Insights into the Molecular Mechanisms Behind Intralesional Immunotherapies for Advanced Melanoma
Abstract
:1. Introduction
2. Immunological Basis of Melanoma
3. Intralesional Therapies
3.1. Interleukin-2
3.2. Bacillus Calmette-Guerin
3.3. Intralesional IL2 and Topical Creams
3.4. Intralesional IL2 and Checkpoint Inhibitors
3.5. Other Intralesional IL2-Based Combination Therapies
3.6. Interferon Gamma
3.7. Talimogene Laherparepvec
3.8. T-VEC and Checkpoint Inhibition
3.9. Rose Bengal
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guy, G.P.; Thomas, C.C.; Thompson, T.; Watson, M.; Massetti, G.M.; Richardson, L.C. Vital Signs: Melanoma Incidence and Mortality Trends and Projections—United States, 1982–2030. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 591–596. [Google Scholar] [PubMed]
- Melanoma Skin Cancer Statistics—Canadian Cancer Society. Available online: http://www.cancer.ca/en/cancer-information/cancer-type/skin-melanoma/statistics/?region=on (accessed on 26 November 2019).
- Survival Statistics for Melanoma Skin Cancer—Canadian Cancer Society. Available online: http://www.cancer.ca/en/cancer-information/cancer-type/skin-melanoma/prognosis-and-survival/survival-statistics/?region=on (accessed on 26 November 2019).
- Leiter, U.; Eigentler, T.; Garbe, C. Epidemiology of skin cancer. Adv. Exp. Med. Biol. 2014, 810, 120–140. [Google Scholar] [PubMed]
- Matthews, N.H.; Li, W.-Q.; Qureshi, A.A.; Weinstock, M.A.; Cho, E. Epidemiology of Melanoma. In Cutaneous Melanoma: Etiology and Therapy; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, Australia, 2017. [Google Scholar]
- Gordon, L.G.; Rowell, D. Health system costs of skin cancer and cost-effectiveness of skin cancer prevention and screening: A systematic review. Eur. J. Cancer Prev. 2015, 24, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Serra-Arbeloa, P.; Rabines-Juárez, Á.O.; Álvarez-Ruiz, M.S.; Guillén-Grima, F. Cost of Cutaneous Melanoma by Tumor Stage: A Descriptive Analysis. Actas Dermosifiliogr. 2017, 108, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Coit, D.G.; Thompson, J.A.; Algazi, A.; Andtbacka, R.; Bichakjian, C.K.; Carson, W.E.; Daniels, G.A.; DiMaio, D.; Ernstoff, M.; Fields, R.C.; et al. Melanoma, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. JNCCN 2016, 14, 450–473. [Google Scholar] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA. Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef]
- Džambová, M.; Sečníková, Z.; Jiráková, A.; Jůzlová, K.; Viklický, O.; Hošková, L.; Göpfertovà, D.; Hercogová, J. Malignant melanoma in organ transplant recipients: Incidence, outcomes, and management strategies: A review of literature. Dermatol. Ther. 2016, 29, 64–68. [Google Scholar] [CrossRef]
- Mittal, D.; Gubin, M.M.; Schreiber, R.D.; Smyth, M.J. New insights into cancer immunoediting and its three 3component phases—Elimination, equilibrium and escape. Curr. Opin. Immunol. 2014, 27, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Passarelli, A.; Mannavola, F.; Stucci, L.S.; Tucci, M.; Silvestris, F. Immune system and melanoma biology: A balance between immunosurveillance and immune escape. Oncotarget 2017, 8, 106132. [Google Scholar] [CrossRef]
- Girardi, M.; Oppenheim, D.E.; Steele, C.R.; Lewis, J.M.; Glusac, E.; Filler, R.; Hobby, P.; Sutton, B.; Tigelaar, R.E.; Hayday, A.C. Regulation of cutaneous malignancy by gammadelta T cells. Science 2001, 294, 605–609. [Google Scholar] [CrossRef]
- Spolski, R.; Li, P.; Leonard, W.J. Biology and regulation of IL-2: From molecular mechanisms to human therapy. Nat. Rev. Immunol. 2018, 18, 648–659. [Google Scholar] [CrossRef] [PubMed]
- Zelante, T.; Fric, J.; Wong, A.Y.W. Ricciardi-Castagnoli, P. Interleukin-2 Production by Dendritic Cells and its Immuno-Regulatory Functions. Front. Immunol. 2012, 3, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weide, B.; Derhovanessian, E.; Pflugfelder, A.; Eigentler, T.K.; Radny, P.; Zelba, H.; Pföhler, C.; Pawelec, G.; Garbe, C. High response rate after intratumoral treatment with interleukin-2. Cancer 2010, 116, 4139–4146. [Google Scholar] [CrossRef] [PubMed]
- Radny, P.; Caroli, U.M.; Bauer, J.; Paul, T.; Schlegel, C.; Eigentler, T.K.; Weide, B.; Schwarz, M.; Garbe, C. Phase II trial of intralesional therapy with interleukin-2 in soft-tissue melanoma metastases. Br. J. Cancer 2003, 89, 1620–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byers, B.A.; Temple-Oberle, C.F.; Hurdle, V.; McKinnon, J.G. Treatment of in-transit melanoma with intra-lesional interleukin-2: A systematic review. J. Surg. Oncol. 2014, 110, 770–775. [Google Scholar] [CrossRef]
- Hassan, S.; Petrella, T.M.; Zhang, T.; Kamel-Reid, S.; Nordio, F.; Baccarelli, A.; Sade, S.; Naert, K.; Habeeb, A.A.; Ghazarian, D.; et al. Pathologic Complete Response to Intralesional Interleukin-2 Therapy Associated with Improved Survival in Melanoma Patients with In-Transit Disease. Ann. Surg. Oncol. 2015, 22, 1950–1958. [Google Scholar] [CrossRef]
- Boyd, K.U.; Wehrli, B.M.; Temple, C.L.F. Intra-lesional interleukin-2 for the treatment of in-transit melanoma. J. Surg. Oncol. 2011, 104, 711–717. [Google Scholar] [CrossRef]
- Dehesa, L.A.; Vilar-Alejo, J.; Valerón-Almazán, P.; Carretero, G. Experiencia en el tratamiento de satelitosis y metástasis cutáneas en tránsito de melanoma con interleucina 2 intralesional. Actas Dermo-Sifiliográficas 2009, 100, 571–585. [Google Scholar] [CrossRef]
- Martinez-Lopez, A.; Almazan-Fernandez, F.M.; Perez-Lopez, I.; Aguayo-Carreras, P.; Salvador-Rodriguez, L.; Cuenca-Barrales, C.; Arias-Santiago, S. Successful treatment of cutaneous metastatic melanoma with high-dose intralesional interleukin-2 treatment combined with cryosurgery. Dermatol. Ther. 2018, 31, e12612. [Google Scholar] [CrossRef]
- Heppt, M.V.; Goldscheider, I.; Tietze, J.K.; Berking, C. Intralesional interleukin-2 for unresectable mucosal melanoma refractory to nivolumab. Cancer Immunol. Immunother. 2017, 66, 1377–1378. [Google Scholar] [CrossRef]
- Wang, M.Z.; Brewer, J.D. Scalp In-Transit Metastatic Melanoma Treated with Interleukin-2 and Pulsed Dye Laser. Healthcare 2013, 1, 96–99. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Jones, M.S.; Ramos, R.I.; Chan, A.A.; Lee, A.F.; Foshag, L.J.; Sieling, P.A.; Faries, M.B.; Lee, D.J. Insights into Local Tumor Microenvironment Immune Factors Associated with Regression of Cutaneous Melanoma Metastases by Mycobacterium bovis Bacille Calmette–Guérin. Front. Oncol. 2017, 7, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.H.; Elin, R.J.; Cohen, B.J. Hypotension and disseminated intravascular coagulation following intralesional bacillus Calmette-Guérin therapy for locally metastatic melanoma. Cancer Immunol. Immunother. 1991, 32, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Lardone, R.D.; Chan, A.A.; Lee, A.F.; Foshag, L.J.; Faries, M.B.; Sieling, P.A.; Lee, D.J. Mycobacterium bovis Bacillus Calmette–Guérin Alters Melanoma Microenvironment Favoring Antitumor T Cell Responses and Improving M2 Macrophage Function. Front. Immunol. 2017, 8, 965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Gama Duarte, J.; Parakh, S.; Andrews, M.C.; Woods, K.; Pasam, A.; Tutuka, C.; Ostrouska, S.; Blackburn, J.M.; Behren, A.; Cebon, J. Autoantibodies May Predict Immune-Related Toxicity: Results from a Phase I Study of Intralesional Bacillus Calmette–Guérin followed by Ipilimumab in Patients with Advanced Metastatic Melanoma. Front. Immunol. 2018, 9, 411. [Google Scholar] [CrossRef] [Green Version]
- Kidner, T.B.; Morton, D.L.; Lee, D.J.; Hoban, M.; Foshag, L.J.; Turner, R.R.; Faries, M.B. Combined intralesional Bacille Calmette-Guérin (BCG) and topical imiquimod for in-transit melanoma. J. Immunother. 2012, 35, 716–720. [Google Scholar] [CrossRef] [Green Version]
- Kibbi, N.; Ariyan, S.; Faries, M.; Choi, J.N. Treatment of in-transit melanoma with intralesional bacillus Calmette-Guérin (BCG) and topical imiquimod 5% cream: A report of 3 cases. J. Immunother. 2015, 38, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Green, D.S.; Bodman-Smith, M.D.; Dalgleish, A.G.; Fischer, M.D. Phase I/II study of topical imiquimod and intralesional interleukin-2 in the treatment of accessible metastases in malignant melanoma. Br. J. Dermatol. 2007, 156, 337–345. [Google Scholar] [CrossRef]
- Garcia, M.S.; Ono, Y.; Martinez, S.R.; Chen, S.L.; Goodarzi, H.; Phan, T.; Wehrli, L.N.; Miyamura, Y.; Fung, M.A.; Maverakis, E. Complete regression of subcutaneous and cutaneous metastatic melanoma with high-dose intralesional interleukin 2 in combination with topical imiquimod and retinoid cream. Melanoma Res. 2011, 21, 235–243. [Google Scholar] [CrossRef]
- Shi, V.Y.; Tran, K.; Patel, F.; Leventhal, J.; Konia, T.; Fung, M.A.; Wilken, R.; Garcia, M.S.; Fitzmaurice, S.D.; Joo, J.; et al. 100% Complete response rate in patients with cutaneous metastatic melanoma treated with intralesional interleukin (IL)-2, imiquimod, and topical retinoid combination therapy: Results of a case series. J. Am. Acad. Dermatol. 2015, 73, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Leventhal, J.S.; Odell, I.D.; Imaeda, S.; Maverakis, E.; King, B.A. Treatment of melanoma in-transit metastases with combination intralesional interleukin-2, topical imiquimod, and tretinoin 0.1% cream. JAAD Case Rep. 2016, 2, 114–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weide, B.; Martens, A.; Wistuba-Hamprecht, K.; Zelba, H.; Maier, L.; Lipp, H.-P.; Klumpp, B.D.; Soffel, D.; Eigentler, T.K.; Garbe, C. Combined treatment with ipilimumab and intratumoral interleukin-2 in pretreated patients with stage IV melanoma-safety and efficacy in a phase II study. Cancer Immunol. Immunother. CII 2017, 66, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Rafei-Shamsabadi, D.; Lehr, S.; von Bubnoff, D.; Meiss, F. Successful combination therapy of systemic checkpoint inhibitors and intralesional interleukin-2 in patients with metastatic melanoma with primary therapeutic resistance to checkpoint inhibitors alone. Cancer Immunol. Immunother. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Williams, M.A.; Meek, S.M.; Bowen, R.C.; Grossmann, K.F.; Andtbacka, R.H.I.; Bowles, T.L.; Hyngstrom, J.R.; Leachman, S.A.; Grossman, D.; et al. A phase I study of intratumoral ipilimumab and interleukin-2 in patients with advanced melanoma. Oncotarget 2016, 7, 64390–64399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weide, B.; Eigentler, T.K.; Pflugfelder, A.; Zelba, H.; Martens, A.; Pawelec, G.; Giovannoni, L.; Ruffini, P.A.; Elia, G.; Neri, D.; et al. Intralesional treatment of stage III metastatic melanoma patients with L19-IL2 results in sustained clinical and systemic immunologic responses. Cancer Immunol. Res. 2014, 2, 668–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, F.; Cardoso, A.P.; Gonçalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front. Immunol. 2018, 9, 847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauldin, I.S.; Wages, N.A.; Stowman, A.M.; Wang, E.; Smolkin, M.E.; Olson, W.C.; Deacon, D.H.; Smith, K.T.; Galeassi, N.V.; Chianese-Bullock, K.A.; et al. Intratumoral interferon-gamma increases chemokine production but fails to increase T cell infiltration of human melanoma metastases. Cancer Immunol. Immunother. CII 2016, 65, 1189–1199. [Google Scholar] [CrossRef] [Green Version]
- Senzer, N.N.; Kaufman, H.L.; Amatruda, T.; Nemunaitis, M.; Reid, T.; Daniels, G.; Gonzalez, R.; Glaspy, J.; Whitman, E.; Harrington, K.; et al. Phase II Clinical Trial of a Granulocyte-Macrophage Colony-Stimulating Factor–Encoding, Second-Generation Oncolytic Herpesvirus in Patients with Unresectable Metastatic Melanoma. J. Clin. Oncol. 2009, 27, 5763–5771. [Google Scholar] [CrossRef]
- Andtbacka, R.H.I.; Ross, M.; Puzanov, I.; Milhem, M.; Collichio, F.; Delman, K.A.; Amatruda, T.; Zager, J.S.; Cranmer, L.; Hsueh, E.; et al. Patterns of Clinical Response with Talimogene Laherparepvec (T-VEC) in Patients with Melanoma Treated in the OPTiM Phase III Clinical Trial. Ann. Surg. Oncol. 2016, 23, 4169–4177. [Google Scholar] [CrossRef] [Green Version]
- Andtbacka, R.H.I.; Agarwala, S.S.; Ollila, D.W.; Hallmeyer, S.; Milhem, M.; Amatruda, T.; Nemunaitis, J.J.; Harrington, K.J.; Chen, L.; Shilkrut, M.; et al. Cutaneous head and neck melanoma in OPTiM, a randomized phase 3 trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma. Head Neck 2016, 38, 1752–1758. [Google Scholar] [CrossRef]
- Hoeller, C.; Michielin, O.; Ascierto, P.A.; Szabo, Z.; Blank, C.U. Systematic review of the use of granulocyte–macrophage colony-stimulating factor in patients with advanced melanoma. Cancer Immunol. Immunother. 2016, 65, 1015–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andtbacka, R.H.I.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients with Advanced Melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef] [PubMed]
- Nemunaitis, J.; Fong, T.; Robbins, J.M.; Edelman, G.; Edwards, W.; Paulson, R.S.; Bruce, J.; Ognoskie, N.; Wynne, D.; Pike, M.; et al. Phase I trial of interferon-gamma (IFN-gamma) retroviral vector administered intratumorally to patients with metastatic melanoma. Cancer Gene Ther. 1999, 6, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ressler, J.; Silmbrod, R.; Stepan, A.; Tuchmann, F.; Cicha, A.; Uyanik-Ünal, K.; Hoeller, C. Talimogene laherparepvec (T-VEC) in advanced melanoma: Complete response in a heart and kidney transplant patient. A case report. Br. J. Dermatol. 2019, 181, 186–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesney, J.; Imbert-Fernandez, Y.; Telang, S.; Baum, M.; Ranjan, S.; Fraig, M.; Batty, N. Potential clinical and immunotherapeutic utility of talimogene laherparepvec for patients with melanoma after disease progression on immune checkpoint inhibitors and BRAF inhibitors. Melanoma Res. 2018, 28, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, H.L.; Kim, D.W.; DeRaffele, G.; Mitcham, J.; Coffin, R.S.; Kim-Schulze, S. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann. Surg. Oncol. 2010, 17, 718–730. [Google Scholar] [CrossRef]
- Ribas, A.; Dummer, R.; Puzanov, I.; VanderWalde, A.; Andtbacka, R.H.I.; Michielin, O.; Olszanski, A.J.; Malvehy, J.; Cebon, J.; Fernandez, E.; et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell 2017, 170, 1109–1119.e10. [Google Scholar] [CrossRef] [Green Version]
- Puzanov, I.; Milhem, M.M.; Minor, D.; Hamid, O.; Li, A.; Chen, L.; Chastain, M.; Gorski, K.S.; Anderson, A.; Chou, J.; et al. Talimogene Laherparepvec in Combination with Ipilimumab in Previously Untreated, Unresectable Stage IIIB-IV Melanoma. J. Clin. Oncol. 2016, 34, 2619–2626. [Google Scholar] [CrossRef] [Green Version]
- Long, G.V.; Dummer, R.; Ribas, A.; Puzanov, I.; VanderWalde, A.; Andtbacka, R.H.I.; Michielin, O.; Olszanski, A.J.; Malvehy, J.; Cebon, J.S.; et al. Efficacy analysis of MASTERKEY-265 phase 1b study of talimogene laherparepvec (T-VEC) and pembrolizumab (pembro) for unresectable stage IIIB-IV melanoma. J. Clin. Oncol. 2016, 34, 9568. [Google Scholar] [CrossRef]
- Narayan, R.; Nguyen, H.; Bentow, J.J.; Moy, L.; Lee, D.K.; Greger, S.; Haskell, J.; Vanchinathan, V.; Chang, P.-L.; Tsui, S.; et al. Immunomodulation by imiquimod in patients with high-risk primary melanoma. J. Invest. Dermatol. 2012, 132, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Khong, H.; Dai, Z.; Huang, X.-F.; Wargo, J.A.; Cooper, Z.A.; Vasilakos, J.P.; Hwu, P.; Overwijk, W.W. Effective innate and adaptive anti-melanoma immunity through localized TLR-7/8 activation. J. Immunol. Baltim. Md 1950 2014, 193, 4722–4731. [Google Scholar]
- Katagiri, T. A potential novel option for cancer immunotherapy—TLR7 stimulation inhibits malignant melanoma bone invasion. Oncotarget 2018, 9, 31792. [Google Scholar] [CrossRef] [PubMed]
- Green, D.S.; Dalgleish, A.G.; Belonwu, N.; Fischer, M.D.; Bodman-Smith, M.D. Topical imiquimod and intralesional interleukin-2 increase activated lymphocytes and restore the Th1/Th2 balance in patients with metastatic melanoma. Br. J. Dermatol. 2008, 159, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; Luxardi, G.; Kirane, A.; Kulkarni, R.; Monjazeb, A.M.; Cheng, M.Y.; Ma, C.; Maverakis, E. T Cells Dominate the Local Immune Response Induced by Intralesional IL-2 in Combination with Imiquimod and Retinoid for In-Transit Metastatic Melanoma. J. Invest. Dermatol. 2018, 138, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Tuve, S.; Chen, B.-M.; Liu, Y.; Cheng, T.-L.; Touré, P.; Sow, P.S.; Feng, Q.; Kiviat, N.; Strauss, R.; Ni, S.; et al. Combination of tumor site-located CTL-associated antigen-4 blockade and systemic regulatory T-cell depletion induces tumor-destructive immune responses. Cancer Res. 2007, 67, 5929–5939. [Google Scholar] [CrossRef] [Green Version]
- Zhou, A.Y.; Wang, D.Y.; McKee, S.; Ye, F.; Wen, C.-C.; Wallace, D.E.; Ancell, K.K.; Conry, R.M.; Johnson, D.B. Correlates of response and outcomes with talimogene laherperpvec. J. Surg. Oncol. 2019, 120, 558–564. [Google Scholar] [CrossRef]
- Chesney, J.; Awasthi, S.; Curti, B.; Hutchins, L.; Linette, G.; Triozzi, P.; Tan, M.C.B.; Brown, R.E.; Nemunaitis, J.; Whitman, E.; et al. Phase IIIb safety results from an expanded-access protocol of talimogene laherparepvec for patients with unresected, stage IIIB-IVM1c melanoma. Melanoma Res. 2018, 28, 44–51. [Google Scholar] [CrossRef]
- Mousavi, H.; Zhang, X.; Gillespie, S.; Wachter, E.; Hersey, P. Rose Bengal induces dual modes of cell death in melanoma cells and has clinical activity against melanoma. Melanoma Res. 2006, 16, S8. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.-P.; Persad, R.; Gillatt, D.A. Use of bacille Calmette-Guérin in superficial bladder cancer. Postgrad. Med. J. 2002, 78, 449–454. [Google Scholar] [CrossRef]
- Fuge, O.; Vasdev, N.; Allchorne, P.; Green, J.S. Immunotherapy for bladder cancer. Res. Rep. Urol. 2015, 7, 65–79. [Google Scholar]
- Nathanson, L. Regression of intradermal malignant melanoma after intralesional injection of Mycobacterium bovis strain BCG. Cancer Chemother. Rep. 1972, 56, 659–665. [Google Scholar] [PubMed]
- Lieberman, R.; Wybran, J.; Epstein, W. The immunologic and histopathologic changes of BCG-mediated tumor regression in patients with malignant melanoma. Cancer 1975, 35, 756–777. [Google Scholar] [CrossRef]
- Krone, B.; Kölmel, K.F.; Henz, B.M.; Grange, J.M. Protection against melanoma by vaccination with Bacille Calmette-Guérin (BCG) and/or vaccinia: An epidemiology-based hypothesis on the nature of a melanoma risk factor and its immunological control. Eur. J. Cancer 2005, 41, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.K.; Ho, V.C. Pooled analysis of the efficacy of bacille Calmette-Guerin (BCG) immunotherapy in malignant melanoma. J. Dermatol. Surg. Oncol. 1993, 19, 985–990. [Google Scholar] [CrossRef]
- Shea, C.R.; Imber, M.J.; Cropley, T.G.; Cosimi, A.B.; Sober, A.J. Granulomatous eruption after BCG vaccine immunotherapy for malignant melanoma. J. Am. Acad. Dermatol. 1989, 21, 1119–1122. [Google Scholar] [CrossRef]
- de la Monte, S.M.; Hutchins, G.M. Fatal disseminated bacillus Calmette-Guerin infection and arrested growth of cutaneous malignant melanoma following intralesional immunotherapy. Am. J. Dermatopathol. 1986, 8, 331–335. [Google Scholar] [CrossRef]
- Hatzitheofilou, C.; Obenchain, D.F.; Porter, D.D.; Morton, D.L. Granulomas in melanoma patients treated with BCG immunotherapy. Cancer 1982, 49, 55–60. [Google Scholar] [CrossRef]
- Voith, M.A.; Lichtenfeld, K.M.; Schimpff, S.C.; Wiernik, P.H. Systemic complications of MER immunotherapy of cancer: Pulmonary granulomatosis and rash. Cancer 1979, 43, 500–504. [Google Scholar] [CrossRef]
- Felix, E.L.; Jessup, J.M.; Cohen, M.H. Severe complications of intralesional BCG therapy in an unsensitized patient. Case report and clinical implications. Arch. Surg. 1978, 113, 893–896. [Google Scholar] [CrossRef]
- Norton, J.A.; Shulman, N.R.; Corash, L.; Smith, R.L.; Au, F.; Rosenberg, S.A. Severe thrombocytopenia following intralesional BCG therapy. Cancer 1978, 41, 820–826. [Google Scholar] [CrossRef]
- Robinson, J.C. Risks of BCG intralesional therapy: An experience with melanoma. J. Surg. Oncol. 1977, 9, 587–593. [Google Scholar] [CrossRef] [PubMed]
- McKhann, C.F.; Hendrickson, C.G.; Spitler, L.E.; Gunnarsson, A.; Banerjee, D.; Nelson, W.R. Immunotherapy of melanoma with BCG: Two fatalities following intralesional injection. Cancer 1975, 35, 514–520. [Google Scholar] [CrossRef]
- Triozzi, P.L.; Tuthill, R.J.; Borden, E. Re-inventing intratumoral immunotherapy for melanoma. Immunotherapy 2011, 3, 653–671. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wu, P.; Qiu, F.; Wei, Q.; Huang, J. Human γδT-cell subsets and their involvement in tumor immunity. Cell. Mol. Immunol. 2017, 14, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Eberl, M.; Hintz, M.; Reichenberg, A.; Kollas, A.-K.; Wiesner, J.; Jomaa, H. Microbial isoprenoid biosynthesis and human gammadelta T cell activation. FEBS Lett. 2003, 544, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Cordova, A.; Toia, F.; La Mendola, C.; Orlando, V.; Meraviglia, S.; Rinaldi, G.; Todaro, M.; Cicero, G.; Zichichi, L.; Donni, P.L.; et al. Characterization of Human γδ T Lymphocytes Infiltrating Primary Malignant Melanomas. PLoS ONE 2012, 7, e49878. [Google Scholar] [CrossRef] [Green Version]
- Dieli, F.; Poccia, F.; Lipp, M.; Sireci, G.; Caccamo, N.; Di Sano, C.; Salerno, A. Differentiation of Effector/Memory Vδ2 T Cells and Migratory Routes in Lymph Nodes or Inflammatory Sites. J. Exp. Med. 2003, 198, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Pieniazek, M.; Matkowski, R.; Donizy, P. Macrophages in skin melanoma-the key element in melanomagenesis. Oncol. Lett. 2018, 15, 5399–5404. [Google Scholar] [CrossRef] [Green Version]
- Furudate, S.; Fujimura, T.; Kambayashi, Y.; Kakizaki, A.; Hidaka, T.; Aiba, S. Immunomodulatory Effect of Imiquimod through CCL22 Produced by Tumor-associated Macrophages in B16F10 Melanomas. Anticancer Res. 2017, 37, 3461–3471. [Google Scholar]
- Manome, Y.; Suzuki, D.; Mochizuki, A.; Saito, E.; Sasa, K.; Yoshimura, K.; Inoue, T.; Takami, M.; Inagaki, K.; Funatsu, T.; et al. The inhibition of malignant melanoma cell invasion of bone by the TLR7 agonist R848 is dependent upon pro-inflammatory cytokines produced by bone marrow macrophages. Oncotarget 2018, 9, 29934–29943. [Google Scholar] [CrossRef] [Green Version]
- Byrne, K.T.; Turk, M.J. New perspectives on the role of vitiligo in immune responses to melanoma. Oncotarget 2011, 2, 684–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynh, T.T.; Sultan, M.; Vidovic, D.; Dean, C.A.; Cruickshank, B.M.; Lee, K.; Loung, C.-Y.; Holloway, R.W.; Hoskin, D.W.; Waisman, D.M.; et al. Retinoic acid and arsenic trioxide induce lasting differentiation and demethylation of target genes in APL cells. Sci. Rep. 2019, 9, 9414. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Moise, A.R. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019, 57, e23303. [Google Scholar] [CrossRef] [PubMed]
- Vidovic, D.; Huynh, T.T.; Konda, P.; Dean, C.; Cruickshank, B.M.; Sultan, M.; Coyle, K.M.; Gujar, S.; Marcato, P. ALDH1A3-regulated long non-coding RNA NRAD1 is a potential novel target for triple-negative breast tumors and cancer stem cells. Cell Death Differ. 2019, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Dallaglio, K.; Chen, Y.; Robinson, W.A.; Robinson, S.E.; McCarter, M.D.; Wang, J.; Gonzalez, R.; Thompson, D.C.; Norris, D.A.; et al. ALDH1A Isozymes Are Markers of Human Melanoma Stem Cells and Potential Therapeutic Targets. Stem Cells Dayt. Ohio 2012, 30, 2100–2113. [Google Scholar]
- Hall, J.A.; Grainger, J.R.; Spencer, S.P.; Belkaid, Y. The Role of Retinoic Acid in Tolerance and Immunity. Immunity 2011, 35, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Szabo, A.; Fekete, T.; Koncz, G.; Kumar, B.V.; Pazmandi, K.; Foldvari, Z.; Hegedus, B.; Garay, T.; Bacsi, A.; Rajnavolgyi, E.; et al. RIG-I inhibits the MAPK-dependent proliferation of BRAF mutant melanoma cells via MKP-1. Cell. Signal. 2016, 28, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.B.; Sun, B.; Han, B. Retinoic acid increases the anticancer effect of paclitaxel by inducing differentiation of cancer stem cells in melanoma. Pharmazie 2018, 73, 729–732. [Google Scholar]
- Jobani, B.M.; Najafzadeh, N.; Mazani, M.; Arzanlou, M.; Vardin, M.M. Molecular mechanism and cytotoxicity of allicin and all-trans retinoic acid against CD44+ versus CD117+ melanoma cells. Phytomed. Int. J. Phytother. Phytopharm. 2018, 48, 161–169. [Google Scholar] [CrossRef]
- Chen, X.; Yang, M.; Hao, W.; Han, J.; Ma, J.; Wang, C.; Sun, S.; Zheng, Q. Differentiation-inducing and anti-proliferative activities of isoliquiritigenin and all-trans-retinoic acid on B16F0 melanoma cells: Mechanisms profiling by RNA-seq. Gene 2016, 592, 86–98. [Google Scholar] [CrossRef]
- Chen, J.; Cao, X.; An, Q.; Zhang, Y.; Li, K.; Yao, W.; Shi, F.; Pan, Y.; Jia, Q.; Zhou, W.; et al. Inhibition of cancer stem cell like cells by a synthetic retinoid. Nat. Commun. 2018, 9, 1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, W.; Song, Y.; Liu, Q.; Wu, Y.; He, R. Topical treatment of all-trans retinoic acid inhibits murine melanoma partly by promoting CD8+ T-cell immunity. Immunology 2017, 152, 287–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsubaki, T.; Kadonosono, T.; Sakurai, S.; Shiozawa, T.; Goto, T.; Sakai, S.; Kuchimaru, T.; Sakamoto, T.; Watanabe, H.; Kondoh, G.; et al. Novel adherent CD11b+ Gr-1+ tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget 2018, 9, 11209–11226. [Google Scholar] [CrossRef] [Green Version]
- Weide, B.; Martens, A.; Zelba, H.; Stutz, C.; Derhovanessian, E.; Giacomo, A.M.D.; Maio, M.; Sucker, A.; Schilling, B.; Schadendorf, D.; et al. Myeloid-Derived Suppressor Cells Predict Survival of Patients with Advanced Melanoma: Comparison with Regulatory T Cells and NY-ESO-1- or Melan-A–Specific T Cells. Clin. Cancer Res. 2014, 20, 1601–1609. [Google Scholar] [CrossRef] [Green Version]
- Schadendorf, D.; Hodi, F.S.; Robert, C.; Weber, J.S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.-T.; Berman, D.M.; Wolchok, J.D. Pooled Analysis of Long-Term Survival Data from Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2015, 33, 1889–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langan, E.A.; Kümpers, C.; Graetz, V.; Perner, S.; Zillikens, D.; Terheyden, P. Intralesional interleukin-2: A novel option to maximize response to systemic immune checkpoint therapy in loco-regional metastatic melanoma. Dermatol. Ther. 2019, 32, e12901. [Google Scholar] [CrossRef]
- Carnemolla, B.; Borsi, L.; Balza, E.; Castellani, P.; Meazza, R.; Berndt, A.; Ferrini, S.; Kosmehl, H.; Neri, D.; Zardi, L. Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 2002, 99, 1659–1665. [Google Scholar] [CrossRef] [Green Version]
- Facciabene, A.; Motz, G.T.; Coukos, G. T Regulatory Cells: Key Players in Tumor Immune Escape and Angiogenesis. Cancer Res. 2012, 72, 2162–2171. [Google Scholar] [CrossRef] [Green Version]
- Chinen, T.; Kannan, A.K.; Levine, A.G.; Fan, X.; Klein, U.; Zheng, Y.; Gasteiger, G.; Feng, Y.; Fontenot, J.D.; Rudensky, A.Y. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 2016, 17, 1322–1333. [Google Scholar] [CrossRef]
- Khorana, A.A.; Rosenblatt, J.D.; Sahasrabudhe, D.M.; Evans, T.; Ladrigan, M.; Marquis, D.; Rosell, K.; Whiteside, T.; Phillippe, S.; Acres, B.; et al. A phase I trial of immunotherapy with intratumoral adenovirus-interferon-gamma (TG1041) in patients with malignant melanoma. Cancer Gene Ther. 2003, 10, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Perez, M.C.; Miura, J.T.; Naqvi, S.M.H.; Kim, Y.; Holstein, A.; Lee, D.; Sarnaik, A.A.; Zager, J.S. Talimogene Laherparepvec (TVEC) for the Treatment of Advanced Melanoma: A Single-Institution Experience. Ann. Surg. Oncol. 2018, 25, 3960–3965. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.C.; Zager, J.S.; Amatruda, T.; Conry, R.; Ariyan, C.; Desai, A.; Kirkwood, J.M.; Treichel, S.; Cohan, D.; Raskin, L. Observational study of talimogene laherparepvec use for melanoma in clinical practice in the United States (COSMUS-1). Melanoma Manag. 2019, 6, MMT19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louie, R.J.; Perez, M.C.; Jajja, M.R.; Sun, J.; Collichio, F.; Delman, K.A.; Lowe, M.; Sarnaik, A.A.; Zager, J.S.; Ollila, D.W. Real-World Outcomes of Talimogene Laherparepvec Therapy: A Multi-Institutional Experience. J. Am. Coll. Surg. 2019, 228, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Seremet, T.; Planken, S.; Schwarze, J.K.; Jansen, Y.; Vandeweerd, L.; van den Begin, R.; Tsechelidis, I.; Lienard, D.; Del Marmol, V.; Neyns, B. Successful treatment with intralesional talimogene laherparepvec in two patients with immune checkpoint inhibitor-refractory, advanced-stage melanoma. Melanoma Res. 2019, 29, 85–88. [Google Scholar] [PubMed]
- Thompson, J.F.; Hersey, P.; Wachter, E. Chemoablation of metastatic melanoma using intralesional Rose Bengal. Melanoma Res. 2008, 18, 405. [Google Scholar] [CrossRef]
- Read, T.A.; Smith, A.; Thomas, J.; David, M.; Foote, M.; Wagels, M.; Barbour, A.; Smithers, B.M. Intralesional PV-10 for the treatment of in-transit melanoma metastases—Results of a prospective, non-randomized, single center study. J. Surg. Oncol. 2018, 117, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Lippey, J.; Bousounis, R.; Behrenbruch, C.; McKay, B.; Spillane, J.; Henderson, M.A.; Speakman, D.; Gyorki, D.E. Intralesional PV-10 for in-transit melanoma-A single-center experience. J. Surg. Oncol. 2016, 114, 380–384. [Google Scholar] [CrossRef]
- Thompson, J.F.; Agarwala, S.S.; Smithers, B.M.; Ross, M.I.; Scoggins, C.R.; Coventry, B.J.; Neuhaus, S.J.; Minor, D.R.; Singer, J.M.; Wachter, E.A. Phase 2 Study of Intralesional PV-10 in Refractory Metastatic Melanoma. Ann. Surg. Oncol. 2015, 22, 2135–2142. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Innamarato, P.P.; Kodumudi, K.; Weber, A.; Nemoto, S.; Robinson, J.L.; Crago, G.; McCardle, T.; Royster, E.; Sarnaik, A.A.; et al. Intralesional rose bengal in melanoma elicits tumor immunity via activation of dendritic cells by the release of high mobility group box 1. Oncotarget 2016, 7, 37893–37905. [Google Scholar] [CrossRef]
- Cruickshank, B.; Giacomantonio, M.; Marcato, P.; McFarland, S.; Pol, J.; Gujar, S. Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy. Front. Immunol. 2018, 9, 654. [Google Scholar] [CrossRef] [Green Version]
- Srivastav, A.K.; Mujtaba, S.F.; Dwivedi, A.; Amar, S.K.; Goyal, S.; Verma, A.; Kushwaha, H.N.; Chaturvedi, R.K.; Ray, R.S. Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure. J. Photochem. Photobiol. B 2016, 156, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; He, Z.; Wang, X.; Li, H.; Liu, X.-S. Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction. eLife 2019, 8, e49020. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Salem, J.-E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal Toxic Effects Associated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 1721–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Gerber, D.E. Autoimmunity, checkpoint inhibitor therapy and immune-related adverse events: A review. Semin. Cancer Biol. 2019. [Google Scholar] [CrossRef]
- Oh, A.; Tran, D.M.; McDowell, L.C.; Keyvani, D.; Barcelon, J.A.; Merino, O.; Wilson, L. Cost-Effectiveness of Nivolumab-Ipilimumab Combination Therapy Compared to Monotherapy for First-Line Treatment of Metastatic Melanoma in the United States. J. Manag. Care Spec. Pharm. 2017, 23, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, A.R.; Alkhatib, N.S.; Oh, M.; Curiel-Lewandrowski, C.; Babiker, H.M.; Cranmer, L.D.; McBride, A.; Abraham, I. Economic Evaluation of Talimogene Laherparepvec Plus Ipilimumab Combination Therapy vs. Ipilimumab Monotherapy in Patients With Advanced Unresectable Melanoma. JAMA Dermatol. 2019, 155, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Pan-Canadian Oncology Drug Review. pan-Canadian Oncology Drug Review Final Economic Guidance Report: Aldesleukin (Proleukin) for In-Transit. Melanoma. Available online: https://www.cadth.ca/sites/default/files/pcodr/pcodr_adesleukin_proleukin_fn_egr.pdf (accessed on 18 December 2019).
Intralesional Therapy | Citation | Total Enrollment | ORR (%) (n) | CR (%) (n) | PR (%) (n) | Adverse Events |
---|---|---|---|---|---|---|
IL2 | ||||||
Weide et al. [16] | 48 | 90% (43) | 69% (33) | 21% (10) | Grade 1 and 2 only: injection site reaction, fever, nausea, fatigue, loss in appetite, dizziness | |
Radny et al. [17] | 24 | 83% (20) | 62% (15) | 21% (5) | Grade 1 and 2 only: local erythema, fever, flu-like symptoms, pain, fatigue, nausea, headache | |
Hassan et al. [19] | 31 | 87% (27) | 32% (10) | 55% (17) | Grade 1 and 2 only: fever, fatigue, chills, flu-like symptoms | |
Boyd et al. [20] | 39 | 82% (32) | 51% (20) | 31% (12) | Grade 1 and 2 only: injection site discomfort, fever, fatigue, chills | |
Dehesa et al. * [21] | 7 | 99.5%* | 96%* | 3.50%* | Grade 1 and 2 only: injection site discomfort, fever, fatigue, chills | |
BCG | ||||||
Lieberman et al. [22] | 6 | 67% (4) | 50% (3) | 17% (1) | Grade 1 and 2: fever, fatigue, child, malaise, nausea Grade 3 and 4: vomiting, local skin necrosis, hypotension, hepatic injury, granulomas, granulomatous replacement | |
Yang et al. [25] | 8 | 75% (6) | 62.5% (5) | 12.5% (1) | Not reported | |
Cohen et al. [26] | 4 | 0% (0) | 0% (0) | 0% (0) | Grade 3 and 4: severe hypotension, cardiovascular collapse, disseminated intravascular coagulation, acute kidney injury, hypokalemia, pulmonary edema | |
Lardone et al. [27] | 19 | 68% (13) | - | - | Not reported | |
BCG and systemic ipilimumab | ||||||
Da Gama Guarte et al. [28] | 5 | 0% (0) | 0% (0) | 0% (0) | Grade 1 and 2: injection site pain, rash, diarrhea Grade 3 and 4: small bowel obstruction, colitis, hepatitis | |
BCG and imiquimod | ||||||
Kidner et al. [29] | 9 | 67% (6) | 56% (5) | 11% (1) | Grade 1 and 2: injection site pain, injection site reaction, fever, chills | |
Kibbi et al. [30] | 3 | 100% (3) | 100% (3) | 0% (0) | Grade 1 and 2: fever, fatigue, injection site erythema, ulcer formation | |
IL2 and imiquimod | ||||||
Green et al. * [31] | 13 | 50.6%* | 40.7%* | 9.9%* | Grade 1 and 2: fever, flu-like symptoms, injection site reactions Grade 3 (1/13): rigors | |
IL2, imiquimod, and retinoid cream | ||||||
Garcia et al. [32] | 3 | 100% (3) | 100% (3) | 0% (0) | Grade 1 and 2: injection site reaction, chills, scarring, ulcer formation, erythema | |
Shi et al. [33] | 11 | 100% (11) | 100% (11) | 0% (0) | Grade 1 and 2: fever, fatigue, chills, nausea, injection site reaction, arthralgia, rigors, dermatitis | |
Ogawa et al. [34] | 4 | 100% (4) | 100% (4) | 0% (0) | Grade 1 and 2: injection site erythema | |
IL2 and systemic ipilimumab | ||||||
Weide et al. [35] | 15 | 0% (0) | 0% (0) | 0% (0) | Grade 1 and 2: flu-like symptoms, fatigue, injection site pain, rash Grade 3 and 4 (6/15): fatigue, pain, colitis | |
Rafel-Shamsabadi et al. [36] | 9 | 66% (6) | 33% (3) | 33% (3) | Grade 1 and 2: flu-like symptoms, fever, chills Grade 3 and 4 (1/9): peripheral polyneuropathy | |
IL2 and intralesional ipilimumab | ||||||
Ray et al. [37] | 12 | 66% (8) | 58% (7) | 8% (1) | Grade 1 and 2: flu-like symptoms, fatigue, chills, injection site pain Grade 3 and 4 (6/12): hyponatremia, ulceration | |
L19-IL2 | ||||||
Weide et al. [38] | 24 | 50% (12) | 25% (6) | 25% (6) | Grade 1 and 2: injection site pain, fatigue, erythema, local edema | |
T-VEC | ||||||
Senzer et al. [39] | 50 | 26% (13) | 16% (8) | 10% (5) | Grade 1 and 2: flu-like symptoms, fever, fatigue, chills | |
Andtbacka et al. (2015) [40] | 295 | 26% (78) | 11% (32) | 15% (46) | Grade 1 and 2: flu-like symptoms, fever, fatigue, chills, nausea Grade 3 and 4 (39/292): severe fatigue, vomiting, pain, cellulitis, peripheral edema | |
Perez et al. (2018) [41] | 23 | 56% (13) | 43% (10) | 13% (3) | Grade 1 and 2: flu-like symptoms, fever, chills Grade 3 and 4 (3/23): cellulitis, bleeding ulceration | |
Louie et al. [42] | 80 | 56% (45) | 39% (31) | 17% (14) | Grade 1 and 2: flu-like symptoms, fever, chills | |
Zhou et al. [43] | 40 | 48% (19) | 43% (17) | 5% (2) | Grade 1 and 2: fever, fatigue, injection site pain Grade 3 and 4 (3/40): cellulitis, neurological changes, periorbital edema | |
Perez et al. (2019) [44] | 76 | - | 20% (15) | - | Grade 1 and 2: flu-like symptoms, fever, fatigue, chills Grade 3 and 4 (5/76): ulceration, cellulitis, injection site pain | |
Chesney et al. [45] | 41 | - | 12% (5) | - | Grade 1 and 2: flu-like symptoms, fever, fatigue, chills, nausea Grade 3 and 4 (10/41): severe rigors, severe fever, injection site infection, vomiting, hyperhidrosis | |
Andtbacka et al. (2016) [46] | 61 | 48% (29) | 30% (18) | 18% (11) | Grade 1 and 2: flu-like symptoms, fever, fatigue, chills, nausea | |
T-VEC and systemic ipilimumab | ||||||
Puzanov et al. [47] | 18 | 50% (9) | 22% (4) | 28% (5) | Grade 1 and 2: fever, fatigue, chills, diarrhea Grade 3 and 4 (5/18): severe fever, severe nausea, dehydration, vomiting, increased lipase and amylase | |
T-VEC and systemic pembrolizumab | ||||||
Long et al. [48] | 21 | 47% (10) | 14% (3) | 33% (7) | Grade 1 and 2: fever, fatigue, chills Grade 3 and 4 (7/21): details not reported | |
Rose Bengal (PV-10) | ||||||
Thompson et al. (2008) [49] | 11 | 54% (6) | 27% (3) | 27% (3) | Grade 1 and 2: injection site pain, pruritis, local erythema | |
Read et al. [50] | 45 | 86% (39) | 42% (19) | 44% (20) | Grade 1 and 2: injection site pain, local edema, local erythema Grade 3 and 4 (3/45): ulceration, cellulitis, photosensitivity reaction | |
Lippey et al. [51] | 19 | 52% (10) | 26% (5) | 26% (5) | Grade 1 and 2: injection site pain, local edema, local erythema Grade 3 and 4 (1/19): cellulitis | |
Thompson et al. (2015) [52] | 80 | 51% (41) | 26% (21) | 25% (20) | Grade 1 and 2: injection site pain, local edema, vesicles, local edema, pruritis Grade 3 and 4 (12/80): severe pain, vesicles, local edema, peripheral edema, dysphagia, photosensitivity reaction |
Intralesional Therapy | Proposed Mechanism of Action |
---|---|
IL2 | |
BCG |
|
BCG and imiquimod |
|
IL2 and imiquimod |
|
IL2, imiquimod, and retinoid cream |
|
IL2 and intralesional ipilimumab | |
T-VEC | |
T-VEC and systemic pembrolizumab |
|
Rose Bengal (PV-10) |
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidovic, D.; Giacomantonio, C. Insights into the Molecular Mechanisms Behind Intralesional Immunotherapies for Advanced Melanoma. Cancers 2020, 12, 1321. https://doi.org/10.3390/cancers12051321
Vidovic D, Giacomantonio C. Insights into the Molecular Mechanisms Behind Intralesional Immunotherapies for Advanced Melanoma. Cancers. 2020; 12(5):1321. https://doi.org/10.3390/cancers12051321
Chicago/Turabian StyleVidovic, Dejan, and Carman Giacomantonio. 2020. "Insights into the Molecular Mechanisms Behind Intralesional Immunotherapies for Advanced Melanoma" Cancers 12, no. 5: 1321. https://doi.org/10.3390/cancers12051321
APA StyleVidovic, D., & Giacomantonio, C. (2020). Insights into the Molecular Mechanisms Behind Intralesional Immunotherapies for Advanced Melanoma. Cancers, 12(5), 1321. https://doi.org/10.3390/cancers12051321