCAPSULE-10-System.html (accessed on 21 November 2019).
- OMOM Capsule Endoscopy, JINSHAN Science & Technology. Available online: http://english.jinshangroup.com/capsuleendoscopy.html (accessed on 3 February 2020).
- CapsoCam Plus® | CapsoVision. Available online: https://www.capsovision.com/products/capsocam-plus (accessed on 3 February 2020).
- SmartPillTM Motility Testing System | Medtronic. Available online: https://www.medtronic.com/covidien/en-us/products/motility-testing/smartpill-motility-testing-system.html (accessed on 3 February 2020).
- CorTemp, HQ Inc. Available online: https://hqinc.net/ (accessed on 3 February 2020).
- Philips Respironics | VitalSense. Available online: http://www.actigraphy.com/solutions/vitalsense/ (accessed on 3 February 2020).
- e-Celsius Performance, Bodycap. Available online: http://www.bodycap-medical.com/en/product/ecelsius-performance (accessed on 3 February 2020).
- Al-Rawhani, M.A.; Chitnis, D.; Beeley, J.; Collins, S.; Cumming, D.R.S. Design and implementation of a wireless capsule suitable for autofluorescence intensity detection in biological tissues. IEEE Trans. Biomed. Eng. 2013, 60, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Demosthenous, P.; Pitris, C.; Georgiou, J. Infrared Fluorescence-Based Cancer Screening Capsule for the Small Intestine. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 467–476. [Google Scholar] [CrossRef]
- Demosthenous, P.; Georgiou, J.; Towards a fluoroscopic cancer screening capsule for the small intestine. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago, IL, USA, 26–30 August 2014; pp. 3122–3125. [Google Scholar]
- Kfouri, M.; Marinov, O.; Quevedo, P.; Faramarzpour, N.; Shirani, S.; Liu, L.W.C.; Fang, Q.; Deen, M.J. Toward a miniaturized wireless fluorescence-based diagnostic imaging system. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Nemiroski, A.; Ryou, M.; Thompson, C.C.; Westervelt, R.M. Swallowable fluorometric capsule for wireless triage of gastrointestinal bleeding. Lab. Chip 2015, 15, 4479–4487. [Google Scholar] [CrossRef]
- Ryou, M.; Nemiroski, A.; Azagury, D.; Shaikh, S.N.; Ryan, M.B.; Westervelt, R.M.; Thompson, C.C. An implantable wireless biosensor for the immediate detection of upper GI bleeding: A new fluorescein-based tool for diagnosis and surveillance (with video). Gastrointest. Endosc. 2011, 74, 189–194. [Google Scholar] [CrossRef]
- Inoue, Y.; Izawa, K.; Kiryu, S.; Tojo, A.; Ohtomo, K. Diet and Abdominal Autofluorescence Detected by in Vivo Fluorescence Imaging of Living Mice. Mol. Imaging 2008, 7. [Google Scholar] [CrossRef] [Green Version]
- Tests to Stage | Bowel Cancer | Cancer Research, UK. Available online: https://www.cancerresearchuk.org/about-cancer/bowel-cancer/getting-diagnosed/tests-stage (accessed on 17 March 2020).
- Weiner, G.J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer 2015, 15, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Types of Cancer Treatment—National Cancer Institute. Available online: https://www.cancer.gov/about-cancer/treatment/types (accessed on 17 March 2020).
- Shrestha, R.; Mohammed, S.K.; Hasan, M.M.; Zhang, X.; Wahid, K.A. Automated Adaptive Brightness in Wireless Capsule Endoscopy Using Image Segmentation and Sigmoid Function. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.B.; Bracamonte, J.L.; Alam, M.W.; Khan, A.H.; Mohammed, S.K.; Wahid, K.A. Is there an application for wireless capsule endoscopy in horses? Can. Vet. J. 2017, 58, 1321–1325. [Google Scholar] [PubMed]
- Qu, Y.; Nosouhi, M.R.; Cui, L.; Yu, S. Privacy Preservation in Smart Cities. In Smart Cities Cybersecurity and Privacy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 75–88. [Google Scholar]
Component | Model/Specification | Cost ($USD) |
---|---|---|
Spectrum sensor IC | ams AS7262-BLGT | 3.12 |
EEPROM IC | AT25SF041-SSHD-T | 0.22 |
LED | ATS2012UV395 | 1.82 |
Microcontroller | ATMEGA328P-MMHR | 1.8 |
Transceiver | NRF24L01 | 2.45 |
Antenna | ANT-2.45-CHPCT-ND | 1.71 |
PCB | 10 | |
Miscellaneous costs | 50 | |
Total Cost | 71.12 |
Component | Active Mode | Inactive Mode | Total Current Consumption | Total Power Consumption |
---|---|---|---|---|
Regulators | 0.08 mA | 0.02 mA | 0.08 mA | 0.27 mW |
Microcontroller | 2.53 mA | 0.30 mA | 2.53 mA | 8.35 mW |
nRF24L01+ | 12 mA | 0.41 mA | 3.13 mA | 10.33 mW |
LEDs | 5.38 mA | 0 mA | 2.69 mA | 8.88 mW |
AS7262 | 6.71 mA | 6.32 mA | 6.42 mA | 21.19 mW |
Total | 14.85 mA | 49.02 mW |
Experiment | Distance between Capsule and Data Logger (m) | Transmitted Bytes | Received Bytes | Percentage of Transmitted Data (%) |
---|---|---|---|---|
Liquid phantom | 0.3 | 20 | 20 | 100 |
3 | 20 | 20 | 100 | |
5 | 20 | 20 | 100 | |
10 | 20 | 18 | 90 | |
Minced meat | 0.3 | 20 | 20 | 100 |
3 | 20 | 20 | 100 | |
5 | 20 | 20 | 100 | |
10 | 20 | 16 | 80 |
Type | Work | TE | Region of Interest | Resolution | Camera/ Sensor | I/S | TM | RT | Cost of Capsule Only (USD) | DL |
---|---|---|---|---|---|---|---|---|---|---|
Non-fluorescence based | PillCam SB [53] | No | Small bowel | 256 × 256 | 1 CMOS | 6 LED | RF | Yes | N.G. | Yes |
PillCam SB2 [54] | No | Small bowel | 256 × 256 | 1 CMOS | 4 LED | RF | Yes | ~530 | Yes | |
PillCam SB3 [55] | No | Small bowel | 256 × 256 | 1 CMOS | 4 LED | RF | Yes | ~500 | Yes | |
PillCam ESO [56] | No | Esophagus | 256 × 256 | 2 CMOS | 6 LED | RF | Yes | N.G. | Yes | |
PillCam ESO2 | No | Esophagus | 256 × 256 | 2 CMOS | 2 × 4 LED | RF | Yes | ~500 | Yes | |
PillCam ESO3 | No | Esophagus | 256 × 256 | 2 CMOS | 2 × 6 | RF | Yes | ~570 | Yes | |
PillCam Colon | No | Colon | 256 × 256 | 2 CMOS | 2 × 6 LED | RF | Yes | N.G. | Yes | |
PillCam Colon2 [57] | No | Colon | 256 × 256 | 2 CMOS | 2 × 4 LED | RF | Yes | ~550 | Yes | |
MiroCam [58] | No | Small bowel | 320 × 320 | 1 CMOS | 6 | HBC | Yes | ~380 | Yes | |
EndoCapsule [59] | No | Small bowel | 1920 × 1080 | 1 CCD | 6 | RF | Yes | ~570 | Yes | |
OMOM [60] | No | Small bowel | 640 × 480 | 1 CMOS | 4 | RF | Yes | ~380 | Yes | |
CapsoCam [61] | No | Small bowel | 1920 × 1080 | 4 CMOS | 16 | USB | No | ~380 | No | |
SmartPill [62] | No | GI tract | N.A. | Pressure, pH & Temperature | None | RF | Yes | ~530 | Yes | |
CorTemp [63] | No | GI tract | N.A. | Temperature | None | RF | Yes | ~40 | Yes | |
VitalSense [64] | No | GI tract | N.A. | Jonah core temperature | None | RF | Yes | ~68 | Yes | |
e-Celsius [65] | No | GI tract | N.A. | temperature | None | RF | Yes | ~65 | Yes | |
Fluorescence based | Al-Rawhani et al. [66] | No | Small bowel | N.A. | SPAD, ASIC chip | 1 LED | RF | Yes | N.G. | Yes |
Demosthenous et al. [67,68] | Yes | Small bowel | N.A. | 6 photodiodes | 6 laser diodes | SPI | No | ~500 | No | |
Kfouri et al. [69] | No | GI tract | 640 × 480 | 1CCD | 8 LED | RF | Yes | N.G. | No | |
Nemiroski et al. [70] | No | GI bleeding | N.A. | 1 photodiode | 1 LED | Zigbee | Yes | ~110 | No | |
Ryou et al. [71] | No | GI bleeding | N.A. | N.G. | N.G. | RF | Yes | N.G. | No | |
Proposed device | Yes | Colorectal cancer | N.A. | Spectral sensor | 4 LED | RF | Yes | 71.12 * | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.W.; Vedaei, S.S.; Wahid, K.A. A Fluorescence-Based Wireless Capsule Endoscopy System for Detecting Colorectal Cancer. Cancers 2020, 12, 890. https://doi.org/10.3390/cancers12040890
Alam MW, Vedaei SS, Wahid KA. A Fluorescence-Based Wireless Capsule Endoscopy System for Detecting Colorectal Cancer. Cancers. 2020; 12(4):890. https://doi.org/10.3390/cancers12040890
Chicago/Turabian StyleAlam, Mohammad Wajih, Seyed Shahim Vedaei, and Khan A. Wahid. 2020. "A Fluorescence-Based Wireless Capsule Endoscopy System for Detecting Colorectal Cancer" Cancers 12, no. 4: 890. https://doi.org/10.3390/cancers12040890
APA StyleAlam, M. W., Vedaei, S. S., & Wahid, K. A. (2020). A Fluorescence-Based Wireless Capsule Endoscopy System for Detecting Colorectal Cancer. Cancers, 12(4), 890. https://doi.org/10.3390/cancers12040890