BCMA-Targeting Therapy: Driving a New Era of Immunotherapy in Multiple Myeloma
Abstract
:1. Introduction
1.1. BCMA Is an Excellent Target for Anti-MM Immunotherapy: Comparison with the Other Therapeutic Targets
1.2. Anti-BCMA Immunotherapy: From Bench to Bedside and Back to Bench Studies
2. Immunotherapies Targeting BCMA
2.1. CAR T-Cell Therapy
New CAR T Therapy Strategies
2.2. Antibody-Drug Conjugate (ADC) Studies
2.2.1. GSK2857916 (Belantamab Mafodotin) (GlaxoSmithKline)
2.2.2. MEDI2228 (MedImmune LLC)
2.2.3. HDP-101
2.3. Bispecific T-Cell Engager (BiTE) Molecules
2.3.1. BI 836909/AMG 420
2.3.2. AMG 701
2.4. Bispecific or Trispecific Antibodies/Molecules
2.5. Other Approaches
2.5.1. Descartes-08 (Cartesian Therapeutics)
2.5.2. Anti-BCMA Cancer Vaccine
2.5.3. Treatment Targeting APRIL/BCMA Pathway
2.5.4. Antibody-Coupled T Cell Receptor (ACTR)
2.5.5. T Cell Antigen Coupler (TAC) T Cell Therapy
3. Potential Biomarkers for BCMA-Based Immunotherapy
4. Which Anti-BCMA Agent? Each Has Its Own Merits
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Palumbo, A.; Anderson, K. Multiple myeloma. N. Engl. J. Med. 2011, 364, 1046–1060. [Google Scholar] [CrossRef] [Green Version]
- Lonial, S.; Dimopoulos, M.; Palumbo, A.; White, D.; Grosicki, S.; Spicka, I.; Walter-Croneck, A.; Moreau, P.; Mateos, M.V.; Magen, H.; et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2015, 373, 621–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, Y.T.; Anderson, K.C. A new era of immune therapy in multiple myeloma. Blood 2016, 128, 318–319. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M.V.; et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2016, 375, 754–766. [Google Scholar] [CrossRef]
- Mateos, M.V.; Dimopoulos, M.A.; Cavo, M.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; Kaplan, P.; et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N. Engl. J. Med. 2018, 378, 518–528. [Google Scholar] [CrossRef]
- Kumar, S.K.; Dimopoulos, M.A.; Kastritis, E.; Terpos, E.; Nahi, H.; Goldschmidt, H.; Hillengass, J.; Leleu, X.; Beksac, M.; Alsina, M.; et al. Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: A multicenter IMWG study. Leukemia 2017, 31, 2443–2448. [Google Scholar] [CrossRef]
- Chim, C.S.; Kumar, S.K.; Orlowski, R.Z.; Cook, G.; Richardson, P.G.; Gertz, M.A.; Giralt, S.; Mateos, M.V.; Leleu, X.; Anderson, K.C. Management of relapsed and refractory multiple myeloma: Novel agents, antibodies, immunotherapies and beyond. Leukemia 2018, 32, 252–262. [Google Scholar] [CrossRef]
- Laabi, Y.; Gras, M.P.; Carbonnel, F.; Brouet, J.C.; Berger, R.; Larsen, C.J.; Tsapis, A. A new gene, BCM, on chromosome 16 is fused to the interleukin 2 gene by a t(4;16)(q26;p13) translocation in a malignant T cell lymphoma. EMBO J. 1992, 11, 3897–3904. [Google Scholar] [CrossRef]
- Madry, C.; Laabi, Y.; Callebaut, I.; Roussel, J.; Hatzoglou, A.; Le Coniat, M.; Mornon, J.P.; Berger, R.; Tsapis, A. The characterization of murine BCMA gene defines it as a new member of the tumor necrosis factor receptor superfamily. Int. Immunol. 1998, 10, 1693–1702. [Google Scholar] [CrossRef]
- Mackay, F.; Schneider, P.; Rennert, P.; Browning, J. BAFF AND APRIL: A tutorial on B cell survival. Annu. Rev. Immunol. 2003, 21, 231–264. [Google Scholar] [CrossRef]
- Marsters, S.A.; Yan, M.; Pitti, R.M.; Haas, P.E.; Dixit, V.M.; Ashkenazi, A. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr. Biol. 2000, 10, 785–788. [Google Scholar] [CrossRef] [Green Version]
- Day, E.S.; Cachero, T.G.; Qian, F.; Sun, Y.; Wen, D.; Pelletier, M.; Hsu, Y.M.; Whitty, A. Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA. Biochemistry 2005, 44, 1919–1931. [Google Scholar] [CrossRef]
- Tai, Y.T.; Li, X.F.; Breitkreutz, I.; Song, W.; Neri, P.; Catley, L.; Podar, K.; Hideshima, T.; Chauhan, D.; Raje, N.; et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006, 66, 6675–6682. [Google Scholar] [CrossRef] [Green Version]
- Neri, P.; Kumar, S.; Fulciniti, M.T.; Vallet, S.; Chhetri, S.; Mukherjee, S.; Tai, Y.; Chauhan, D.; Tassone, P.; Venuta, S.; et al. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin. Cancer Res. 2007, 13, 5903–5909. [Google Scholar] [CrossRef] [Green Version]
- Moreaux, J.; Cremer, F.W.; Reme, T.; Raab, M.; Mahtouk, K.; Kaukel, P.; Pantesco, V.; De Vos, J.; Jourdan, E.; Jauch, A.; et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005, 106, 1021–1030. [Google Scholar] [CrossRef] [Green Version]
- Mahtouk, K.; Hose, D.; De Vos, J.; Moreaux, J.; Jourdan, M.; Rossi, J.F.; Reme, T.; Goldschmidt, H.; Klein, B. Input of DNA microarrays to identify novel mechanisms in multiple myeloma biology and therapeutic applications. Clin. Cancer Res. 2007, 13, 7289–7295. [Google Scholar] [CrossRef] [Green Version]
- Matthes, T.; Dunand-Sauthier, I.; Santiago-Raber, M.L.; Krause, K.H.; Donze, O.; Passweg, J.; McKee, T.; Huard, B. Production of the plasma-cell survival factor a proliferation-inducing ligand (APRIL) peaks in myeloid precursor cells from human bone marrow. Blood 2011, 118, 1838–1844. [Google Scholar] [CrossRef]
- An, G.; Acharya, C.; Feng, X.; Wen, K.; Zhong, M.; Zhang, L.; Munshi, N.C.; Qiu, L.; Tai, Y.T.; Anderson, K.C. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: Therapeutic implication. Blood 2016, 128, 1590–1603. [Google Scholar] [CrossRef] [Green Version]
- Tai, Y.T.; Acharya, C.; An, G.; Moschetta, M.; Zhong, M.Y.; Feng, X.; Cea, M.; Cagnetta, A.; Wen, K.; van Eenennaam, H.; et al. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood 2016, 127, 3225–3236. [Google Scholar] [CrossRef] [Green Version]
- Matthes, T.; McKee, T.; Dunand-Sauthier, I.; Manfroi, B.; Park, S.; Passweg, J.; Huard, B. Myelopoiesis dysregulation associated to sustained APRIL production in multiple myeloma-infiltrated bone marrow. Leukemia 2015, 29, 1901–1908. [Google Scholar] [CrossRef] [Green Version]
- Moreaux, J.; Legouffe, E.; Jourdan, E.; Quittet, P.; Reme, T.; Lugagne, C.; Moine, P.; Rossi, J.F.; Klein, B.; Tarte, K. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004, 103, 3148–3157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.F.; Anderson, K.C.; Tai, Y.T. Targeting B cell maturation antigen (BCMA) in multiple myeloma: Potential uses of BCMA-based immunotherapy. Front. Immunol. 2018, 9, 1821. [Google Scholar] [CrossRef]
- Tai, Y.T.; Cho, S.F.; Anderson, K.C. Osteoclast immunosuppressive effects in multiple myeloma: Role of programmed cell death ligand 1. Front. Immunol. 2018, 9, 1822. [Google Scholar] [CrossRef] [Green Version]
- Tai, Y.T.; Lin, L.; Xing, L.; Cho, S.F.; Yu, T.; Acharya, C.; Wen, K.; Hsieh, P.A.; Dulos, J.; van Elsas, A.; et al. APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: Therapeutic implications. Leukemia 2019, 33, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.T.; Anderson, K.C. B cell maturation antigen (BCMA)-based immunotherapy for multiple myeloma. Expert Opin. Biol. Ther. 2019, 19, 1143–1156. [Google Scholar] [CrossRef] [PubMed]
- Claudio, J.O.; Masih-Khan, E.; Tang, H.; Goncalves, J.; Voralia, M.; Li, Z.H.; Nadeem, V.; Cukerman, E.; Francisco-Pabalan, O.; Liew, C.C.; et al. A molecular compendium of genes expressed in multiple myeloma. Blood 2002, 100, 2175–2186. [Google Scholar] [CrossRef]
- Tai, Y.T.; Li, X.F.; Catley, L.; Coffey, R.; Breitkreutz, I.; Bae, J.; Song, W.; Podar, K.; Hideshima, T.; Chauhan, D.; et al. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: Clinical implications. Cancer Res. 2005, 65, 11712–11720. [Google Scholar] [CrossRef] [Green Version]
- Tai, Y.T.; Mayes, P.A.; Acharya, C.; Zhong, M.Y.; Cea, M.; Cagnetta, A.; Craigen, J.; Yates, J.; Gliddon, L.; Fieles, W.; et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood 2014, 123, 3128–3138. [Google Scholar] [CrossRef]
- Carpenter, R.O.; Evbuomwan, M.O.; Pittaluga, S.; Rose, J.J.; Raffeld, M.; Yang, S.; Gress, R.E.; Hakim, F.T.; Kochenderfer, J.N. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res. 2013, 19, 2048–2060. [Google Scholar] [CrossRef] [Green Version]
- Seckinger, A.; Delgado, J.A.; Moser, S.; Moreno, L.; Neuber, B.; Grab, A.; Lipp, S.; Merino, J.; Prosper, F.; Emde, M.; et al. Target Expression, Generation, Preclinical Activity, and Pharmacokinetics of the BCMA-T Cell Bispecific Antibody EM801 for Multiple Myeloma Treatment. Cancer Cell 2017, 31, 396–410. [Google Scholar] [CrossRef] [Green Version]
- Salem, D.A.; Maric, I.; Yuan, C.M.; Liewehr, D.J.; Venzon, D.J.; Kochenderfer, J.; Stetler-Stevenson, M. Quantification of B-cell maturation antigen, a target for novel chimeric antigen receptor T-cell therapy in Myeloma. Leuk. Res. 2018, 71, 106–111. [Google Scholar] [CrossRef]
- Laurent, S.A.; Hoffmann, F.S.; Kuhn, P.H.; Cheng, Q.; Chu, Y.; Schmidt-Supprian, M.; Hauck, S.M.; Schuh, E.; Krumbholz, M.; Rubsamen, H.; et al. Gamma-secretase directly sheds the survival receptor BCMA from plasma cells. Nat. Commun. 2015, 6, 7333. [Google Scholar] [CrossRef]
- Sanchez, E.; Li, M.; Kitto, A.; Li, J.; Wang, C.S.; Kirk, D.T.; Yellin, O.; Nichols, C.M.; Dreyer, M.P.; Ahles, C.P.; et al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br. J. Haematol 2012, 158, 727–738. [Google Scholar] [CrossRef]
- Sanchez, E.; Gillespie, A.; Tang, G.; Ferros, M.; Harutyunyan, N.M.; Vardanyan, S.; Gottlieb, J.; Li, M.; Wang, C.S.; Chen, H.; et al. Soluble B-cell maturation antigen mediates tumor-induced immune deficiency in multiple myeloma. Clin. Cancer Res. 2016, 22, 3383–3397. [Google Scholar] [CrossRef] [Green Version]
- Ghermezi, M.; Li, M.; Vardanyan, S.; Harutyunyan, N.M.; Gottlieb, J.; Berenson, A.; Spektor, T.M.; Andreu-Vieyra, C.; Petraki, S.; Sanchez, E.; et al. Serum B-cell maturation antigen: A novel biomarker to predict outcomes for multiple myeloma patients. Haematologica 2017, 102, 785–795. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.D.; Garfall, A.L.; Stadtmauer, E.A.; Melenhorst, J.J.; Lacey, S.F.; Lancaster, E.; Vogl, D.T.; Weiss, B.M.; Dengel, K.; Nelson, A.; et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Investig. 2019, 129, 2210–2221. [Google Scholar] [CrossRef] [Green Version]
- Tai, Y.T.; Dillon, M.; Song, W.; Leiba, M.; Li, X.F.; Burger, P.; Lee, A.I.; Podar, K.; Hideshima, T.; Rice, A.G.; et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 2008, 112, 1329–1337. [Google Scholar] [CrossRef] [Green Version]
- Gorgun, G.; Samur, M.K.; Cowens, K.B.; Paula, S.; Bianchi, G.; Anderson, J.E.; White, R.E.; Singh, A.; Ohguchi, H.; Suzuki, R.; et al. Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin. Cancer Res. 2015, 21, 4607–4618. [Google Scholar] [CrossRef] [Green Version]
- Nijhof, I.S.; Groen, R.W.; Lokhorst, H.M.; van Kessel, B.; Bloem, A.C.; van Velzen, J.; de Jong-Korlaar, R.; Yuan, H.; Noort, W.A.; Klein, S.K.; et al. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab. Leukemia 2015, 29, 2039–2049. [Google Scholar] [CrossRef]
- de Weers, M.; Tai, Y.T.; van der Veer, M.S.; Bakker, J.M.; Vink, T.; Jacobs, D.C.; Oomen, L.A.; Peipp, M.; Valerius, T.; Slootstra, J.W.; et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J. Immunol 2011, 186, 1840–1848. [Google Scholar] [CrossRef]
- Jiang, H.; Acharya, C.; An, G.; Zhong, M.; Feng, X.; Wang, L.; Dasilva, N.; Song, Z.; Yang, G.; Adrian, F.; et al. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia 2016, 30, 399–408. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, L.; Acharya, C.; An, G.; Wen, K.; Qiu, L.; Munshi, N.C.; Tai, Y.T.; Anderson, K.C. Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin. Cancer Res. 2017, 23, 4290–4300. [Google Scholar] [CrossRef] [Green Version]
- Krejcik, J.; Casneuf, T.; Nijhof, I.S.; Verbist, B.; Bald, J.; Plesner, T.; Syed, K.; Liu, K.; van de Donk, N.W.; Weiss, B.M.; et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 2016, 128, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Drent, E.; Groen, R.W.; Noort, W.A.; Themeli, M.; Lammerts van Bueren, J.J.; Parren, P.W.; Kuball, J.; Sebestyen, Z.; Yuan, H.; de Bruijn, J.; et al. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica 2016, 101, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Gogishvili, T.; Danhof, S.; Prommersberger, S.; Rydzek, J.; Schreder, M.; Brede, C.; Einsele, H.; Hudecek, M. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7(+) normal lymphocytes. Blood 2017, 130, 2838–2847. [Google Scholar] [CrossRef] [Green Version]
- Lesokhin, A.M.; Ansell, S.M.; Armand, P.; Scott, E.C.; Halwani, A.; Gutierrez, M.; Millenson, M.M.; Cohen, A.D.; Schuster, S.J.; Lebovic, D.; et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: Preliminary results of a phase Ib study. J. Clin. Oncol. 2016, 34, 2698–2704. [Google Scholar] [CrossRef] [Green Version]
- Mateos, M.V.; Orlowski, R.Z.; Ocio, E.M.; Rodríguez-Otero, P.; Reece, D.; Moreau, P.; Munshi, N.; Avigan, D.E.; Siegel, D.S.; Ghori, R.; et al. Pembrolizumab combined with lenalidomide and low-dose dexamethasone for relapsed or refractory multiple myeloma: Phase I KEYNOTE-023 study. Br. J. Haematol. 2019, 186, e117–e121. [Google Scholar] [CrossRef] [Green Version]
- Jelinek, T.; Paiva, B.; Hajek, R. Update on PD-1/PD-L1 inhibitors in multiple myeloma. Front. Immunol. 2018, 9, 2431. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Ghoddusi, M.; Purdon, T.J.; Wang, X.; et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl. Med. 2019, 11. [Google Scholar] [CrossRef]
- De Larrea, C.F.; Staehr, M.; Lopez, A.; Chen, Y.; Purdon, T.J.; Ng, K.Y.; Wendel, H.; Brentjens, R.J.; Smith, E.L. Optimal dual-targeted CAR construct simultaneously targeting Bcma and GPRC5D prevents Bcma-escape driven relapse in multiple myeloma. Blood 2019, 134, 136. [Google Scholar] [CrossRef]
- Hosen, N.; Matsunaga, Y.; Hasegawa, K.; Matsuno, H.; Nakamura, Y.; Makita, M.; Watanabe, K.; Yoshida, M.; Satoh, K.; Morimoto, S.; et al. The activated conformation of integrin beta7 is a novel multiple myeloma-specific target for CAR T cell therapy. Nat. Med. 2017, 23, 1436–1443. [Google Scholar] [CrossRef]
- Drent, E.; Themeli, M.; Poels, R.; de Jong-Korlaar, R.; Yuan, H.; de Bruijn, J.; Martens, A.C.M.; Zweegman, S.; van de Donk, N.; Groen, R.W.J.; et al. A rational strategy for reducing on-target off-tumor effects of CD38-chimeric antigen receptors by affinity optimization. Mol. Ther. 2017, 25, 1946–1958. [Google Scholar] [CrossRef]
- Radhakrishnan, S.V.; Luetkens, T.; Scherer, S.D.; Davis, P.; Vander Mause, E.R.; Olson, M.L.; Yousef, S.; Panse, J.; Abdiche, Y.; Li, K.D.; et al. CD229 CAR T cells eliminate multiple myeloma and tumor propagating cells without fratricide. Nat. Commun. 2020, 11, 798. [Google Scholar] [CrossRef]
- Zhang, L.; Tai, Y.T.; Ho, M.; Xing, L.; Chauhan, D.; Gang, A.; Qiu, L.; Anderson, K.C. Regulatory B cell-myeloma cell interaction confers immunosuppression and promotes their survival in the bone marrow milieu. Blood Cancer J. 2017, 7, e547. [Google Scholar] [CrossRef] [Green Version]
- Bellucci, R.; Alyea, E.P.; Chiaretti, S.; Wu, C.J.; Zorn, E.; Weller, E.; Wu, B.; Canning, C.; Schlossman, R.; Munshi, N.C.; et al. Graft-versus-tumor response in patients with multiple myeloma is associated with antibody response to BCMA, a plasma-cell membrane receptor. Blood 2005, 105, 3945–3950. [Google Scholar] [CrossRef]
- Tai, Y.T.; Anderson, K.C. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy 2015, 7, 1187–1199. [Google Scholar] [CrossRef] [Green Version]
- Benson, D.M.; Holmes, H.; Hari, P.; Sachs, J.; Exter, B.; Ranger, A.; Cheema, T.; Sienczylo, I.; O’Meara, M.M.; Sussman, D.; et al. A phase 1 study of two investigational agents, ACTR087, an autologous T cell product expressing an antibody-coupled T cell receptor, in combination with SEA-BCMA, a novel non-fucosylated monoclonal antibody, in subjects with relapsed or refractory multiple myeloma. Blood 2018, 132, 1997. [Google Scholar] [CrossRef]
- Helsen, C.W.; Hammill, J.A.; Lau, V.W.C.; Mwawasi, K.A.; Afsahi, A.; Bezverbnaya, K.; Newhook, L.; Hayes, D.L.; Aarts, C.; Bojovic, B.; et al. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat. Commun. 2018, 9, 3049. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, M.; Raje, N. Anti-BCMA CAR T-cell therapy in multiple myeloma: Can we do better? Leukemia 2020, 34, 21–34. [Google Scholar] [CrossRef]
- Shah, N.; Chari, A.; Scott, E.; Mezzi, K.; Usmani, S.Z. B-cell maturation antigen (BCMA) in multiple myeloma: Rationale for targeting and current therapeutic approaches. Leukemia 2020, 34, 985–1005. [Google Scholar] [CrossRef]
- Sadelain, M.; Brentjens, R.; Riviere, I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013, 3, 388–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- June, C.H.; Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 2018, 379, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Brudno, J.N.; Maric, I.; Hartman, S.D.; Rose, J.J.; Wang, M.; Lam, N.; Stetler-Stevenson, M.; Salem, D.; Yuan, C.; Pavletic, S.; et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 2018, 36, 2267–2280. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Alsina, M.; Shah, N.; Siegel, D.S.; Jagannath, S.; Madduri, D.; Kaufman, J.L.; Munshi, N.C.; Rosenblatt, J.; Jasielec, J.K.; et al. Updated results from an ongoing phase 1 clinical study of bb21217 anti-Bcma CAR T cell therapy. Blood 2019, 134, 927. [Google Scholar] [CrossRef]
- Liu, Y.R.; Chen, Z.; Fang, H.L.; Wei, R.H.; Yu, K.; Jiang, S.F.; Fu, W.J.; Jiang, H.; Du, J.; He, F.; et al. Durable remission achieved from Bcma-directed CAR-T therapy against relapsed or refractory multiple myeloma. Blood 2018, 132, 956. [Google Scholar] [CrossRef]
- Green, D.J.; Pont, M.J.; Sather, B.D.; Cowan, A.J.; Turtle, C.J.; Till, B.G.; Nagengast, A.M.; Libby, E.N.I.; Becker, P.S.; Coffey, D.G.; et al. Fully human Bcma targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma. Blood 2018, 132, 1011. [Google Scholar] [CrossRef]
- Li, C.R.; Wang, Q.X.; Zhu, H.; Mao, X.; Wang, Y.; Zhang, Y.C.; Zhou, J.F. T cells expressing anti B-cell maturation antigen chimeric antigen receptors for plasma cell malignancies. Blood 2018, 132, 1013. [Google Scholar] [CrossRef]
- Han, L.; Gao, Q.; Zhou, K.; Zhou, J.; Fang, B.; Zhang, J.; Li, H.; Song, Y. The phase I clinical study of CART targeting BCMA with humanized alpaca-derived single-domain antibody as antigen recognition domain. J. Clin. Oncol. 2019, 37 (Suppl. 15), 2535. [Google Scholar] [CrossRef]
- Shi, X.L.; Yan, L.Z.; Shang, J.J.; Qu, S.; Kang, L.Q.; Zhou, J.; Jin, S.; Yao, W.q.; Yao, Y.; Yan, S.H.; et al. Tandom autologous transplantation and combined infusion of CD19 and Bcma-specific chimeric antigen receptor T cells for high risk MM: Initial safety and efficacy report from a clinical pilot study. Blood 2018, 132, 1009. [Google Scholar] [CrossRef]
- Yan, L.Z.; Yan, Z.; Shang, J.J.; Shi, X.L.; Jin, S.; Kang, L.Q.; Qu, S.; Zhou, J.; Kang, H.Z.; Wang, R.J.; et al. Sequential CD19- and Bcma-specific chimeric antigen receptor T cell treatment for RRMM: Report from a single center study. Blood 2019, 134, 578. [Google Scholar] [CrossRef]
- Garfall, A.L.; Cohen, A.D.; Lacey, S.F.; Tian, L.; Hwang, W.T.; Vogl, D.T.; Waxman, A.; Lancaster, E.; Nelson, A.M.; Ferthio, R.; et al. Combination anti-Bcma and anti-CD19 CAR T cells as consolidation of response to prior therapy in multiple myeloma. Blood 2019, 134, 1863. [Google Scholar] [CrossRef]
- Jie, J.; Hao, S.G.; Jiang, S.F.; Li, Z.H.; Yang, M.; Zhang, W.H.; Yu, K.; Xiao, J.; Meng, H.T.; Ma, L.Y.; et al. Phase 1 trial of the safety and efficacy of fully human anti-Bcma CAR T cells in relapsed/refractory multiple myeloma. Blood 2019, 134, 4435. [Google Scholar] [CrossRef]
- Li, C.R.; Wang, J.; Wang, D.; Hu, G.; Yang, Y.; Zhou, X.; Meng, L.; Hong, Z.Y.; Chen, L.; Mao, X.; et al. Efficacy and safety of fully human Bcma targeting CAR T cell therapy in relapsed/refractory multiple myeloma. Blood 2019, 134, 929. [Google Scholar] [CrossRef]
- Mailankody, S.; Htut, M.; Lee, K.P.; Bensinger, W.I.; Devries, T.; Piasecki, J.; Ziyad, S.; Blake, M.; Byon, J.; Jakubowiak, A. JCARH125, anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: Initial proof of concept results from a phase 1/2 multicenter study (EVOLVE). Blood 2018, 132, 957. [Google Scholar] [CrossRef]
- Zhao, W.H.; Liu, J.; Wang, B.Y.; Chen, Y.X.; Cao, X.M.; Yang, Y.; Zhang, Y.L.; Wang, F.X.; Zhang, P.Y.; Lei, B.; et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol Oncol. 2018, 11, 141. [Google Scholar] [CrossRef]
- Wang, B.Y.; Zhao, W.H.; Liu, J.; Chen, Y.X.; Cao, X.M.; Yang, Y.; Zhang, Y.L.; Wang, F.X.; Zhang, P.Y.; Lei, B.; et al. Long-term follow-up of a phase 1, first-in-human open-label study of LCAR-B38M, a structurally differentiated chimeric antigen receptor T (CAR-T) cell therapy targeting B-cell maturation antigen (BCMA), in patients (pts) with relapsed/refractory multiple myeloma (RRMM). Blood 2019, 134, 579. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.J.; Yang, S.S.; Sun, Y.; Wu, W.; Liu, Y.F.; Xu, J.; Zhuang, Y.; Zhang, W.; Weng, X.Q.; et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc. Natl. Acad. Sci. USA 2019, 116, 9543–9551. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.J.; Xu, J.; Fu, W.J.; Jin, S.W.; Yang, S.S.; Yan, S.; Wu, W.; Liu, Y.F.; Zhang, W.; Weng, X.Q.; et al. Updated phase 1 results of a first-in-human open-label study of Lcar-B38M, a structurally differentiated chimeric antigen receptor T (CAR-T) cell therapy targeting B-cell maturation antigen (Bcma). Blood 2019, 134, 1858. [Google Scholar] [CrossRef]
- Mailankody, S.; Ghosh, A.; Staehr, M.; Purdon, T.J.; Roshal, M.; Halton, E.; Diamonte, C.; Pineda, J.; Anant, P.; Bernal, Y.; et al. Clinical responses and pharmacokinetics of MCARH171, a human-derived Bcma targeted CAR T cell therapy in relapsed/refractory multiple myeloma: Final results of a phase I clinical trial. Blood 2018, 132, 959. [Google Scholar] [CrossRef]
- Madduri, D.; Usmani, S.Z.; Jagannath, S.; Singh, I.; Zudaire, E.; Yeh, T.M.; Allred, A.L.; Banerjee, A.; Goldberg, J.D.; Schecter, J.M.; et al. Results from CARTITUDE-1: A phase 1b/2 study of JNJ-4528, a CAR-T cell therapy directed against B-cell maturation antigen (BCMA), in patients with relapsed and/or refractory multiple myeloma (R/R MM). Blood 2019, 134, 577. [Google Scholar] [CrossRef]
- Gregory, T.; Cohen, A.D.; Costello, C.L.; Ali, S.A.; Berdeja, J.G.; Ostertag, E.M.; Martin, C.; Shedlock, D.J.; Resler, M.L.; Spear, M.A.; et al. Efficacy and safety of P-Bcma-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM). Blood 2018, 132, 1012. [Google Scholar] [CrossRef]
- Yan, L.Z.; Shang, J.J.; Kang, L.Q.; Shi, X.L.; Zhou, J.; Jin, S.; Yao, W.Q.; Yao, Y.; Chen, G.H.; Zhu, Z.L.; et al. Combined infusion of CD19 and Bcma-specific chimeric antigen receptor T cells for RRMM: Initial safety and efficacy report from a clinical pilot study. Blood 2017, 130, 506. [Google Scholar] [CrossRef]
- Coats, S.; Williams, M.; Kebble, B.; Dixit, R.; Tseng, L.; Yao, N.S.; Tice, D.A.; Soria, J.C. Antibody-drug conjugates: Future directions in clinical and translational strategies to improve the therapeutic index. Clin. Cancer Res. 2019, 25, 5441–5448. [Google Scholar] [CrossRef] [Green Version]
- Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Anderson, L.D., Jr.; Sutherland, H.J.; Yong, K.; et al. Targeting B-cell maturation antigen with GSK2857916 antibody-drug conjugate in relapsed or refractory multiple myeloma (BMA117159): A dose escalation and expansion phase 1 trial. Lancet Oncol. 2018, 19, 1641–1653. [Google Scholar] [CrossRef]
- Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Hoos, A.; Gupta, I.; Bragulat, V.; et al. Antibody-drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: An update on safety and efficacy from dose expansion phase I study. Blood Cancer, J. 2019, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020, 21, 207–221. [Google Scholar] [CrossRef]
- Topp, M.S.; Duell, J.; Zugmaier, G.; Attal, M.; Moreau, P.; Langer, C.; Kronke, J.; Facon, T.; Salnikov, A.V.; Lesley, R.; et al. Anti-B-cell maturation antigen BiTE molecule AMG 420 induces responses in multiple myeloma. J. Clin. Oncol. 2020, 38, 775–783. [Google Scholar] [CrossRef]
- Costa, L.J.; Wong, S.W.; Bermúdez, A.; de la Rubia, J.; Mateos, M.V.; Ocio, E.M.; Rodríguez-Otero, P.; San-Miguel, J.; Li, S.; Sarmiento, R.; et al. First clinical study of the B-cell maturation antigen (BCMA) 2+1 T cell engager (TCE) CC-93269 in patients (Pts) with relapsed/refractory multiple myeloma (RRMM): Interim results of a phase 1 multicenter trial. Blood 2019, 134, 143. [Google Scholar] [CrossRef]
- Raje, N.S.; Jakubowiak, A.; Gasparetto, C.; Cornell, R.F.; Krupka, H.I.; Navarro, D.; Forgie, A.J.; Udata, C.; Basu, C.; Chou, J.; et al. Safety, clinical activity, pharmacokinetics, and pharmacodynamics from a phase I study of PF-06863135, a B-cell maturation antigen (BCMA)-CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM). Blood 2019, 134, 1869. [Google Scholar] [CrossRef]
- Kinneer, K.; Flynn, M.; Thomas, S.B.; Meekin, J.; Varkey, R.; Xiao, X.; Zhong, H.; Breen, S.; Hynes, P.G.; Fleming, R.; et al. Preclinical assessment of an antibody-PBD conjugate that targets BCMA on multiple myeloma and myeloma progenitor cells. Leukemia 2019, 33, 766–771. [Google Scholar] [CrossRef]
- Xing, L.; Lin, L.; Yu, T.; Li, Y.; Cho, S.F.; Liu, J.; Wen, K.; Hsieh, P.A.; Kinneer, K.; Munshi, N.; et al. A novel BCMA PBD-ADC with ATM/ATR/WEE1 inhibitors or bortezomib induce synergistic lethality in multiple myeloma. Leukemia 2020. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Jones, R.J.; Hong, S.; Shirazi, F.; Wang, H.; Kuiatse, I.; Pahl, A.; Orlowski, R.Z. HDP101, a novel B-cell maturation antigen (BCMA)-targeted antibody conjugated to α-amanitin, is active against myeloma with preferential efficacy against pre-clinical models of deletion 17p. Blood 2018, 132, 593. [Google Scholar] [CrossRef]
- Pahl, A.; Lutz, C.; Hechler, T. Amanitins and their development as a payload for antibody-drug conjugates. Drug Discov. Today Technol. 2018, 30, 85–89. [Google Scholar] [CrossRef]
- Hechler, T.; Palfi, A.; Müller, C.; Lutz, C.; Pahl, A.; Kulke, M. Preclinical evaluation of HDP-101, an anti-BCMA antibody-drug conjugate. Cancer Res. 2017, 77 (Suppl. 13), 77. [Google Scholar] [CrossRef]
- Baeuerle, P.A.; Reinhardt, C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009, 69, 4941–4944. [Google Scholar] [CrossRef] [Green Version]
- Klein, J.S.; Gnanapragasam, P.N.; Galimidi, R.P.; Foglesong, C.P.; West, A.P., Jr.; Bjorkman, P.J. Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proc. Natl. Acad. Sci. USA 2009, 106, 7385–7390. [Google Scholar] [CrossRef] [Green Version]
- Offner, S.; Hofmeister, R.; Romaniuk, A.; Kufer, P.; Baeuerle, P.A. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol. Immunol. 2006, 43, 763–771. [Google Scholar] [CrossRef]
- Hipp, S.; Tai, Y.T.; Blanset, D.; Deegen, P.; Wahl, J.; Thomas, O.; Rattel, B.; Adam, P.J.; Anderson, K.C.; Friedrich, M. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia 2017, 31, 1743–1751. [Google Scholar] [CrossRef]
- Cho, S.F.; Lin, L.; Xing, L.; Wen, K.; Yu, T.; Hsieh, P.A.; Li, Y.; Munshi, N.C.; Wahl, J.; Matthes, K.; et al. AMG 701 potently induces anti-multiple myeloma (MM) functions of T cells and IMiDs further enhance its efficacy to prevent MM relapse in vivo. Blood 2019, 134, 135. [Google Scholar] [CrossRef]
- Frerichs, K.A.; Broekmans, M.E.C.; Marin Soto, J.A.; van Kessel, B.; Heymans, M.W.; Holthof, L.C.; Verkleij, C.P.M.; Boominathan, R.; Vaidya, B.; Sendecki, J.; et al. Preclinical activity of JNJ-7957, a novel BCMA×CD3 bispecific antibody for the treatment of multiple myeloma, is potentiated by daratumumab. Clin. Cancer Res. 2020, 26, 2203–2215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buelow, B.; Choudry, P.; Clarke, S.; Dang, K.; Davison, L.; Aldred, S.F.; Harris, K.; Pratap, P.; Pham, D.; Rangaswamy, U.; et al. Pre-clinical development of TNB-383B, a fully human T-cell engaging bispecific antibody targeting BCMA for the treatment of multiple myeloma. J. Clin. Oncol. 2018, 36, 8034. [Google Scholar] [CrossRef]
- Cohen, A.D.; Raje, N.; Fowler, J.A.; Mezzi, K.; Scott, E.C.; Dhodapkar, M.V. How to train your T cells: Overcoming immune dysfunction in multiple myeloma. Clin. Cancer Res. 2020, 26, 1541–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, T.; Reusch, U.; Wingert, S.; Haneke, T.; Klausz, K.; Otte, A.K.; Schub, N.; Knackmuss, S.; Müller, T.; Ellwanger, K.; et al. Preclinical characterization of AFM26, a novel B cell maturation antigen (BCMA)-directed tetravalent bispecific antibody for high affinity retargeting of NK cells against myeloma. Blood 2018, 132, 1927. [Google Scholar] [CrossRef]
- Law, C.L.; Aaron, W.; Austin, R.; Barath, M.; Callihan, E.; Evans, T.; Gamez Guerrero, M.; Hemmati, G.; Jones, A.; Kwant, K.; et al. Preclinical and nonclinical characterization of HPN217: A Tri-Specific T Cell Activating Construct (TriTAC) targeting B cell maturation antigen (BCMA) for the treatment of multiple myeloma. Blood 2018, 132, 3225. [Google Scholar] [CrossRef]
- Lin, L.; Xing, L.; Cho, S.F.; Wen, K.; Hsieh, P.A.; Kurtoglu, M.; Zhang, Y.; Stewart, C.A.; Anderson, K.C.; Tai, Y.T. Preclinical evaluation of CD8+ anti-Bcma mRNA CAR T-cells for the control of human multiple myeloma. Blood 2019, 34, 1811. [Google Scholar] [CrossRef]
- Rapoport, A.P.; Aqui, N.A.; Stadtmauer, E.A.; Vogl, D.T.; Xu, Y.Y.; Kalos, M.; Cai, L.; Fang, H.B.; Weiss, B.M.; Badros, A.; et al. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin. Cancer Res. 2014, 20, 1355–1365. [Google Scholar] [CrossRef] [Green Version]
- Bensinger, W.I.; Raptis, A.; Berenson, J.R.; Spira, A.I.; Nooka, A.K.; Chaudhry, M.; van Zandvoort, P.; Nair, N.; Lo, J.; Elassaiss-Schaap, J.; et al. Safety and tolerability of BION-1301 in adults with relapsed or refractory multiple myeloma. J. Clin. Oncol 2019, 37, 8012. [Google Scholar] [CrossRef]
- Kudo, K.; Imai, C.; Lorenzini, P.; Kamiya, T.; Kono, K.; Davidoff, A.M.; Chng, W.J.; Campana, D. T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Cancer Res. 2014, 74, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Moreau, P.; Zamagni, E. MRD in multiple myeloma: More questions than answers? Blood Cancer J. 2017, 7, 639. [Google Scholar] [CrossRef]
- Gagelmann, N.; Ayuk, F.; Atanackovic, D.; Kroger, N. B cell maturation antigen-specific chimeric antigen receptor T cells for relapsed or refractory multiple myeloma: A meta-analysis. Eur. J. Haematol. 2020, 104, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Zweegman, S.; Engelhardt, M.; Larocca, A. EHA SWG on ‘Aging and Hematology. Elderly patients with multiple myeloma: Towards a frailty approach? Curr. Opin. Oncol. 2017, 29, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Viardot, A.; Bargou, R. Bispecific antibodies in haematological malignancies. Cancer Treat. Rev. 2018, 65, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Slaney, C.Y.; Wang, P.; Darcy, P.K.; Kershaw, M.H. CARs versus BiTEs: A Comparison between T Cell-Redirection Strategies for Cancer Treatment. Cancer Discov. 2018, 8, 924–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantarjian, H.; Stein, A.; Gokbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foa, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef]
- Topp, M.S.; Gokbuget, N.; Stein, A.S.; Zugmaier, G.; O’Brien, S.; Bargou, R.C.; Dombret, H.; Fielding, A.K.; Heffner, L.; Larson, R.A.; et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: A multicentre, single-arm, phase 2 study. Lancet Oncol. 2015, 16, 57–66. [Google Scholar] [CrossRef]
- Alabanza, L.; Pegues, M.; Geldres, C.; Shi, V.; Wiltzius, J.J.W.; Sievers, S.A.; Yang, S.; Kochenderfer, J.N. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol. Ther. 2017, 25, 2452–2465. [Google Scholar] [CrossRef] [Green Version]
- Stoiber, S.; Cadilha, B.L.; Benmebarek, M.R.; Lesch, S.; Endres, S.; Kobold, S. Limitations in the design of chimeric antigen receptors for cancer therapy. Cells 2019, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Yi, M.; Qin, S.; Wu, K. Next generation chimeric antigen receptor T cells: Safety strategies to overcome toxicity. Mol. Cancer 2019, 18, 125. [Google Scholar] [CrossRef]
- Smith, E.L.; Staehr, M.; Masakayan, R.; Tatake, I.J.; Purdon, T.J.; Wang, X.; Wang, P.; Liu, H.; Xu, Y.; Garrett-Thomson, S.C.; et al. Development and evaluation of an optimal human single-chain variable fragment-derived BCMA-targeted CAR T cell vector. Mol. Ther. 2018, 26, 1447–1456. [Google Scholar] [CrossRef] [Green Version]
- Pont, M.J.; Hill, T.; Cole, G.O.; Abbott, J.J.; Kelliher, J.; Salter, A.I.; Hudecek, M.; Comstock, M.L.; Rajan, A.; Patel, B.K.R.; et al. gamma-secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood 2019, 134, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Cowan, A.J.; Pont, M.J.; Sather, B.D.; Turtle, C.J.; Till, B.G.; Nagengast, A.M.; Libby, E.N.; Becker, P.S.; Coffey, D.G.; Tuazon, S.A.; et al. Efficacy and safety of fully human Bcma CAR T cells in combination with a gamma secretase inhibitor to increase Bcma surface expression in patients with relapsed or refractory multiple myeloma. Blood 2019, 134, 204. [Google Scholar] [CrossRef]
- Green, D.J.; Pont, M.; Cowan, A.J.; Cole, G.O.; Sather, B.D.; Nagengast, A.M.; Song, X.; Thomas, S.; Wood, B.L.; Blake, M.L.; et al. Response to Bcma CAR-T cells correlates with pretreatment target antigen density and is improved by small molecule inhibition of gamma secretase. Blood 2019, 134, 1856. [Google Scholar] [CrossRef]
- Zhao, H.; Atkinson, J.; Gulesserian, S.; Zeng, Z.; Nater, J.; Ou, J.; Yang, P.; Morrison, K.; Coleman, J.; Malik, F.; et al. Modulation of macropinocytosis-mediated internalization decreases ocular toxicity of antibody-drug conjugates. Cancer Res. 2018, 78, 2115–2126. [Google Scholar] [CrossRef] [Green Version]
Name (Sponsor) | Structure | Phase | Key Inclusion Criteria (Summarized) | Key Exclusion Criteria (Summarized) | Basic Data of Study Population | Protocol | Efficacy | Adverse Events (AEs) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Condi-Tioning | CAR-T Cell Dosing | ORR | MRD- | Survival | Other | CRS or Neuro-Toxicity | Others | ||||||
Ant-BCMA CAR [63] (NIH) | 1. γ-retroviral vector 2. Murine scFv 3. Co-stimulation domain: CD28 4. Culture medium: Anti-CD3 MoAb and IL-2 | Phase 1 (NCT02215967) | 1. 18–73 years 2. ≥3 different prior treatment. 3. BCMA expression on >50% of PC by either IHC or FCM. 4. Measurable disease 5. ECOG 0–2 | 1. Any anticoagulants (except aspirin) 2. Pregnant or breast-feeding 3. Active systemic infection 4. CNS involvement 5. Pregnant or lactating women | 1. RRMM patients, n = 24. 2. Median 9.5 lines of prior therapy (range 3–19) in highest dose level group (n = 16). 3. High-risk cytogenetics: 40% of evaluable patients at highest dose. | Cy (300 mg/m2) 3 doses and Flu (30 mg/m2) 3 doses | Dose escalation from (0.3, 1, 3, 9) × 106 CAR T cells/kg. a. 10 patients received 0.3–3 × 106. b. 16 patients received 9 × 106. (2 patients received 2 infusions) | (16 evaluable) ORR:81% (2 sCR, 8 VGPR, 3 PR) | 100% (at 9 × 106, n = 11), by 8-color FCM. | Median EFS: 31 weeks | (16 evaluable) 1. CRS: 15 (93.75%), including 2 grade 4, 4 grade 3, 7 grade 2, and 2 grade 1 2. 6 (38%) need vasopressor support for hypotension | (16 evaluable) 1. Grade 3–4 AEs: leikopenia (93.75%), anemia (68.75%), thrombocytopenia (62.5%) | |
bb2121 (Idecabtagene vicleucel) [64] (Celgene) | 1. Lentivirus vector 2. Murine scFv 3. Co-stimulation domain: 4-1BB 4. Culture medium: Anti-CD3/CD28, OKT3 | Phase 1 (NCT02658929) | 1. ≥18 years 2. ECOG 0 or 1 3. ≥3 different prior lines of therapy 4. Measurable disease 5. ≥50% BCMA expression on PCs (IHC). | 1. CNS disease 2. Inadequate organ function (heart, liver, renal) 3. Inadequate bone marrow function 4. Active systemic infection within 72 h 5. Pregnant or lactating women 6. Plasma cell leukemia | 1. RRMM patients, n = 33. 2. Median 7 lines of prior therapy (range 3–14). All received auto-HSCT; 71% received anti-CD38 MoAb; 29% with penta-refractory 3. High-risk cytogenetics: 45% | Flu (30 mg/m2)/Cy (300 mg/m2) daily for 3 days | One infusion 3+3 design with dose levels of 5, 15, 45, 80 and 120 × 107 bb2121 cells. | 85% (28/33), including 3 CR and 12 sCR. | (total 18): 16/16 (100%) at 10−4 nucleated cell (exclude 2 no response), by NGS | 1. Median DOR: 10.9 months 2. Median PFS: 11.8 months | Median time to first PR or better: 1.0 month | 1. CRS: 25 (76%), grade 1 or 2 (n = 23, 70%), grade3 (n = 2, 6%) 2. Duration of CRS:5 days 3. Neurologic toxic effects: 14 (42%), including 13 grade 1–2 (39%) and 1 grade 4 (3%). | 1. Grade 3–4 AEs (>10%): Neutropenia, leukopenia, anemia, thrombocytopenia, lymphopenia. 2. No DLT 3. Infection: 14 (42%), including 2 grade 3. |
bb21217 [65] (bluebird bio) | 1. Lentivirus vector 2. Murine scFv 3. Co-stimulation domain: 4-1BB 4. Add PI3K inhibitor bb007 in ex vivo culture | Phase 1, (CRB-402; NCT03274219) | 1. ≥18 years old. 2. ECOG 0 or 1. 3. ≥3 different prior lines of therapy. 4. Measurable disease. 5. ≥50% BCMA expression on PCs (IHC). | 1. CNS disease 2. Inadequate organ function(heart, liver, renal) 3. Inadequate bone marrow function 4. Active systemic infection within 72 h 5. Pregnant or lactating women | 1. RRMM patients, n = 22 2. Median 7 lines of prior therapy (range 4–17). 3. 18 patients had prior ASCT; 7 had high-risk cytogenetics. 19 received prior daratuzumab, 13 had previously bortezomib, lenalidomide, carfilzomib, pomalidomide, and daratumumab. 4. Eleven patients had high tumor burden (≥50% bone marrow PCs) before infusion. | Flu (30 mg/m2)/Cy (300 mg/m2) daily for 3 days | One infusion with planned dose levels of 150, 450, 800, and 1200 × 106 bb21217 cells. | 83% (15/18), 6 of them progressed | 100% (10/10), at 10−5 nucleated cells by NGS at month 1. | 1. CRS: 13 (59.1%), including 5 Grade 1, 7 Grade 2, 1 Grade 3. All responded to supportive care. 2. 5 neurotoxicity, including 1 grade1, 2 grade 2, 1 grade 3, and 1 grade 4 | 1. No treatment related mortality | ||
BCMA CAR-T [66] (HRAIN Biotechnology, Henan University) | 1. γ-retrovirus vector 2. Co-stimulation domain: 4-1BB 3. Safety switch (truncated EGFR) | Phase 1 (NCT03093168) | 1. 18–70 years 2. ≥3 lines of prior therapy (PI, or IMiDs, or both) 3. ≥5% BCMA expression on PCs (IHC). 4. ≥90 days after HSCT 5. ECOG 0–4 | 1. With CNS symptoms 2. Another malignancy 3. Active hepatitis B or C, HIV infections 4. Severe heart or respiratory diseases | 1. RRMM patient, n = 17 (infused), 14 (evaluable for efficacy and safety) | Flu (25 mg/m2)/Cy (300 mg/m2) daily for 3 days (d-5 to -3) | One infusion of CAR-T cell: 9 × 106/kg (d0) | 79%, 3 sCR, 4 CR and 2 MRD- (2 VGPR) | 1 sCR and 1 VGPR with the ongoing objective response ≥15 months. | 1. Grade≥ 3 CRS: 1(7%) 2. Grade ≥ 3 neurotoxicity: 1(7%) | 1. Grade≥ 3 non-hematologic AEs: 2 pneumonia (14%), 2 hypophosphatemia (14%), and 2 hypocalcemia (14%) | ||
BCMA CAR T (FCARH143) [67] (Fred Hutchinson Cancer Research Center) | 1. Lentivirus vector 2. Fully human scFv 3. Co-stimulation domain: 4-1BB | Phase 1 (NCT03338972) | 1. ≥21 years 2. RRMM (≥10% CD138+ BM PCs, and ≥5% BCMA expression by FC). 3. ECOG 0–2 4. Measurable disease. | 1. With another primary malignancy 2. Active hepatitis B or C, HIV infections 3. Uncontrolled active infection 4. CNS symptoms 5. Pregnant or lactating women | 1. RRMM patient, n = 7 Cohort A: 10–30% MM cells in BM Cohort B: >30% MM cells in BM (Median % : 58% (20 to >80)) 2. Median 8 lines of prior therapy (range 6–11) 3. All with ≥1 high-risk cytogenetics (71% had ≥2) 4. 71% with prior ASCT, 43% with allo-SCT | Cy + Flu (d-4 to -2) | CAR T cell dosing (d0) (1:1 ratio of CD4+:CD8+ BCMA CAR T cells) Cohort A: 5 × 107 Cohort B: 15 × 107 | 100% (at 28 days) | One relapsed with BCMA- PC clone | 1. No neurological toxicity 2. CRS: 6 (85.7%), all grade 2 or lower | 1. No DLTs | ||
BCMA-CAR T [68] (Huazong University) | 1. Lentivirus vector 2. Murine scFv 3. Co-stimulation domain: CD28 | Phase 0 (ChiCTR-OPC-16009113) | 1. 18 to 70 years. 2. ECOG 0–2. 3. Adequate organ function 4. With BCMA+ PC. | 1. Pregnancy and nursing females 2. Active hepatitis B or C, HIV infections 3. With mental disorders | 1. 28 patients (26 RRMM, 1PCL, 1POEMS) 2. BCMA expression level Strong (≥50%): 22 patients Weak (<50%): 6 patients | Cy + Flu | 5.4 to 25 × 106 CAR T cells/kg | Strong: 87% (73% CR) Weak:100% (CR or VGPR) | Median DFS (strong vs weak): 296 vs 64 days3.Median OS (strong vs weak): Not defined vs 206.5 days | 1.4 grade 3CRS. | 1. All toxicities were fully reversible | ||
CART-BCMA [36] (University of Pennsylvania-Norvartis) | 1. Lentivirus vector 2. Fully human scFv 3. Co-stimulation domain: 4-1BB 4. Culture medium: Anti-CD3/CD28 beads and IL-2 | Phase 1 (NCT02546167) | 1. ≥18 years. 2.RRMM (≥3 prior treatment, or ≥2 prior regimens with double refractory to PI and IMiDs). 3. Adequate organ functions 4. ECOG 0–2 5. Measurable disease | 1. Pregnant or lactating 2. Active hepatitis B or C, HIV infections 3. Active or uncontrolled infection 4. Uncontrolled medical or psychiatric diseases | 1. RRMM patients, 34 consented, 29 eligible, 25 received infusion 2. Median 7 lines of prior therapy (range 3–13) 96% refractory to IMiDs and PIs 72% refractory to daratumumab 44% penta-refractory 3. 96% with at least one high-risk cytogenetics (68% del17p or TP53 mutation) 4. Median 65% of MM cells on bone marrow biopsy 28% with extramedullary disease. | With (Cy) or without conditioning treatment | 1. 3 split-dose infusions of CAR T cells (10%, 30%, 60%) 2. 3 cohorts a. 1–5 × 108 CART cells b. Cy 1500m g/m2 + 1–5 × 107 CART cells c. Cy 1500 mg/m2 + 1–5 × 108 CART cells | (≥PR): 48%, with 55% in 5 × 108 CART-BCMA cells. a. Cohort 1: 4 (44%, 1 sCR, 2 VPGR, 1 PR) b. Cohort 2: 1 (20%, 1 PR) c. Cohort 3: 7 (64%, 1 CR, 3 VGPR, 3 PR) in cohort 3. | Overall median OS: 502 days (359 days, 502 days, and not reached for cohorts 1, 2, and 3, respectively) | Detected CAR T cells: in 20 (100%) and 14 (82%) evaluable patient at 3 and 6 months post infusion. | 1. CRS: 22 (88%); 8 grade 3–4 (all 1–5 × 108 dose) Medium time to CRS:4 days Medium duration; 6 days Medium hospitalization: 7 days 7 (28%) received anti-IL-6 agents 2. Neurotoxicity (n = 8, 32%): 5 grade 1–2, 3 grade 3–4 | 1. All grade ≥ 3 AEs: 24 (96%) 2. Grade 3/4 SE: leukopenia (44%), neutropenia (44%), lymphopenia (36%) 3. One grade 5 AE | |
CART-BCMA [69] (Shenzhen Pregene Biopharma) | 1. One anti-BCMA single-domain antibody derived from the alpaca, and humanized 2. Co-stimulation domain: 4-1BB | Phase 1 (NCT03661554) | 1. 18–75 years 2. RRMM, BCMA+ 3. ECOG 0–2 4. Adequate organ function | 1. Pregnant or lactating 2. Active hepatitis B or C, HIV infections 3. Severe infection 4. Poor organ function | 1. RRMM patients, n = 16(infused) 2. Median 10 lines of prior therapy | Cy (300–600 mg/m2, d-5, -4) and Flu (30 mg/m2, d-5 to d-3) | One infusion of 2–10 × 106 CAR cells/kg(d0) | 1. 13 patients without EM lesion: 84.6% (d28), 100% (10th weeks, n = 7), including 3 sCR/CR, 1 VGPR, and 3 PR 2. Three patients with EM lesion: All PR at d28 | 1. 2 patients with grade3–4 CRS (0–2 in other patients) | ||||
CART-BCMA/CART-19 [70,71] (First Affiliated Hospital of Soochow University) | 1. Co-stimulation domain: OX40 and CD28 2. Lentiviral vector 3. Culture medium: Anti-CD3 beads | Phase 1/2 (NCT 03196414) | 1. 18–75 years 2. CD138+ or BCMA+ RRMM 3. Adequate organ function | 1. Pregnant or lactating 2. Active hepatitis B or C, HIV infections 3. Uncontrolled active infection 4. Poor organ function | 1. RRMM patients, n = 28 2. All resistant to PIs, IMiDs, or both 3. Average of 3 (2–8) lines of prior treatment | Cy 300mg/m2 and Flu × 3 days (d-5,-4 and -3) | CART-19 (1 × 107/kg on day 0) and CART-BCMA cells (40% on d1 and 60% on d2) | 92.6% (88.9% PR or better), 11 CR or sCR, 8 VGPR, 5 PR and 1 MR. | Median OS: 16 months | 1. CRS:100%, 19 grade 1–2, 7 grade 3, and 2 grade 4 | 1. Other AEs: fatigue (100%), cytopenia (100%), anemia (100%), and prolonged APTT (82.1%) | ||
Phase 1/2 (NCT 03455972) | 1. 18–65 years old MM patients eligible for auto-HSCT. 2. High-risk MM (stage III or failed to achieve PR after prior treatment.). 3. All with BCMA >50% without CD19 expression on PCs. 4. ECOG 0–2. 5. Adequate organ function. | 1. Pregnant or lactating 2. Active hepatitis B or C, HIV infections 3. Uncontrolled active infection 4. History of myocardial infarction | 1. Cohort 1: 9 patients, all BCMA> 50% without CD19 expression | CART-19 (1 × 107/kg on d0) and CART-BCMA cells as split-dose (40% on d1 and 60% on d2) were infused d14 to d20 after ASCT | 100% (post CAR-T treatment), 3CR and 6 VGPR | 37.5% after ASCT to 66.7% after CAR-T therapy | 1. CRS: 100%, all grade 1–2 2. No serious CRS or neurologic complications | ||||||
CART-BCMA CTL119 [72] (Abramson Cancer Center) | 1. 4-1BB co-stimulatory domain 2. Lentiviral vector | 1. Phase A (PhA): MM patients responding (≥MR) to ≥3rd line therapy (or ≥2nd line if exposed to all major agents) 2. Phase B (PhB): High-risk patients. | 1. 6 enrolled PhA patients were infused 2. 4 enrolled PhB patients were infused (2 CART-BCMA alone, 2 CART-BCMA + CTL119) 3. Prior lines: 1–9 4. BM PC(%): 1–91 | Flu (30 mg/m2) + Cy (300 mg/m2) × 3 days | 1. Phase A: CART-BCMA + CTL119 Phase B: CART-BCMA +/− CTL119 2. CAR-T infusion (5 × 108 CAR+ cells in 3 divided doses, 10%, 30%, and 60%) after conditioning treatment | 80%, 1 CR, 4 VGPR, 3 PR in 10 evaluable (6 PhA, 2 PhB combo, and 2 PhB mono) | 1. One PhA patient died due to CNS progression before infusion. 2. All exhibited in vivo CAR-T cell expansion | (10 evaluable) CRS:80%, all grade 1–2 | (10 evaluable) 8 fatigue, 8 cytopenia, 6 anemia, and 5 coagulopathy. | ||||
CT053 [73] (CARsgen Therapeutics Co.) | 1. Fully human scFv2. 4-1BB co-stimulatory domain | Phase 1 (NCT03716856, NCT03302403, and NCT03380039) | 1. 18–70 years old. 2. RRMM 3. BCMA+ PC (FCM or IHC) 4. Measurable disease. 5. ECOG 0–1. | 1. lymphocytes transduction <10%, expansion after αCD3/CD28 costimulation <5-fold 2. Hepatitis C or HIV infections 3. Uncontrolled active infection | 1. RRMM patients, n = 24 (All with ≥50% BCMA expression on MM cells) 2. Median 4.5 prior regimen (range 2–11) 3. 41.7% prior ASCT 4. 45.8% with EM lesions | Flu (20–25 mg/m2) + Cy (300–500 mg/m2) daily for 2–4 days | 1.5 × 108 CT053 cell infusion after conditioning treatment | 87.5% (21/24), including 14 sCR and 5 CR | 85% (17/20), ≤10−4 nucleated cells | 1. 3 neurotoxicity (all grade 1) 2. CRS: 15 (3 grade 1, 12 grade 2), 8 received tocilizumab | 1. No DLT 2. Grade ≥ 3 AEs: leukopenia, thrombocytopenia, lymphopenia. | ||
CT103A [74] (Nanjing Iaso Biotherapeutics Co, Ltd) | 1. Fully human scFv 2. With CD8a hinger and 4-1BB co-stimulatory domain 3. Lentiviral vector | Phase 0 (ChiCTR1800018137) | 1. 18–70 years old. 2. BCMA+ PCs 3. Proper organ function | 1. Pregnant or lactating 2. Active hepatitis B or C, HIV infections 3. Uncontrolled active infection 4. Poor organ function | 1. RRMM, n = 16 2. Median 4 prior therapy (range 3–5), including 4 patients after murine BCMA CAR-T treatment, and 5 with EM lesions or PCL. | Cy + Flu | 3 + 3 dose-escalation (3 doses at 1, 3, 6 × 106/kg) | 1. 100% (6 CR/sCR) within first 2 weeks. 2. 3 sCR and 1 VGPR in 4 prior BCMA CAR-T cell treated patients | 100% in all 15 patients, ≤10−4 nucleated cells by FCM. | CT103A cells detectable in 12/16 patients, at the last evaluation | 1. All developed CRS (10 grade 1–2, 5 grade 3, 1 grade 4) | ||
JCARH125 [75] (Juno Therapeutics, Inc.) | 1 Fully human scFv 2. Co-stimulation domain: 4-1BB 3. Lenti-viral vector | Phase 1/2 (EVOLVE; NCT 03430011) | 1. ≥18 years old 2. RRMM (≥3 prior regimens, including PI, IMiD, anti-CD38 MoAb, and auto-HSCT). 3. ECOG 0–1 4. Adequate renal, BM, liver, lung, and heart function 5. Measurable disease | 1. EM lesion, PCL, WM, or POEMS syndrome. 2. CNS involvement by malignancy 3. Untreated or active infection 4. Poor heart function | 1. RRMM patients (19 enrolled, 13 treated) Initial 8 patients 1. Median 10 lines of prior therapy (range 4–15), including 50% refractory to bortezomib, carfilzomib, lenalidomide, pomalidomide and an anti-CD38 mAb. 2. 88% had prior ASCT | Flu (30 mg/m2)/Cy (300 mg/m2) daily for 3 days | One infusion of JCARH125 (2 dose levels: 50 and 150 × 106 CAR+ T cells) | Evaluable patients (n = 3), 1PR, 2 sCRs Unconfirmed patients (n = 5): 1 CR, 2 VGPR, 1 PR, 1 MR | (8 evaluable) 1. CRS: 6 (75%), all grade 1or 2 Median onset of CRS: 9 days (range 4 – 10) Median duration of CRS: 4.5 days (range 2 – 19 days) 2. Neurotoxicity: 3 (2 grade1, 1 grade 3) | ||||
LCAR-B38M [76,77] and [78,79] (Nanjing Legend Biotech Co) | 1. Lentivirus vector 2. Bispecific anti-BCMA variable fragments of llama heavy-chain antibodies 3. Co-stimulation domain: 4-1BB 4. Culture medium: IL-2 | Phase 1/2 (LEGEND-2; NCT 03090659) | 1. 18–80 years 2. RRMM (≥3 prior regimens) 3. BCMA+ PC (FCM or IHC) | 1. Pregnant or lactating 2. Active hepatitis B or C, HIV infections 3. Uncontrolled medical illness | (One of four centers) 1. RRMM patients, n = 57 2. Median 3 prior regimens (range1–9), including prior PIs (68%), IMiDs (86%), and both (60%) | 3 doses of Cy 300 mg/m2 | Five days after Cy, LCAR-B38M CAR T cells (median cell dose = 0.5 × 106 cells/kg, [range, 0.07–2.1 × 106]), split into in 3 infusions (20, 30, and 50% of total dose) given over 7 days. | ≥PR: 88% (50/57), including 42 CR (39 MRD-), 2 VGPR, 6 PR. | 92.8% (39/42) in CR patients, by 8-color FCM | 1. Median DOR: 22 months 2 Median PFS: 20 months (all patients); 28 months (MRD- patients). 3. The median OS: NR | Medium time to response: 1.2 month | 1. CRS: 51 (90%), grade 1 (47%), grade 2 (35%); grade 3 (7%, n = 4). Medium time to CRS; 9 days 2. Neurotoxicity: 1 (grade 1), dosed at 1.0 × 106 CAR+ T cells/kg | 1. AE reported in all patients. Pyrexia (91%), thrombocytopenia (49%), and leukopenia (47%) 2. Grade ≥3 AE:37 (65%), leukopenia (30%), thrombocytopenia (23%), and increased aspartate aminotransferase (21%). 3. One grade 5 AE: pulmonary embolism |
Phase 1/2 (LEGEND-2; NCT 03090659) | 1. 18–80 years 2. RRMM (≥3 prior regimens) 3. BCMA+ PC (FCM or IHC) | 1. Pregnant or lactating 2. Active hepatitis B or C, HIV infections 3. Uncontrolled medical illness | (The other three centers) 1. RRMM patients, n = 17 2. ≥3 prior regimens (range3-11), including prior PIs (88%), IMiDs (82%), and both (71%), ASCT (47%) 3.Five patients with EM | Cy 250 mg/m2 + Flu 25 mg/m2 for 3 days (n = 8) or Cy 300 mg/m2 for 3 days (n = 9). | LCAR-B38M cell infusion 5d after the start of the conditioning regimen. (3 infusions in Cy + Flu vs 1 infusion in Cy group) Mean dose: 0.7 × 106 (range, 0.2–1.5 × 106 cell/kg) | 1. 88% (15/17), including 14 CR and 1 VGPR 2. With EM lesion: 100%, including 3 sCR, 1VGPR, and 1 MR | 100% in all CR patients (8-color FCM) | 1. Median PFS: 12 (all) and 18 (MRD-) months 2. Median OS: NR (all and MRD-) | Cy + Flu group had better PFS and lower relapse rate | 1. CRS:100%, including 10 grade 1/2, 6 grade 3, and 1 grade 5. 9 patients received IL-6R inhibitor treatment. 2. No neurotoxicity | 1. AE reported in all patients. Pyrexia (100%), cytopenia (82%), impaired liver function (100%) 2. Tumor lysis syndrome: 3(18%) | ||
MCARH171 [80] (Memorial Sloan Kettering Cancer Center) | 1. Human derived anti-BCMA scFv 2. Co-stimulation domain: 4-1BB 3. Retroviral vector 4. Safety switch (truncated EGFR) 5. Culture medium: Phytohemagglutinin or anti-CD3/CD28 beads and IL-2 | Phase 1 | 1.≥18 years. 2. RRMM (≥2 prior regimens including an IMiD and a PI) 3. Adequate organ function | 1. Poor performance 2. Poor organ function 3. HIV or active hepatitis B or hepatitis C infection | 1. RRMM patients, n = 11 2. Median 6 lines of prior therapy (range 4–14), all received IMiD, anti-CD38 MoAb, and ASCT 3. 82% with high-risk cytogenetics | (1) Cy 3000 mg/m2 single dose or (2) Flu 30 mg/m2 daily and Cy 300 mg/m2 daily for 3 days | 1-2 divided doses of MCARH171 with 4 dose levels (1) 72 × 106, (2) 137 × 106, (3) 475 × 106, (4) 818 × 106 viable CAR T cells | 1. ORR:64% 2. 100% ORR observed in 5 patients received higher doses (≥ 450 X106) | Median DOR:106 days | (10 evaluable) 1. CRS: 6 (60%), 4 grade 1–2, and 2 grade 3. 2. No grade ≥3 neurotoxicity | (10 evaluable) 1. No DLTs | ||
JNJ-68284528 [81] (Janssen) | 1. Lentivirus vector 2. Bispecific anti-BCMA variable fragments of llama heavy-chain antibodies 3. Co-stimulation domain: 4-1BB 4. Culture medium: IL-2 (Identical to LCAR-B38M) | Phase 1b/2 (CARTITUDE-1/MMY2001; NCT03548207) | 1. ≥18 years old 2. RRMM (≥3 prior regimens or double refractory to a PI and IMiD, and received an anti-CD38 MoAb) 3. Measurable disease 4. ECOG 0–1 | 1. Previous CAR-T treatment (+) 2. Previous anti-BCMA treatment (+) 3. Poor heart function 4. CNS MM involvement | 1. RRMM patient, n = 25 (infused) 2. Median prior lines of treatment : 5 (range 3–16) 3. 88% triple-refractory to a PI, IMiD, and anti-CD38 antibody, 72% penta-exposed, and 36% penta-refractory | Flu (30 mg/m2)/Cy (300 mg/m2) daily for 3 days | One infusion of JNJ-4528 (target 0.5–1 × 106 /kg) 5–7 days after conditioning treatment | (21 evaluable) 1. ORR:91%, 4 sCR, 2CR, 7 VGPR, and 6PRs | (15 evaluable) 1. 10 MRD- at the 10−5 level, 2 at the 10−4 level, and 3 had unidentified clones. | 1. 80% of patients had grade 1–2 CRS, with 1 grade 3 and 1 grade 5. 2. CRS events occurring at a median of 7 days (range 2–12) post-infusion with a median duration of 3 days (range 1–60). 4. Tocilizumab and steroid used in 91% and 27% of patients (n = 22). | 1. Treatment related AE: CRS (88%), neutropenia (80%), anemia (76%), and thrombocytopenia (72%) 2. Grade ≥3 AEs: neutropenia (76%), thrombocytopenia (60%), and anemia (48%) | ||
P-BCMA-101 [82] (Poseida Therapeutics, Inc.) | 1. Centyrin-based binding domain (small, fully human) 2. CD3ζ/4-1BB signaling domain 3. In vitro transcribed mRNA and plasmid DNA 4. Safety switch (truncated EGFR) 5. Tscm phenotype | Phase 1 (NCT 03288493) | 1. ≥18 years old. 2. RRMM (received PI and IMiDs) 3. Measurable disease 4. Adequate organ function | 1. Pregnant or lactating 2. Active hepatitis B or C, HIV infections 3. Uncontrolled medical illness 4. With PCL, WM, or POEMS syndrome 5. Active second malignancy | 1. RRMM patients, n = 12 2. Rang of prior lines: 3–9 3. 100% refractory to PI, IMiD, and daratumumab 4. High-risk cytogenetics: 64% | Flu (30 mg/m2)/Cy (300 mg/m2) daily for 3 days | 1. 1 infusion of P-BCMA-101. 2. 3 + 3 design with planned dose levels of 48, 50, 55, 118, 122, 124, 143, 155, 164, 238, 324 and 430 × 106 CAR T cells. | 1. 66.7%(n = 3), 1 PR and 1 near CR 2. Yet evaluable patients (n = 6): 1 sCR, 1VGPR, and 3PRs | 1. CRS:1 (grade 2) 2. No neurotoxicity | 1. No unexpected/off-target toxicities related to treatment. |
Name (Sponsor) | Basic Data of Participant | Protocol | Results and Efficacy | Adverse Event (AE) |
---|---|---|---|---|
GSK2857916 (Belantamab mafodotin) [85,86,87] (GlaxoSmithKline) | 1. Phase 1 trial (BMA117159 /DREAMM-1, NCT 02064387) 2. RRMM patients Total: 73 (Part 1: 38; Part 2: 35) 3. Prior treatment Part 1: 29/38 (76%) ≥ 5 prior treatment lines Part 2: 20/35 (57%) ≥ 5 prior treatment lines, 97% refractory to PIs, 91% to IMiDs, 37% to daratumumab | (Part 1, dose escalation) IV 1 h ever 3 weeks Dose: 0.03, 0.06, 0.12, 0.24, 0.48, 0.96, 1.92, 2.5, 3.4, and 4.6 mg/kg (Part 2, dose expansion) IV 1 h ever 3 weeks Dose; 3.4 mg/kg | (Part 2) 1. ORR: 60% (21/35), including 1 sCRs, 2 CRs, 15 VGPRs, and 3 PRs. 2. Median time to response: 1.4 months 3. Median PFS: 7.9 months | (Part 1) No DLT was identified (Part 2) 1. IRR: 8 (23%), mainly grade 1 or 2 (n = 5) 2. Corneal event: 22 (63%), mainly grade 1 or 2 (n = 19), 3 grade 3. 3. Thrombocytopenia: 20 (57%), 12 grade 3–4 |
1. Phase 2, two-armed, randomized trial (DREAMM-2, NCT 03525678) 2. 293 RRMM (screened), 196 receive treatment 3. All refractory to IMiDs, PIs, and previously received an anti-CD38 MoAb | Two cohorts (IV 30 mins or longer) 1. 2.5 mg/kg (n = 97) 2. 3.4 mg/kg (n = 99) Treatment every 3 weeks until PD or unacceptable toxicity | 1. ORR: 32.7% (64/196), 30 in the 2.5 mg/kg cohort and 34 in the 3.4 mg/kg cohort, with 18 and 29 achieving VGPR or better (CR or sCR) 2. DOR: NR (median follow-up of 6.3 and 6.9 months) 3. Probability of having a DOR≥ 4 months: 78% and 87% (2.5 and 3.4 mg/kg cohort) 4. Median PFS: 2.9 and 4.9 months | Safety population, n = 194 1. 93 (98%) of 95 in the 2.5 mg/kg cohort and 99 (100%) of 99 in the 3.4 mg/kg cohort had at least one AE. 2. Keratopathy is the most common Grade 1–2 and 3–4 AE. a. Dose delays for keratopathy started at week 4 in both cohorts b. Dose reductions started at 13 and 4 weeks (2.5 and 3.4 mg/kg cohort). c. Median time to treatment re-initiation: 83 and 63 days (2.5 and 3.4 mg/kg cohort). 3. Other common Grade 3-4 AE: thrombocytopenia (19/33) and anemia (19/25) 4. Serious AE (38/47). 5. Two treatment related death | |
BI 836909/AMG 420 [88] (Amgen) | 1. Phase 1 trial (NCT02514239) 2. RRMM patients (total: 35) 3. ≥2 prior treatment lines, including PI and IMiDs | 6-week cycles of (1 cycle = 4 weeks continuous IV infusion, 2 weeks off). Single-patient cohorts [0.2–1.6 µg/day (d)] followed by cohorts of 3–6 patients (3.2–800 µg/d) | 1. 6 CRs (1 each at 6.5, 100, and 200 µg/d, and 3 at 400 µg/d) 2. All patients at 400 µg/d (3/3) had MRD negative CRs 3. Dose confirmation cohort (400 µg/d): 2 PR (2/3) 4. Objective response rate at 400 µg/d: 83% (5/6) | 1. Serious AEs (n = 17, 49%), including 10 infection, 3 CRS, and 1 each of peripheral polyneuropathy, cardiac failure, edema, pyrexia, biliary obstruction, and renal failure. 2. CRS (n = 3, 2 grade 1 and 1 grade 3) |
CC-93269 [89] (Celgene) | 1. Phase 1, dose-finding study (CC-93269-MM-001; NCT03486067) 2. RRMM patients (total:19), with ≥3 prior treatment lines 3. Medium 6 lines of prior therapy (range 3–12 lines) 73.7% ASCT 10.5% allogenic stem cell transplantation 100% lenalidomide and 84.2% pomalidomide 100% bortezomib and 84.2% carfilzomib 94.7% daratumumab | Cycles 1–3: IV over 2 h on Days 1, 8, 15, and 22 Cycles 4–6 Days 1 and 15 Cycle 7 and beyond Day 1 (all in 28-day cycles) Doses ranged from 0.15 to 10 mg | 1. <6 mg (n = 7), response:0 2. ≥6 mg(n = 12), response: 10, (4 sCR or CR, 3 VGPR, 3 PR), 9 MRD- | 1. Grade 3–4 treatment AE: 15 (78.9%), including 10 neutropenia, 8 anemia, 5 infections, and 4 thrombocytopenia 2. CRS: 17 (89.5%), grade 1 (n = 11 (57.9%) or grade 2 (n = 5, 26.3%) |
PF-06863135 [90] (Pfizer) | 1. Phase 1 trial (NCT03269136) 2. Relapsed (n = 8) and refractory MM patients (n = 9). 3. Median prior lines of treatment: 11.5 (All previously treated with a PI, an IMiD, and an anti-CD38 MoAb) 4. 5 (29%) patients had received prior BCMA-targeted therapy (CAR-T or BiTE) | Once weekly, non-continuous, IV infusion in 6 dose-escalation groups | 16 evaluable 1. 1 MR and 6 SD 2. Clinical benefit: 41% | 1. 10 patients experienced treatment AE, mostly grade 1–2, including CRS (24%), thrombocytopenia (24%), anemia (18%), and pyrexia (18%) 2. Three grade 3 3. No grade 4–5 AE 4. One DLT in a patient previously treated with BCMA CAR-T. |
Perspective | CAR-T cell therapy | BiTE/Bispecific Antibodies | Antibody-Drug Conjugate |
---|---|---|---|
Strength | 1. Most clinical data support clinical efficacy 2. High response/MTD- rate in RRMM patients received multiple lines of prior treatment 3. May be effective for extramedullary disease 4. Development of long-term anti-tumor immunity | 1. “Off-the shell” products, no delay in treatment 2. Clinical benefit observed in RRMM patients 3. No lymphodepletion treatment required | 1. “Off-the shell” products, no delay in treatment 2. Clinical benefit observed in RRMM patients 3. Potent anti-tumor activity of payload 4. Clinical efficacy doesn’t rely on host immune function status |
Challenges | 1. Long and labor-intensive manufacturing process 2. Require treatment at a specialized center 3. High CRS and neurotoxicity rate 4. Toxicity of lymphodepletion therapy 5. Clinical activity relies on adequate number and function of collected patients T cells 6. High treatment cost | 1. Less data in heavily pretreated patients, may be less effective in this subgroup 2. CRS and neurotoxicity 3. Short half-life, need continuous infusion 4. Clinical activity relies on adequate number and function of collected patient’s effector cells 5. Hight treatment cost | 1. High serum level of sBCMA may affect clinical efficacy 2. Payload related toxicity 3. Multiple treatment leads to increased cost. |
Prospects | 1. Allogeneic CAR-T cells 2. Faster manufacturing protocol 3. Structure modification to reduce toxicity, i.e., safety switch | 1. Half-life extended products 2. Structure (variable) modification to increase binding affinity for tumor associated antigen | 1. New design of antibody to increased binding affinity for tumor-associated antigen 2. New payload with novel anti-tumor mechanism and better safety profile 3. Linker optimization to reduce off-target effect (slow deconjugation) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.-F.; Lin, L.; Xing, L.; Li, Y.; Yu, T.; Anderson, K.C.; Tai, Y.-T. BCMA-Targeting Therapy: Driving a New Era of Immunotherapy in Multiple Myeloma. Cancers 2020, 12, 1473. https://doi.org/10.3390/cancers12061473
Cho S-F, Lin L, Xing L, Li Y, Yu T, Anderson KC, Tai Y-T. BCMA-Targeting Therapy: Driving a New Era of Immunotherapy in Multiple Myeloma. Cancers. 2020; 12(6):1473. https://doi.org/10.3390/cancers12061473
Chicago/Turabian StyleCho, Shih-Feng, Liang Lin, Lijie Xing, Yuyin Li, Tengteng Yu, Kenneth C Anderson, and Yu-Tzu Tai. 2020. "BCMA-Targeting Therapy: Driving a New Era of Immunotherapy in Multiple Myeloma" Cancers 12, no. 6: 1473. https://doi.org/10.3390/cancers12061473
APA StyleCho, S. -F., Lin, L., Xing, L., Li, Y., Yu, T., Anderson, K. C., & Tai, Y. -T. (2020). BCMA-Targeting Therapy: Driving a New Era of Immunotherapy in Multiple Myeloma. Cancers, 12(6), 1473. https://doi.org/10.3390/cancers12061473