A Retrospective Analysis of the Efficacy of Immunotherapy in Metastatic Soft-Tissue Sarcomas
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Soft Tissue Sarcoma. Version 2. 2019. Available online: https://www.nccn.org/professionals/physician_gls/pdf/sarcoma.pdf (accessed on 26 February 2019).
- Movva, S.; Wen, W.; Chen, W.; Millis, S.Z.; Gatalica, Z.; Reddy, S.; von Mehren, M.; Van Tine, B.A. Multi-platform profiling of over 2000 sarcomas: Identification of biomarkers and novel therapeutic targets. Oncotarget 2015, 6, 12234–12247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Bone Cancer Version 2. 2019. Available online: https://www.nccn.org/professionals/physician_gls/pdf/bone.pdf (accessed on 26 April 2019).
- Emens, L.A.; Ascierto, P.A.; Darcy, P.K.; Demaria, S.; Eggermont, A.M.M.; Redmond, W.L.; Seliger, B.; Marincola, F.M. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer 2017, 81, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Burgess, M.A.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Hu, J.; D’Angelo, S.; Attia, S.; Riedel, R.F.; Priebat, D.A.; et al. Pembrolizumab in soft-tissue sarcoma and bone sarcoma (SARC028): A multicenter, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Mahoney, M.R.; Van Tine, B.A.; Atkins, J.; Milhem, M.M.; Jahagirdar, B.N.; Antonescu, C.R.; Horvath, E.; Tap, W.D.; Schwartz, G.K.; et al. Nivolumab with or wihtout ipilimuab treatment for metastatic sarcoma (Alliance A091401): Two open-label, non-comparative, rando-mized, phase 2 trials. Lancet Oncol. 2018, 19, 416–426. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. TVEC and Preop Radiation for Sarcoma. Clinical Trials Identifier: NCT 02453191. 2015. Available online: https://clinicaltrials.gov/ct2/show/NCT02453191 (accessed on 9 May 2020).
- Carvajal, R.D.; Agulnik, M.; Ryan, C.W.; Milhem, M.M.; George, S.; Jones, R.; Chmielowski, B.; Van Tine, B.A.; Tawbi, H.A.-H.; Elias, A.D.; et al. Trivalent gangliosiide vaccine and immunologic adjuvant versus adjuvant alone in metastatic sarcoma patients rendered disease-free by surgery: A randomized phase 2 trial. J. Clin. Oncol. 2014, 32, 10520. [Google Scholar] [CrossRef]
- Ben-Ami, E.; Barysauskas, C.M.; Solomon, S.; Tahlil, K.; Malley, R.; Hohos, M.; Polson, K.; Loucks, M.; Severgnini, M.; Patel, T.; et al. Immunotherapy with single agent nivolumab for advanced leiomyosarcoma of the uterus: Results of a phase 2 study. Cancer 2017, 123, 3285–3290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, R.G.; Jungbluth, A.A.; Gnjatic, S.; Schwartz, G.K.; D’Adamo, D.R.; Keohan, M.L.; Wagner, M.J.; Scheu, K.; Chiu, R.; Ritter, E.; et al. A pilot study of anti-CTLA4 antibody ipilimumab in patients with synovial sarcoma. Sarcoma 2013, 2013, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Paoluzzi, L.; Cacavio, A.; Ghesani, M.; Karambelkar, A.; Rapkiewicz, A.; Weber, J.; Rosen, G. Response to anti-PD1 therapy with nivolumab in metastatic sarcomas. Clin. Sarcoma Res. 2016, 6, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toulmonde, M.; Penel, N.; Adam, J.; Chevreau, C.; Blay, J.-B.; Le Cesne, A.; Bompas, E.; Piperno-Neumann, S.; Cousin, S.; Grellety, T.; et al. Use of PD-1 targeting, macrophage infiltration, and IDO pathway activation in sarcomas: A phase 2 clinical trial. JAMA Oncol. 2018, 4, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.-L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbognin, L.; Pilotto, S.; Milella, M.; Vaccaro, V.; Brunelli, M.; Caliò, A.; Cuppone, F.; Sperduti, I.; Giannarelli, D.; Chilosi, M.; et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): Sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS ONE 2015, 10, e0130142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelo, S.P.; Shoushtari, A.N.; Agaram, N.P.; Kuk, D.; Qin, L.-X.; Cavajal, R.D.; Dickson, M.A.; Gounder, M.; Keohan, M.L.; Schwartz, G.K.; et al. Prevalence of tumor-infiltrating lymphocytes and PD-L1 expression in soft tissue sarcoma microenvironment. Hum. Pathol. 2015, 46, 357–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.R.; Moon, Y.J.; Kwon, K.S.; Bae, J.S.; Wagle, S.; Kim, K.M.; Park, H.S.; Lee, H.; Moon, W.S.; Chung, M.J.; et al. Tumor infiltrating PD1-positive lymphocytes and the expression of PD-L1 predict poor prognosis of soft tissue sarcomas. PLoS ONE 2013, 8, e82870. [Google Scholar] [CrossRef] [PubMed]
- Skubitz, K.M.; Pambuccian, S.; Manviel, J.C.; Skubitz, A.P. Identification of heterogeneity among soft tissue sarcomas by gene experession profiles from different tumors. J. Trans. Med. 2008, 6, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollack, S.M.; He, Q.; Yearley, J.H.; Emerson, R.; Vignali, M.; Zhang, Y.; Redman, M.W.; Baker, K.K.; Cooper, S.; Donahue, B.; et al. T-cell infiltration and clonality correlate with programmed cell death protein 1 and programmed death-ligand 1 expression in patients with soft tissue sarcomas. Cancer 2017, 123, 3291–3304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petiprez, F.; Reyniès, A.; Keung, E.Z.; Chen, T.W.-W.; Sun, C.-M.; Calderaro, J.; Jeng, Y.-M.; Hsiao, L.-P.; Lacroix, L.; Bougoöin, A.; et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020, 577, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.S.; Hodi, F.S.; Wolchok, J.D.; Topalian, S.L.; Schdendorf, D.; Larkin, J.; Sznol, M.; Long, G.V.; Li, H.; Waxman, I.M.; et al. Safety profile of nivolumab monotherapy: A pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 2017, 35, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Horvat, T.Z.; Adel, N.G.; Dang, T.O.; Momatz, P.; Postow, M.A.; Callahan, M.K.; Carvajal, R.D.; Dickson, M.A.; D’Angelo, S.P.; Woo, K.M.; et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 2015, 33, 3193–3198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2017, 377, 1345–1346. [Google Scholar] [CrossRef] [PubMed]
Subtype | ||||||
---|---|---|---|---|---|---|
Covariate | LEVEL | UPS N = 25 | LMS N = 20 | Other N = 43 | Total N = 88 | |
Site | University of Iowa | 4 (16.0) | 3 (15.0) | 8 (18.6) | 15 (17.0) | |
Mayo Clinic | 6 (24.0) | 1 (5.0) | 5 (11.6) | 12 (13.6) | ||
University of Minnesota | 10 (40.0) | 2 (10.0) | 9 (20.9) | 21 (23.9) | ||
Wash U, St. Louis | 5 (20.0) | 14 (70.0) | 21 (48.8) | 40 (45.5) | ||
Gender | Female | 7 (28.0) | 14 (70.0) | 18 (41.9) | 39 (44.3) | |
Male | 18 (72.0) | 6 (30.0) | 25 (58.1) | 49 (55.7) | ||
Race | Asian | 1 (4.0) | 0 (0) | 0 (0) | 1 (1.1) | |
Black/African-American | 1 (4.0) | 4 (20.0) | 4 (9.3) | 9 (10.2) | ||
Hispanic or Latino | 1 (4.0) | 0 (0) | 0 (0) | 1 (1.1) | ||
White | 22 (88.0) | 16 (80.0) | 39 (90.7) | 77 (87.5) | ||
Extremity/trunk | 20 (80.0) | 6 (30.0) | 26 (60.5) | 52 (59.1) | ||
Primary Tumor Location | Retroperitoneal | 1 (4.0) | 1 (5.0) | 5 (11.6) | 7 (8.0) | |
Head and neck | 1 (4.0) | 0 (0) | 3 (7.0) | 4 (4.5) | ||
Abdominal/pelvic | 3 (12.0) | 13 (65.0) | 9 (20.9) | 25 (28.4) | ||
No | 6 (24.0) | 1 (5.0) | 7 (16.3) | 14 (15.9) | ||
Prior treatment | Yes | 19 (76.0) | 19 (95.0) | 36 (83.7) | 74 (84.1) | |
Gemcitabine-based | 7 | 15 | 12 | 34 | ||
Prior treatment | Anthracycline-based | 17 | 12 | 20 | 49 | |
TKI-based | 6 | 8 | 13 | 27 | ||
Investigational drug | 4 | 12 | 8 | 24 | ||
Trabectedin | 2 | 12 | 2 | 16 | ||
4+ | 12 (50.0) | 9 (45.0) | 21 (48.8) | 42 (48.3) | ||
Neutrophil/lymphocyte ratio | <4 | 12 (50.0) | 11 (55.0) | 22 (51.2) | 45 (51.7) | |
Missing | 1 | 0 | 0 | 1 | ||
Locally Advanced | 1 (4.0) | 0 (0) | 7 (16.3) | 8 (9.1) | ||
Tumor status when starting therapy | Metastatic | 24 (96.0) | 20 (100) | 36 (83.7) | 80 (90.9) | |
0 | 9 (36.0) | 10 (50.0) | 23 (53.5) | 42 (47.7) | ||
ECOG score | 1 | 13 (52.0) | 8 (40.0) | 15 (34.9) | 36 (40.9) | |
2 | 3 (12.0) | 2 (10.0) | 5 (11.6) | 10 (11.4) | ||
Ipilimumab | 0 (0) | 0 (0) | 1 (2.3) | 1 (1.1) | ||
Immunotherapy treatment | Nivolumab | 0 (0) | 1 (5.0) | 5 (11.6) | 6 (6.8) | |
Pembrolizumab | 21 (84.0) | 5 (25.0) | 21 (48.8) | 47 (53.4) | ||
Ipilimumab with Nivolumab | 2 (8.0) | 12 (60.0) | 13 (30.2) | 27 (30.7) | ||
Other | 2 (8.0) | 2 (10.0) | 3 (7.0) | 7 (8.0) | ||
No | 17 (89.5) | 16 (84.2) | 36 (94.7) | 69 (90.8) | ||
Clinical Trial | Yes | 2 (10.5) | 3 (15.8) | 2 (5.3) | 7 (9.2) | |
Missing | 6 | 1 | 5 | 12 | ||
No | 19 (76.0) | 17 (85.0) | 36 (83.7) | 72 (81.8) | ||
Concurrent radiation | Yes | 6 (24.0) | 3 (15.0) | 7 (16.3) | 16 (18.2) | |
No | 24 (96.0) | 19 (95.0) | 40 (93.0) | 83 (94.3) | ||
Concurrent chemotherapy | Yes | 1 (4.0) | 1 (5.0) | 3 (7.0) | 5 (5.7) | |
Complete Response (CR) | 1 (4.0) | 0 (0) | 0 (0) | 1 (1.1) | ||
Best overall radiographic response | Partial Response (PR) | 7 (28.0) | 9 (45.0) | 4 (9.3) | 20 (22.7) | |
Stable Disease (SD) | 7 (28.0) | 3 (15.0) | 18 (41.9) | 28 (31.8) | ||
Progressive Disease (PD) | 10 (40.0) | 8 (40.0) | 21 (48.8) | 39 (44.3) | ||
No | 10 (40.0) | 6 (30.0) | 18 (41.9) | 34 (38.6) | ||
Immunotherapy stopped | Yes | 15 (60.0) | 14 (70.0) | 25 (58.1) | 54 (61.4) | |
Progression | 12 (80.0) | 10 (71.4) | 17 (68.0) | 39 (72.2) | ||
Reason for stopping immunotherapy | Toxicity | 2 (13.3) | 2 (14.3) | 5 (20.0) | 9 (16.7) | |
Other | 1 (6.7) | 2 (14.3) | 3 (12.0) | 6 (11.1) | ||
No | 13 (68.4) | 12 (63.2) | 30 (78.9) | 55 (72.4) | ||
Immune-mediated adverse event | Yes | 6 (31.6) | 7 (36.8) | 8 (21.1) | 21 (27.6) | |
Missing | 6 | 1 | 5 | 12 | ||
No | 3 (50.0) | 1 (14.3) | 0 (0) | 4 (19.0) | ||
Intervention for adverse event | Yes | 3 (50.0) | 6 (85.7) | 8 (100) | 17 (81.0) | |
No | 5 (20.0) | 5 (25.0) | 11 (25.6) | 21 (23.9) | ||
Patient with progressive disease | Yes | 20 (80.0) | 15 (75.0) | 32 (74.4) | 67 (76.1) | |
25 | 20 | 43 | 88 | |||
Age at therapy start | N | 60 | 64 | 54 | 59 | |
Median | (31–82) | (34–81) | (21–80) | (21–82) | ||
(Min-Max) | 24 | 20 | 43 | 87 | ||
Most recent ANC a (cells/mm3) | N | 4040 | 3150 | 4100 | 4000 | |
Median | (1600–33,720) | (230–9200) | (1330–28,470) | (230–33,720) | ||
(Min-Max) | 24 | 20 | 43 | 87 | ||
Most recent ALC b (cells/mm3) | N | 995 | 850 | 1000 | 1000 | |
Median | (200–2600) | (160–2100) | (100–2650) | (100–2650) | ||
(Min-Max) | 24 | 20 | 43 | 87 | ||
N/L ratio | N | 4.0 | 3.4 | 3.5 | 3.8 | |
Median | (0.9–32.4) | (0.3–18.0) | (0.7–80.0) | (0.3–80.0) | ||
(Min-Max) | 19 | 19 | 36 | 74 | ||
Number of prior lines of treatment 1 | N | 2 | 3 | 2 | 2 | |
Median | (1–8) | (1–8) | (1–6) | (1–8) | ||
(Min-Max) | 6 | 3 | 7 | 16 | ||
Radiation dose (Gy) | N | 65 | 30 | 55 | 50 | |
Median | (25–100) | (10–45) | (30–300) | (10–300) | ||
(Min-Max) | 25 | 20 | 43 | 88 | ||
Length of follow-up (months) | N | 11.3 | 12.3 | 10.6 | 11.1 | |
Median | (1.2–24.2) | (0.9–31.3) | (0.1–31.7) | (0.1–31.7) | ||
(Min-Max) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monga, V.; Skubitz, K.M.; Maliske, S.; Mott, S.L.; Dietz, H.; Hirbe, A.C.; Van Tine, B.A.; Oppelt, P.; Okuno, S.; Robinson, S.; et al. A Retrospective Analysis of the Efficacy of Immunotherapy in Metastatic Soft-Tissue Sarcomas. Cancers 2020, 12, 1873. https://doi.org/10.3390/cancers12071873
Monga V, Skubitz KM, Maliske S, Mott SL, Dietz H, Hirbe AC, Van Tine BA, Oppelt P, Okuno S, Robinson S, et al. A Retrospective Analysis of the Efficacy of Immunotherapy in Metastatic Soft-Tissue Sarcomas. Cancers. 2020; 12(7):1873. https://doi.org/10.3390/cancers12071873
Chicago/Turabian StyleMonga, Varun, Keith M. Skubitz, Seth Maliske, Sarah L. Mott, Hilary Dietz, Angela C. Hirbe, Brian A. Van Tine, Peter Oppelt, Scott Okuno, Steven Robinson, and et al. 2020. "A Retrospective Analysis of the Efficacy of Immunotherapy in Metastatic Soft-Tissue Sarcomas" Cancers 12, no. 7: 1873. https://doi.org/10.3390/cancers12071873
APA StyleMonga, V., Skubitz, K. M., Maliske, S., Mott, S. L., Dietz, H., Hirbe, A. C., Van Tine, B. A., Oppelt, P., Okuno, S., Robinson, S., O’Connor, M., Seetharam, M., Attia, S., Charlson, J., Agulnik, M., & Milhem, M. (2020). A Retrospective Analysis of the Efficacy of Immunotherapy in Metastatic Soft-Tissue Sarcomas. Cancers, 12(7), 1873. https://doi.org/10.3390/cancers12071873