Hormone Receptor-Status Prediction in Breast Cancer Using Gene Expression Profiles and Their Macroscopic Landscape
Abstract
:1. Introduction
2. Results
2.1. Identification of Predictor Genes
2.2. Macroscopic Landscape
2.3. GEP-Based Receptor-Status Prediction is Reliable for the Luminal and Basal-Like Subtypes
2.4. GEP-Based Receptor-Status Prediction Had Higher Prognostic Significance in Terms of Patient Survival
- (a)
- HR+ (either ER+ or PR+) group: this group benefited from hormone therapy. According to the stage and clinical characteristics, these patients often received a combination of hormone therapy and chemotherapy. For survival analysis, the patients in this group were stratified based on administration of hormone therapy.
- (b)
- Hormone therapy group: to confirm the benefit of hormone therapy for HR+ patients, only those who received hormone therapy, with or without chemotherapy, were selected, and the survival of HR+ patients was compared to that of HR– patients.
- (c)
- HR+/non-luminal subtype group: as shown in Table 2, there were small percentages of HR+ patients among patients with the HER2-enriched and basal-like subtypes. Hence, we assessed whether breast cancer patients with the HR+ non-luminal subtype benefited from hormone therapy.
- (d)
- HER2+ group: breast cancer patients with the HER2+ subtype benefited from anti-HER2 targeted molecular therapy (TMT). We assessed the survival of HER2+ breast cancer patients based on TMT. As no information regarding TMT was available in the METABRIC dataset, this analysis was performed only for the TCGA BRCA cohort.
2.5. Patients with Non-Matching Receptor Status Had Significantly Worse Survival
3. Discussion
4. Materials and Methods
4.1. Datasets
4.2. Prediction Model and Gene Selection
4.3. Survival Analysis for Accuracy Evaluation and Sample Selection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spitale, A.; Mazzola, P.; Soldini, D.; Mazzucchelli, L.; Bordoni, A. Breast cancer classification according to immunohistochemical markers: Clinicopathologic features and short-term survival analysis in a population-based study from the South of Switzerland. Ann. Oncol. 2009, 20, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Wang, J.; Bourne, P. Molecular classifications of breast carcinoma with similar terminology and different definitions: Are they the same? Hum. Pathol. 2008, 39, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, C.; Sotiriou, C.; Piccart-Gebhart, M.J. Development and validation of gene expression profile signatures in early-stage breast cancer. Cancer Invest. 2009, 27, 1–10. [Google Scholar] [CrossRef]
- Iwamoto, T.; Pusztai, L. Predicting prognosis of breast cancer with gene signatures: Are we lost in a sea of data? Genome Med. 2010, 2, e81. [Google Scholar] [CrossRef]
- Reis-Filho, J.S.; Weigelt, B.; Fumagalli, D.; Sotiriou, C. Molecular profiling: Moving away from tumor philately. Sci. Transl. Med. 2010, 2, 47ps43. [Google Scholar] [CrossRef] [PubMed]
- Sotiriou, C.; Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 2009, 360, 790–800. [Google Scholar] [CrossRef] [Green Version]
- Weigelt, B.; Baehner, F.L.; Reis-Filho, J.S. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: A retrospective of the last decade. J. Pathol. 2010, 220, 263–280. [Google Scholar] [CrossRef]
- Blows, F.M.; Driver, K.E.; Schmidt, M.K.; Broeks, A.; van Leeuwen, F.E.; Wesseling, J.; Cheang, M.C.; Gelmon, K.; Nielsen, T.O.; Blomqvist, C.; et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: A collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 2010, 7, e1000279. [Google Scholar] [CrossRef]
- Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast Cancer Intrinsic Subtype Classification, Clinical Use and Future Trends. Am. J. Cancer Res. 2015, 5, 2929–2943. [Google Scholar]
- Vallejos, C.S.; Gomez, H.L.; Cruz, W.R.; Pinto, J.A.; Dyer, R.R.; Velarde, R.; Suazo, J.F.; Neciosup, S.P.; León, M.; de la Cruz, M.A.; et al. Breast Cancer Classification According to Immunohistochemistry Markers: Subtypes and Association with Clinicopathologic Variables in a Peruvian Hospital Database. Clin. Breast Cancer 2010, 10, 294–300. [Google Scholar] [CrossRef]
- Cheang, M.C.; Chia, S.K.; Voduc, D.; Gao, D.; Leung, S.; Snider, J.; Watson, M.; Davies, S.; Bernard, P.; Parker, J.S.; et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl. Cancer Inst. 2009, 101, 736–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannelli, P.; Di Donato, M.; Galasso, G.; Di Zazzo, E.; Medici, N.; Bilancio, A.; Migliaccio, A.; Castoria, G. Breast cancer stem cells: The role of sex steroid receptors. World J. Stem Cells 2019, 11, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Giovannelli, P.; Di Donato, M.; Galasso, G.; Di Zazzo, E.; Bilancio, A.; Migliaccio, A. The Androgen Receptor in Breast Cancer. Front Endocrinol (Lausanne) 2018, 9, e492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [Green Version]
- Perou, C.; Sørlie, T.; Eisen, M.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef]
- Prat, A.; Parker, J.S.; Fan, C.; Perou, C.M. PAM50 assay and the three-gene model for identifying the major and clinically relevant molecular subtypes of breast cancer. Breast Cancer Res Treat. 2012, 135, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Pusztai, L.; Broglio, K.; Andre, F.; Symmans, W.F.; Hess, K.R.; Hortobagyi, G.N. Effect of molecular disease subsets on disease-free survival in randomized adjuvant chemotherapy trials for estrogen receptor-positive breast cancer. J. Clin. Oncol. 2008, 26, 4679–4683. [Google Scholar] [CrossRef]
- Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.; et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 2004, 351, 2817–2826. [Google Scholar] [CrossRef] [Green Version]
- Prat, A.; Perou, C.M. Deconstructing the molecular portraits of breast cancer. Mol. Oncol. 2011, 5, 5–23. [Google Scholar] [CrossRef]
- Parker, J.S.; Mullins, M.; Cheang, M.C.; Leung, S.; Voduc, D.; Vickery, T.; Davies, S.; Fauron, C.; He, X.; Hu, Z.; et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 2009, 27, 1160–1167. [Google Scholar] [CrossRef]
- Sotiriou, C.; Neo, S.Y.; McShane, L.M.; Korn, E.L.; Long, P.M.; Jazaeri, A.; Martiat, P.; Fox, S.B.; Harris, A.L.; Liu, E.T. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl. Acad. Sci. USA 2003, 100, 10393–10398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, C.; Oh, D.S.; Wessels, L.; Weigelt, B.; Nuyten, D.S.; Nobel, A.B.; van’t Veer, L.J.; Perou, C.M. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 2006, 355, 560–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis-Filho, J.S.L.; Pusztai, L. Gene expression profiling in breast cancer: Classification, prognostication, and prediction. Lancet 2011, 378, 1812–1823. [Google Scholar] [CrossRef]
- Vieira, A.F.; Schmitt, F. An Update on Breast Cancer Multigene Prognostic Tests-Emergent Clinical Biomarkers. Front Med. (Lausanne). 2018, 5, e248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef] [PubMed]
- Brenton, J.D.; Carey, L.A.; Ahmed, A.A.; Caldas, C. Molecular classification and molecular forecasting of breast cancer: Ready for clinical application? J. Clin. Oncol. 2003, 23, 7350–7360. [Google Scholar] [CrossRef] [Green Version]
- TCGA. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Curtis, C.; Shah, S.P.; Chin, S.-F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef]
- Paquet, E.R.; Hallett, M.T. Absolute assignment of breast cancer intrinsic molecular subtype. J. Natl. Cancer Inst. 2015, 107, e357. [Google Scholar] [CrossRef]
- Carey, L.A.; Berry, D.A.; Cirrincione, C.T.; Barry, W.T.; Pitcher, B.N.; Harris, L.N.; Ollila, D.W.; Krop, I.E.; Henry, N.L.; Weckstein, D.J.; et al. Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. J. Clin. Oncol. 2016, 34, 542–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.K.; Park, K.H.; Kim, Y. Absolute assignment of breast cancer intrinsic molecular subtype Discordance of the PAM50 Intrinsic Subtypes Compared with Immunohistochemistry-Based Surrogate in Breast Cancer Patients: Potential Implication of Genomic Alterations of Discordance. Cancer Res. Treat. 2019, 51, 737–747. [Google Scholar]
- Tao, M.; Song, T.; Du, W.; Han, S.; Zuo, C.; Li, Y.; Wang, Y.; Yang, Z. Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data. Genes (Basel) 2019, 10, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Søkilde, R.; Persson, H.; Ehinger, A.; Pirona, A.C.; Ferno, M.; Hegardt, C.; Larsson, C.; Loman, N.; Malmberg, M.; Ryden, L.; et al. Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genom. 2019, 20, e503. [Google Scholar] [CrossRef] [PubMed]
- Raj-Kumar, P.; Liu, J.; Hooke, J.A.; Kovatich, A.J.; Kvecher, L.; Shriver, C.D.; Hu, H. PCA-PAM50 improves consistency between breast cancer intrinsic and clinical subtyping reclassifying a subset of luminal A tumors as luminal B. Sci Rep 2019, 9, e7956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.T.; Kim, J. Trends in Next-Generation Sequencing and a New Era for Whole Genome Sequencing. Int. Neurourol. J. 2016, 20, S76–S83. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kang, K.; Krahn, J.M.; Croutwater, N.; Lee, K.; Umbach, D.M.; Li, L. A comprehensive genomic pan-cancer classification using The Cancer Genome Atlas gene expression data. BMC Genom. 2017, 18, e508. [Google Scholar] [CrossRef]
- Sinn, B.V.; Fu, C.; Lau, R.; Litton, J.; Tsai, T.H.; Murthy, R.; Tam, A.; Andreopoulou, E.; Gong, Y.; Murthy, R.; et al. SETER/PR: A robust 18-gene predictor for sensitivity to endocrine therapy for metastatic breast cancer. NPJ Breast Cancer 2019, 5, e16. [Google Scholar] [CrossRef] [Green Version]
- Symmans, W.F.; Hatzis, C.; Sotiriou, C.; Andre, F.; Peintinger, F.; Regitnig, P.; Daxenbichler, G.; Desmedt, C.; Domont, J.; Marth, C.; et al. Genomic index of sensitivity to endocrine therapy for breast cancer. J. Clin. Oncol. 2010, 28, 4111–4119. [Google Scholar] [CrossRef] [Green Version]
- McInnes, L.; Healy, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Prat, A.; Pascual, T.; Adamo, B. Intrinsic molecular subtypes of HER2+ breast cancer. Oncotarget 2017, 8, 73362–73363. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.; Vincent-Salomon, A.; Pivot, X.; Sertier, A.S.; Thomas, E.; Tonon, L.; Boyault, S.; Mulugeta, E.; Treilleux, I.; MacGrogan, G.; et al. A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers. Nat. Commun. 2016, 7, e12222. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, F.; Cosimo, S.D.; Arpino, G. Human epidermal growth factor receptor 2 (HER2)-positive and hormone receptor-positive breast cancer: New insights into molecular interactions and clinical implications. Ann. Oncol. 2013, 24, 2715–2724. [Google Scholar] [CrossRef] [PubMed]
- Daemen, A.; Manning, G. HER2 is not a cancer subtype but rather a pan-cancer event and is highly enriched in AR-driven breast tumors. Breast Cancer Res. 2018, 20, e8. [Google Scholar] [CrossRef]
- Prat, A.; Parker, J.S.; Fan, C.; Cheang, M.C.; Miller, L.D.; Bergh, J.; Chia, S.K.; Bernard, P.S.; Nielsen, T.O.; Ellis, M.J.; et al. Concordance among gene expression-based predictors for ER-positive breast cancer treated with adjuvant tamoxifen. Ann. Oncol. 2012, 23, 2866–2873. [Google Scholar] [CrossRef]
- Prat, A.; Cheang, M.C.U.; Galván, P.; Nuciforo, P.; Pare, L.; Adamo, B.; Munoz, M.; Viladot, M.; Press, M.F.; Gagnon, R.; et al. Prognostic value of intrinsic subtypes in hormone receptor–positive metastatic breast cancer treated with letrozole with or without lapatinib. JAMA Oncol. 2016, 2, 1287–1294. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 173–197. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent. J. Stat. Softw. 2011, 39, 1–13. [Google Scholar] [CrossRef]
- Tibshirani, R.; Bien, J.; Friedman, J.; Hastie, T.; Simon, N.; Taylor, J.; Tibshirani, R.J. Strong Rules for Discarding Predictors in Lasso-Type Problems. J. R. Stat. Soc. B 2012, 74, 245–266. [Google Scholar] [CrossRef]
- Cox, D.R. Regression models and life-tables. J. R. Statist. Soc. B 1972, 34, 187–220. [Google Scholar] [CrossRef]
Item | Mismatch Rate [%] * | Predictor Genes | |
---|---|---|---|
TCGA | METABRIC | ||
ER | 6.28 | 6.26 | ESR1, AGR3, C1orf64, C4orf7, CLEC3A, SOX11, TFF1 |
PR | 11.43 | 5.54 | PGR, AGR3, ESR1, NAT1, PVALB, S100A7 |
HER2 | 11.85 | 5.17 | ERBB2, CPB1, GSTT1, PROM1 |
Dataset | Subtype | (a) IHC-Based Characterization | (b) GEP-Based Prediction | ||
---|---|---|---|---|---|
HR+/− | HER2+/− | HR+/− | HER2+/− | ||
TCGA | Luminal A | 222/4 | 24/130 | 229/2 | 4/227 |
Luminal B | 126/1 | 22/69 | 127/0 | 8/119 | |
Basal-like | 16/78 | 6/59 | 10/87 | 2/95 | |
HER2-enriched | 32/24 | 40/10 | 44/14 | 39/19 | |
METABRIC | Luminal A | 680/6 | 19/283 | 696/0 | 19/677 |
Luminal B | 465/1 | 23/171 | 474/0 | 29/445 | |
Basal-like | 61/243 | 14/118 | 40/268 | 24/284 | |
HER2-enriched | 119/111 | 50/34 | 125/111 | 119/117 | |
Normal breast-like | 161/21 | 11/51 | 165/19 | 11/173 |
Patient Group | Conditions Compared | # of Samples | p-Value | Hazard Ratio | ||||
---|---|---|---|---|---|---|---|---|
IHC | Pred. | IHC | Pred. | IHC | Pred. | |||
TCGA | ||||||||
(a) | HR+ | H vs. NH | 727 (438, 289) | 735 (430, 305) | 0.00031 | 2.11⋅10−05 | 0.89 | 1.0 |
(b) | Hormone therapy | HR+ vs. HR– | 449 (438, 11) | 449 (430, 19) | 3.15⋅10−08 | 3.38⋅10−07 | 2.23 | 2.0 |
(c) | HR+ in HER2e/Basal | H vs. NH | 44 (23, 21) | 50 (21, 29) | 0.48 | 0.045 | 0.65 | 1.88 |
(d) | HER2+ | T vs. NT | 150 (22, 128) | 77 (18, 59) | 0.021 | 0.042 | 19.4 | 19.6 |
METABRIC | ||||||||
(e) | HR+ | H vs. NH | 564 (477, 87) | 566 (470, 96) | 0.76 | 0.12 | 0.06 | 0.28 |
(f) | Hormone therapy | HR+ vs. HR– | 511 (477, 34) | 511 (470, 41) | 0.18 | 0.047 | 0.36 | 0.49 |
(g) | HR+ in HER2e/Basal | H vs. NH | 73 (55, 18) | 71 (48, 23) | 0.66 | 0.022 | 0.18 | 0.77 |
Item | TCGA BRCA Cohort | METABRIC | Comment |
---|---|---|---|
Gene expression profile | Yes | Yes | |
PAM50-based subtype | Yes (partially) | Yes | |
ER status | Yes (IHC) | Yes (IHC, non-IHC) | Used IHC-based status |
PR status | Yes (IHC) | Yes (non-IHC) | Used for receptor status |
HER2 status | Yes (IHC) | Yes (IHC, non-IHC) | Used IHC-based status |
RPPA measurements | Yes | No | |
Types of drug treatment | Chemo, hormone and targeted molecular therapy | Chemo and hormone therapy | Used for survival analysis |
Age at initial diagnosis | Yes | Yes | Used for sample selection |
Pathological stage | Yes | Yes | Used for sample selection |
Variable | Conditions | The Number of Available Samples | |
---|---|---|---|
In TCGA | In METABRIC | ||
Age | ≤80 years | 1039 | 1783 |
Pathologic stage: | I | 170 | 464 |
II | 598 | 736 | |
III | 232 | 105 | |
Therapy applied: | Chemotherapy | 578 | 393 |
Hormone therapy | 495 | 1084 | |
Both chemo- and hormone therapy | 324 | 181 | |
Targeted molecular therapy | 30 | NA | |
ER status: | Positive | 760 | 1339 |
Negative | 230 | 418 | |
NA | 2 | 0 | |
PR status: | Positive | 663 | 946 |
Negative | 324 | 837 | |
NA | 4 | 0 | |
HER2 status: | Positive | 159 | 114 |
Negative | 524 | 647 | |
NA | 182 | 27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.; Won, H.S.; Kang, K.; Qiu, K.; Park, W.J.; Ko, Y.H. Hormone Receptor-Status Prediction in Breast Cancer Using Gene Expression Profiles and Their Macroscopic Landscape. Cancers 2020, 12, 1165. https://doi.org/10.3390/cancers12051165
Yoon S, Won HS, Kang K, Qiu K, Park WJ, Ko YH. Hormone Receptor-Status Prediction in Breast Cancer Using Gene Expression Profiles and Their Macroscopic Landscape. Cancers. 2020; 12(5):1165. https://doi.org/10.3390/cancers12051165
Chicago/Turabian StyleYoon, Seokhyun, Hye Sung Won, Keunsoo Kang, Kexin Qiu, Woong June Park, and Yoon Ho Ko. 2020. "Hormone Receptor-Status Prediction in Breast Cancer Using Gene Expression Profiles and Their Macroscopic Landscape" Cancers 12, no. 5: 1165. https://doi.org/10.3390/cancers12051165
APA StyleYoon, S., Won, H. S., Kang, K., Qiu, K., Park, W. J., & Ko, Y. H. (2020). Hormone Receptor-Status Prediction in Breast Cancer Using Gene Expression Profiles and Their Macroscopic Landscape. Cancers, 12(5), 1165. https://doi.org/10.3390/cancers12051165