The Relationship between ECOG-PS, mGPS, BMI/WL Grade and Body Composition and Physical Function in Patients with Advanced Cancer
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.1.1. Prognostic Markers
2.1.2. Body Composition
2.1.3. Physical Function
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ECOG-PS | Eastern Cooperative Performance Status |
mGPS | Modified Glasgow Prognostic Score |
BMI/WL grade | Body Mass Index/Weight Loss grade |
CT | Computerised Tomography |
MUST | Malnutrition Universal Screening Tool |
PG-SGA | Patient Generated Subjective Global Assessment |
References
- Bosanquet, N.; Sikora, K. The economics of cancer care in the UK. Lancet Oncol. 2004, 5, 568–574. [Google Scholar] [CrossRef]
- World Health Organization. World Health Organization Cancer Fact Sheet. Available online: http://www.who.int/mediacentre/factsheets/fs297/en/ (accessed on 10 April 2017).
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Simmons, C.P.; Koinis, F.; Fallon, M.T.; Fearon, K.C.; Bowden, J.; Solheim, T.S.; Gronberg, B.H.; McMillan, D.C.; Gioulbasanis, I.; Laird, B.J. Prognosis in advanced lung cancer--A prospective study examining key clinicopathological factors. Lung cancer (Amsterdam, Netherlands) 2015, 88, 304–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laird, B.J.; Kaasa, S.; McMillan, D.C.; Fallon, M.T.; Hjermstad, M.J.; Fayers, P.; Klepstad, P. Prognostic factors in patients with advanced cancer: A comparison of clinicopathological factors and the development of an inflammation-based prognostic system. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 5456–5464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laird, B.J.; Fallon, M.; Hjermstad, M.J.; Tuck, S.; Kaasa, S.; Klepstad, P.; McMillan, D.C. Quality of Life in Patients With Advanced Cancer: Differential Association With Performance Status and Systemic Inflammatory Response. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 2769–2775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolan, R.D.; Laird, B.J.A.; Horgan, P.G.; McMillan, D.C. The prognostic value of the systemic inflammatory response in randomised clinical trials in cancer: A systematic review. Crit. Rev. Oncol. Hematol. 2018, 132, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Senesse, P.; Gioulbasanis, I.; Antoun, S.; Bozzetti, F.; Deans, C.; Strasser, F.; Thoresen, L.; Jagoe, R.T.; Chasen, M.; et al. Diagnostic criteria for the classification of cancer-associated weight loss. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 90–99. [Google Scholar] [CrossRef]
- Daly, L.; Dolan, R.; Power, D.; Ni Bhuachalla, E.; Sim, W.; Fallon, M.; Cushen, S.; Simmons, C.; McMillan, D.C.; Laird, B.J.; et al. The relationship between the BMI-adjusted weight loss grading system and quality of life in patients with incurable cancer. J. Cachexia Sarcopenia Muscle 2020, 11, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Vagnildhaug, O.M.; Blum, D.; Wilcock, A.; Fayers, P.; Strasser, F.; Baracos, V.E.; Hjermstad, M.J.; Kaasa, S.; Laird, B.; Solheim, T.S.; et al. The applicability of a weight loss grading system in cancer cachexia: A longitudinal analysis. J. Cachexia Sarcopenia Muscle 2017, 8, 789–797. [Google Scholar] [CrossRef] [Green Version]
- Dolan, R.D.; Daly, L.; Sim, W.M.J.; Fallon, M.; Ryan, A.; McMillan, D.C.; Laird, B.J. Comparison of the prognostic value of ECOG-PS, mGPS and BMI/WL: Implications for a clinically important framework in the assessment and treatment of advanced cancer. Clin. Nutr. (Edinburgh, Scotland) 2019. [Google Scholar] [CrossRef]
- Daly, L.E.; Dolan, R.D.; Power, D.G.; Ni Bhuachalla, E.; Sim, W.; Cushen, S.J.; Fallon, M.; Simmons, C.; McMillan, D.C.; Laird, B.J.; et al. Determinants of quality of life in patients with incurable cancer. Cancer 2020. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, C.P.L.; McMillan, D.C.; McWilliams, K.; Sande, T.A.; Fearon, K.C.; Tuck, S.; Fallon, M.T.; Laird, B.J. Prognostic Tools in Patients With Advanced Cancer: A Systematic Review. J. Pain Symptom Manag. 2017, 53, 962–970.e910. [Google Scholar] [CrossRef] [Green Version]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Watt, D.G.; Roxburgh, C.S.; Horgan, P.G.; McMillan, D.C. Colorectal Cancer, Systemic Inflammation, and Outcome: Staging the Tumor and Staging the Host. Ann. Surg. 2016, 263, 326–336. [Google Scholar] [CrossRef] [PubMed]
- McMillan, D.C. An inflammation-based prognostic score and its role in the nutrition-based management of patients with cancer. Proc. Nutr. Soc. 2008, 67, 257–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, C.H.; Roxburgh, C.S.; MacMillan, M.T.; Isswiasi, S.; Robertson, E.G.; Guthrie, G.K.; Horgan, P.G.; McMillan, D.C. The relationships between body composition and the systemic inflammatory response in patients with primary operable colorectal cancer. PLoS ONE 2012, 7, e41883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vugt, J.L.; Levolger, S.; Gharbharan, A.; Koek, M.; Niessen, W.J.; Burger, J.W.; Willemsen, S.P.; de Bruin, R.W.; JN, I.J. A comparative study of software programmes for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients. J. Cachexia Sarcopenia Muscle 2017, 8, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.; Martin, L.; Ghosh, S.; Field, C.J.; Lehner, R.; Baracos, V.E.; Mazurak, V.C. Subcutaneous adiposity is an independent predictor of mortality in cancer patients. Br. J. Cancer 2017, 117, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- Doyle, S.L.; Bennett, A.M.; Donohoe, C.L.; Mongan, A.M.; Howard, J.M.; Lithander, F.E.; Pidgeon, G.P.; Reynolds, J.V.; Lysaght, J. Establishing computed tomography-defined visceral fat area thresholds for use in obesity-related cancer research. Nutr. Res. (N.Y.) 2013, 33, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Reference values for the timed up and go test: A descriptive meta-analysis. J. Geriatr. Phys. Ther. 2006, 29, 64–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockwood, K.; Awalt, E.; Carver, D.; MacKnight, C. Feasibility and measurement properties of the functional reach and the timed up and go tests in the Canadian study of health and aging. J. Gerontol. Ser. ABiol. Sci. Med Sci. 2000, 55, M70–M73. [Google Scholar] [CrossRef] [Green Version]
- Kear, B.M.; Guck, T.P.; McGaha, A.L. Timed Up and Go (TUG) Test: Normative Reference Values for Ages 20 to 59 Years and Relationships With Physical and Mental Health Risk Factors. J. Prim. Care Community Health 2017, 8, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohannon, R.W.; Wang, Y.C.; Gershon, R.C. Two-minute walk test performance by adults 18 to 85 years: Normative values, reliability, and responsiveness. Arch. Phys. Med. Rehabil 2015, 96, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. Ser. A Biol. Sci. Med Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef]
- Williams, G.R.; Deal, A.M.; Muss, H.B.; Weinberg, M.S.; Sanoff, H.K.; Nyrop, K.A.; Pergolotti, M.; Shachar, S.S. Skeletal muscle measures and physical function in older adults with cancer: Sarcopenia or myopenia? Oncotarget 2017, 8, 33658–33665. [Google Scholar] [CrossRef] [Green Version]
- Abbass, T.; Dolan, R.D.; Laird, B.J.; McMillan, D.C. The Relationship between Imaging-Based Body Composition Analysis and the Systemic Inflammatory Response in Patients with Cancer: A Systematic Review. Cancers (Basel) 2019, 11, 1304. [Google Scholar] [CrossRef] [Green Version]
- Solheim, T.S.; Laird, B.J.A.; Balstad, T.R.; Bye, A.; Stene, G.; Baracos, V.; Strasser, F.; Griffiths, G.; Maddocks, M.; Fallon, M.; et al. Cancer cachexia: Rationale for the MENAC (Multimodal-Exercise, Nutrition and Anti-inflammatory medication for Cachexia) trial. BMJ Support Palliat Care 2018, 8, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Solheim, T.S.; Laird, B.J.A.; Balstad, T.R.; Stene, G.B.; Bye, A.; Johns, N.; Pettersen, C.H.; Fallon, M.; Fayers, P.; Fearon, K.; et al. A randomized phase II feasibility trial of a multimodal intervention for the management of cachexia in lung and pancreatic cancer. J. Cachexia Sarcopenia Muscle 2017, 8, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Gresham, G.; Schrack, J.; Gresham, L.M.; Shinde, A.M.; Hendifar, A.E.; Tuli, R.; Rimel, B.J.; Figlin, R.; Meinert, C.L.; Piantadosi, S. Wearable activity monitors in oncology trials: Current use of an emerging technology. Contemp. Clin. Trials 2018, 64, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gresham, G.; Hendifar, A.E.; Spiegel, B.; Neeman, E.; Tuli, R.; Rimel, B.J.; Figlin, R.A.; Meinert, C.L.; Piantadosi, S.; Shinde, A.M. Wearable activity monitors to assess performance status and predict clinical outcomes in advanced cancer patients. NPJ Digit Med. 2018, 1, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, C.C.; Norris, L.; Dixon, L.; Cook, J.; Maddocks, M.; Graham, C.; Tuck, S.; Haraldsdottir, E.; Brown, D.; Lloyd, A.; et al. A randomised, phase II, unblinded trial of an Exercise and Nutrition-based Rehabilitation programme (ENeRgy) versus standard care in patients with cancer: Feasibility trial protocol. Pilot Feasibility Stud. 2018, 4, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arends, J.; Baracos, V.; Bertz, H.; Bozzetti, F.; Calder, P.C.; Deutz, N.E.P.; Erickson, N.; Laviano, A.; Lisanti, M.P.; Lobo, D.N.; et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin. Nutr. (Edinb. Scotl.) 2017, 36, 1187–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, D.; Paiva, C.E.; Del Fabbro, E.G.; Steer, C.; Naberhuis, J.; van de Wetering, M.; Fernandez-Ortega, P.; Morita, T.; Suh, S.Y.; Bruera, E.; et al. Prognostication in advanced cancer: Update and directions for future research. Supportive Care Cancer Off. J. Multinatl. Assoc. Supportive Care Cancer 2019, 27, 1973–1984. [Google Scholar] [CrossRef]
- Gray, S.; Axelsson, B. The prevalence of deranged C-reactive protein and albumin in patients with incurable cancer approaching death. PLoS ONE 2018, 13, e0193693. [Google Scholar] [CrossRef] [Green Version]
- Douglas, E.; McMillan, D.C. Towards a simple objective framework for the investigation and treatment of cancer cachexia: The Glasgow Prognostic Score. Cancer Treat. Rev. 2014, 40, 685–691. [Google Scholar] [CrossRef]
- Silva, G.A.D.; Wiegert, E.V.M.; Calixto-Lima, L.; Oliveira, L.C. Clinical utility of the modified Glasgow Prognostic Score to classify cachexia in patients with advanced cancer in palliative care. Clin. Nutr. (Edinb. Scotl.) 2019. [Google Scholar] [CrossRef]
- Dolan, R.D.; McSorley, S.T.; Horgan, P.G.; Laird, B.; McMillan, D.C. The role of the systemic inflammatory response in predicting outcomes in patients with advanced inoperable cancer: Systematic review and meta-analysis. Crit Rev Oncol Hematol 2017, 116, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Dupre, A.; Malik, H.Z. Inflammation and cancer: What a surgical oncologist should know. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2018, 44, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Fearon, K.; Argiles, J.M.; Baracos, V.E.; Bernabei, R.; Coats, A.; Crawford, J.; Deutz, N.E.; Doehner, W.; Evans, W.J.; Ferrucci, L.; et al. Request for regulatory guidance for cancer cachexia intervention trials. J. Cachexia Sarcopenia Muscle 2015, 6, 272–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, J.; Johnston, M.A.; Hancock, M.L. Enobosarm, a Selective Androgen Receptor Modulator (SARM) increases Lean Body Mass (LBM) in advanced NSCLC patients; Updated results of two pivotal, international Phase 3 trials. In Proceedings of the MASCC, Miami.
- Temel, J.S.; Abernethy, A.P.; Currow, D.C.; Friend, J.; Duus, E.M.; Yan, Y.; Fearon, K.C. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): Results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 2016, 17, 519–531. [Google Scholar] [CrossRef]
- Laird, B.J.A.; Balstad, T.R.; Solheim, T.S. Endpoints in clinical trials in cancer cachexia: Where to start? Curr. Opin. Support Palliat Care 2018. [Google Scholar] [CrossRef]
- Ramage, M.I.; Skipworth, R.J.E. The relationship between muscle mass and function in cancer cachexia: Smoke and mirrors? Curr Opin Support Palliat Care 2018, 12, 439–444. [Google Scholar] [CrossRef] [PubMed]
Body Composition Measurement |
---|
High subcutaneous fat index [20]: |
Subcutaneous fat area: Males >50.0 cm2m2 and Females >42.0 cm2m2 |
Visceral obesity [21,22]: |
Visceral fat area: Males >160 cm2 and Females >80 cm2 |
Sarcopenia |
Low skeletal muscle index [22]: |
Males: BMI <25 kg/m2 and skeletal muscle index <43 cm2m2 or BMI >25 kg/m2 and skeletal muscle index <53 cm2m2 Females: BMI <25 kg/m2 and skeletal muscle index <41 cm2m2 or BMI >25 kg/m2 and skeletal muscle index <41 cm2m2 |
Myosteatosis |
Low skeletal muscle radiodensity [22]: |
BMI <25 kg/m2 and skeletal muscle radiodensity <41 HU or BMI >25 kg/m2 and skeletal muscle radiodensity <33 HU |
Characteristic | n = 523 (%) | |
---|---|---|
Clinico-pathological | ||
Age | <65 | 226 (43.2) |
65–74 | 165 (31.5) | |
>74 | 132 (22.5) | |
Sex | Male | 266 (50.9) |
Female | 257 (49.1) | |
Cancer Location | Lung | 177 (33.8) |
Gastrointestinal | 180 (34.4) | |
Other | 166 (31.7) | |
Metastatic Disease | No | 88 (16.8) |
Yes | 435 (83.2) | |
Previous Anti-Cancer Therapy | ||
Chemotherapy | No | 149 (28.5) |
Yes | 374 (71.5) | |
Radiotherapy | No | 362 (69.2) |
Yes | 161 (30.8) | |
Hormones | No | 470 (89.9) |
Yes | 53 (10.1) | |
Performance status | ||
ECOG-PS | ||
Low Risk | 0/1 | 255 (48.8) |
Intermediate Risk | 2 | 204 (39.0) |
High Risk | 3/4 | 64 (12.2) |
Timed up and go test ˥ | Pass | 125 (30.9) |
Fail | 279 (69.1) | |
Two-minute walk test ˦ | Pass | 10 (2.5) |
Fail | 393 (97.5) | |
Hand grip strength test ˧ | Pass | 74 (62.2) |
Fail | 45 (37.8) | |
Systemic Inflammation | ||
mGPS | ||
Low Risk | 0 | 217 (41.5) |
Intermediate Risk | 1 | 91 (17.4) |
High Risk | 2 | 215 (41.1) |
Body composition | ||
BMI | ≤20.0 kg/m2 | 74 (14.1) |
20–21.9 kg/m2 | 70 (13.4) | |
22–24.9 kg/m2 | 117 (22.4) | |
25–27.9 kg/m2 | 107 (20.5) | |
≥28.0 kg/m2 | 155 (29.6) | |
% Weight Loss | <2.5 | 292 (56.0) |
≥2.5 | 231 (44.0) | |
BMI/WL grade | ||
Low Risk | 0/1 | 276 (52.8) |
Intermediate Risk | 2/3 | 178 (34.0) |
High Risk | 4 | 69 (13.2) |
Subcutaneous fat index ˨ | Low | 54 (28.1) |
High | 138 (71.9) | |
Visceral obesity ˨ | Low | 79 (41.1) |
High | 113 (58.9) | |
Low skeletal muscle index ˩ | No | 162 (53.3) |
Yes | 142 (46.7) | |
Low skeletal muscle radiodensity ˪ | No | 116 (39.7) |
Yes | 176 (60.3) |
High subcutaneous fat index n = 192 | ECOG-PS 0/1 | ECOG-PS 2 | ECOG-PS 3/4 | All | p |
No | 28 (30.8) | 19 (24.7) | 7 (29.2) | 54 (28.1) | 0.677 |
Yes | 63 (69.2) | 58 (75.3) | 17 (70.8) | 138 (71.9) | |
All | 91 | 77 | 24 | 192 | |
High visceral obesity n = 192 | ECOG-PS 0/1 | ECOG-PS 2 | ECOG-PS 3/4 | All | p |
No | 38 (41.8) | 33 (42.9) | 8 (33.3) | 79 (41.1) | 0.700 |
Yes | 53 (58.2) | 44 (57.1) | 16 (66.7) | 113 (58.9) | |
All | 91 | 77 | 24 | 192 | |
Low skeletal muscle index n = 304 | ECOG-PS 0/1 | ECOG-PS 2 | ECOG-PS 3/4 | All | p |
No | 101 (59.8) | 49 (45.8) | 12 (42.9) | 162 (53.3) | 0.039 |
Yes | 68 (40.2) | 58 (54.2) | 16 (57.1) | 142 (46.7) | |
All | 169 | 107 | 28 | 304 | |
Low skeletal muscle radiodensity n = 292 | ECOG-PS 0/1 | ECOG-PS 2 | ECOG-PS 3/4 | All | p |
No | 74 (46.5) | 40 (38.5) | 2 (7.4) | 116 (39.7) | 0.001 |
Yes | 85 (53.5) | 66 (61.5) | 25 (92.6) | 176 (60.3) | |
All | 159 | 104 | 27 | 292 | |
Timed up and go test failure n = 404 | ECOG-PS 0/1 | ECOG-PS 2 | ECOG-PS 3/4 | All | p |
No | 94 (54.3) \ | 29 (17.0) | 2 (3.3) | 125 (30.9) | <0.001 |
Yes | 79 (45.7) | 142 (83.0) | 58 (96.7) | 279 (69.1) | |
All | 173 | 171 | 60 | 404 | |
Hand grip strength test failure n = 119 | ECOG-PS 0/1 | ECOG-PS 2 | ECOG-PS 3/4 | All | p |
No | 56 (68.3) | 16 (48.5) | 2 (50.0) | 74 (62.2) | 0.123 |
Yes | 26 (31.7) | 17 (51.5) | 2 (50.0) | 45 (37.8) | |
All | 82 | 33 | 4 | 119 |
High subcutaneous fat index n = 192 | mGPS = 0 | mGPS = 1 | mGPS = 2 | All | p |
No | 22 (29.3) | 5 (16.7) | 27 (31.0) | 54 (28.1) | 0.306 |
Yes | 53 (70.7) | 25 (83.3) | 60 (69.0) | 138 (71.9) | |
All | 75 | 30 | 87 | 192 | |
High visceral obesity n = 192 | mGPS = 0 | mGPS = 1 | mGPS = 2 | All | p |
No | 32 (42.7) | 9 (30.0) | 38 (43.7) | 79 (41.1) | 0.398 |
Yes | 43 (57.3) | 21 (70.0) | 49 (56.3) | 113 (58.9) | |
All | 75 | 30 | 87 | 192 | |
Low skeletal muscle index n = 304 | mGPS = 0 | mGPS = 1 | mGPS = 2 | All | p |
No | 72 (55.4) | 27 (61.4) | 63 (48.5) | 162 (53.3) | 0.273 |
Yes | 58 (44.6) | 17 (38.6) | 67 (51.5) | 142 (46.7) | |
All | 130 | 44 | 130 | 304 | |
Low skeletal muscle radiodensity n = 292 | mGPS = 0 | mGPS = 1 | mGPS = 2 | All | p |
No | 62 (50.4) | 15 (34.1) | 39 (31.2) | 116 (39.7) | 0.006 |
Yes | 61 (49.6) | 29 (65.9) | 86 (68.8) | 176 (60.3) | |
All | 123 | 44 | 125 | 292 | |
Timed up and go test failure n = 404 | mGPS = 0 | mGPS = 1 | mGPS = 2 | All | p |
No | 66 (41.3) | 21 (27.6) | 38 (22.6) | 125 (30.9) | 0.001 |
Yes | 94 (58.8) | 55 (72.4) | 130 (77.4) | 279 (69.1) | |
All | 160 | 76 | 168 | 404 | |
Hand grip strength test failure n = 119 | mGPS = 0 | mGPS =1 | mGPS = 2 | All | p |
No | 44 (77.2) | 8 (53.3) | 22 (46.8) | 74 (62.2) | 0.005 |
Yes | 13 (22.8) | 7 (46.7) | 25 (53.2) | 45 (37.8) | |
All | 57 | 15 | 47 | 119 |
High subcutaneous fat index n = 192 | BMI/WL grade 0/1 | BMI/WL grade 2/3 | BMI/WL grade 4 | All | p |
No | 20 (22.0) | 23 (30.7) | 11 (42.3) | 54 (28.1) | 0.104 |
Yes | 71 (78.0) | 52 (69.3) | 15 (57.7) | 138 (71.9) | |
All | 91 | 75 | 26 | 192 | |
High visceral obesity n = 192 | BMI/WL grade 0/1 | BMI/WL grade 2/3 | BMI/WL grade 4 | All | p |
No | 30 (33.0) | 33 (44.0) | 16 (61.5) | 79 (41.1) | 0.027 |
Yes | 61 (67.0) | 42 (56.0) | 10 (38.5) | 113 (58.9) | |
All | 91 | 75 | 26 | 192 | |
Low skeletal muscle index n = 304 | BMI/WL grade 0/1 | BMI/WL grade 2/3 | BMI/WL grade 4 | All | p |
No | 93 (57.8) | 56 (51.9) | 13 (37.1) | 162 (53.3) | 0.080 |
Yes | 68 (42.2) | 52 (48.1) | 22 (62.9) | 142 (46.7) | |
All | 161 | 108 | 35 | 304 | |
Low skeletal muscle radiodensity n = 292 | BMI/WL grade 0/1 | BMI/WL grade 2/3 | BMI/WL grade 4 | All | p |
No | 70 (45.8) | 41 (39.4) | 5 (14.3) | 116 (39.7) | 0.003 |
Yes | 83 (54.2) | 63 (60.6) | 30 (85.7) | 176 (60.3) | |
All | 153 | 104 | 35 | 292 | |
Timed up and go test failure n = 404 | BMI/WL grade 0/1 | BMI/WL grade 2/3 | BMI/WL grade 4 | All | p |
No | 68 (33.7) | 41 (28.9) | 16 (26.7) | 125 (30.9) | 0.473 |
Yes | 134 (66.3) | 101 (71.1) | 44 (73.3) | 279 (69.1) | |
All | 202 | 142 | 60 | 404 | |
Hand grip strength test failure n = 119 | BMI/WL grade 0/1 | BMI/WL grade 2/3 | BMI/WL grade 4 | All | p |
No | 47 (63.5) | 21 (58.3) | 6 (66.7) | 74 (62.2) | 0.835 |
Yes | 27 (36.5) | 15 (41.7) | 3 (33.3) | 45 (37.8) | |
All | 74 | 36 | 9 | 119 |
High subcutaneous fat index | Univariate | p-value | Multivariate | p-value |
ECOG-PS | 1.13 (0.71–1.78) | 0.617 | ─ | 0.319 |
mGPS | 0.95 (0.67–1.34) | 0.776 | ─ | 0.995 |
BMI/WL Grade | 0.62 (0.40–0.97) | 0.036 | 0.62 (0.40–0.97) | 0.036 |
High visceral obesity | Univariate | p-value | Multivariate | p-value |
ECOG-PS | 1.12 (0.74–1.70) | 0.606 | ─ | 0.254 |
mGPS | 0.97 (0.71–1.33) | 0.865 | ─ | 0.844 |
BMI/WL Grade | 0.57 (0.38–0.87) | 0.009 | 0.57 (0.38–0.87) | 0.009 |
Low skeletal muscle index | Univariate | p-value | Multivariate | p-value |
ECOG-PS | 1.53 (1.08–2.17) | 0.016 | 1.90 (1.51–2.39) | <0.001 |
mGPS | 1.15 (0.90–1.47) | 0.264 | ─ | 0.768 |
BMI/WL Grade | 1.44 (1.03–2.00) | 0.033 | ─ | 0.106 |
Low skeletal muscle radiodensity | Univariate | p-value | Multivariate | p-value |
ECOG-PS | 2.01 (1.36–2.98) | <0.001 | 1.68 (1.11–2.55) | 0.013 |
mGPS | 1.50 (1.16–1.95) | 0.002 | 1.32 (1.01–1.73) | 0.049 |
BMI/WL Grade | 1.77 (1.23–2.55) | 0.002 | 1.50 (1.02–2.19) | 0.037 |
Timed up and go test failure | Univariate | p-value | Multivariate | p-value |
ECOG-PS | 5.84 (3.79–9.00) | <0.001 | 5.84 (3.79–9.00) | <0.001 |
mGPS | 1.56 (1.22–1.98) | <0.001 | ─ | 0.231 |
BMI/WL Grade | 1.20 (0.89–1.61) | 0.232 | ─ | 0.484 |
Hand grip strength test failure | Univariate | p-value | Multivariate | p-value |
ECOG-PS | 1.93 (0.97–3.84) | 0.060 | ─ | 0.213 |
mGPS | 1.95 (1.29–2.97) | 0.002 | 1.95 (1.29–2.97) | 0.002 |
BMI/WL Grade | 1.05 (0.59–1.89) | 0.862 | ─ | 0.621 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolan, R.D.; Daly, L.E.; Simmons, C.P.; Ryan, A.M.; Sim, W.M.; Fallon, M.; Power, D.G.; Wilcock, A.; Maddocks, M.; Bennett, M.I.; et al. The Relationship between ECOG-PS, mGPS, BMI/WL Grade and Body Composition and Physical Function in Patients with Advanced Cancer. Cancers 2020, 12, 1187. https://doi.org/10.3390/cancers12051187
Dolan RD, Daly LE, Simmons CP, Ryan AM, Sim WM, Fallon M, Power DG, Wilcock A, Maddocks M, Bennett MI, et al. The Relationship between ECOG-PS, mGPS, BMI/WL Grade and Body Composition and Physical Function in Patients with Advanced Cancer. Cancers. 2020; 12(5):1187. https://doi.org/10.3390/cancers12051187
Chicago/Turabian StyleDolan, Ross D., Louise E. Daly, Claribel Pl. Simmons, Aoife M. Ryan, Wei Mj. Sim, Marie Fallon, Derek G. Power, Andrew Wilcock, Matthew Maddocks, Michael I. Bennett, and et al. 2020. "The Relationship between ECOG-PS, mGPS, BMI/WL Grade and Body Composition and Physical Function in Patients with Advanced Cancer" Cancers 12, no. 5: 1187. https://doi.org/10.3390/cancers12051187
APA StyleDolan, R. D., Daly, L. E., Simmons, C. P., Ryan, A. M., Sim, W. M., Fallon, M., Power, D. G., Wilcock, A., Maddocks, M., Bennett, M. I., Usborne, C., Laird, B. J., & McMillan, D. C. (2020). The Relationship between ECOG-PS, mGPS, BMI/WL Grade and Body Composition and Physical Function in Patients with Advanced Cancer. Cancers, 12(5), 1187. https://doi.org/10.3390/cancers12051187