Cost-Effectiveness of Early Detection and Prevention Strategies for Endometrial Cancer—A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Screening for Endometrial Cancer in Women with Different Risk Profiles
2.2. Risk-Reducing Interventions for Women at Increased or High Risk for Endometrial Cancer
2.3. Genetic Testing for Germline Mutations Followed by Risk-Reducing Interventions for Diagnosed Mutation Carriers
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer 2013, 49, 1374–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Haydu, C.; Black, J.D.; Schwab, C.L.; English, D.P.; Santin, A.D. An update on the current pharmacotherapy for endometrial cancer. Expert Opin. Pharmacother. 2015, 17, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer 2018, 103, 356–387. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Silva, I.D.S.; Moller, H.; Weiderpass, E. Endometrial Cancer Incidence Trends in Europe: Underlying Determinants and Prospects for Prevention. Cancer Epidemiology Biomarkers Prev. 2005, 14, 1132–1142. [Google Scholar] [CrossRef] [Green Version]
- Newell, S.; Overton, C. Postmenopausal bleeding should be referred urgently. Pr. 2012, 256, 13. [Google Scholar]
- Cooper, N.A.M.; Barton, P.M.; Breijer, M.; Caffrey, O.; Opmeer, B.C.; Timmermans, A.; Mol, B.W.J.; Khan, K.S.; Clark, T.J. Cost-effectiveness of diagnostic strategies for the management of abnormal uterine bleeding (heavy menstrual bleeding and post-menopausal bleeding): A decision analysis. Heal. Technol. Assess. 2014, 18, e1. [Google Scholar] [CrossRef] [Green Version]
- Koornstra, J.J.; Mourits, M.J.; Sijmons, R.; Leliveld, A.M.; Hollema, H.; Kleibeuker, J.H. Management of extracolonic tumours in patients with Lynch syndrome. Lancet Oncol. 2009, 10, 400–408. [Google Scholar] [CrossRef]
- Tafe, L.J.; Riggs, E.R.; Tsongalis, G.J. Lynch Syndrome Presenting as Endometrial Cancer. Clin. Chem. 2014, 60, 111–121. [Google Scholar] [CrossRef] [Green Version]
- De La Chapelle, A. The Incidence of Lynch Syndrome. Fam. Cancer 2005, 4, 233–237. [Google Scholar] [CrossRef]
- Stoffel, E.M.; Walsh, C. Chemoprevention of Endometrial Cancer in Lynch Syndrome: A Step Forward. Cancer Prev. Res. 2013, 6, 755–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmeler, K.M.; Lynch, H.T.; Chen, L.-M.; Munsell, M.F.; Soliman, P.T.; Clark, M.B.; Daniels, M.; White, K.G.; Boyd-Rogers, S.G.; Conrad, P.G.; et al. Prophylactic Surgery to Reduce the Risk of Gynecologic Cancers in the Lynch Syndrome. New Engl. J. Med. 2006, 354, 261–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCI. Endometrial Cancer Screening Physician Data Query (PDQ). Available online: www.cancer.gov/cancertopics/pdq/screening/endometrial/HealthProfessional/ (accessed on 4 November 2016).
- Bachmann, L.M.; ter Riet, G.; Clark, T.J.; Gupta, J.K.; Khan, K.S. Probability analysis for diagnosis of endometrial hyperplasia and cancer in postmenopausal bleeding: An approach for a rational diagnostic workup. Acta Obstet Gynecol Scand 2003, 82, 564–569. [Google Scholar] [CrossRef]
- Dinh, T.A.; Rosner, B.I.; Atwood, J.C.; Boland, C.R.; Syngal, S.; Vasen, H.; Gruber, S.B.; Burt, R.W. Health benefits and cost-effectiveness of primary genetic screening for Lynch syndrome in the general population. Cancer Prev. Res. 2010, 4, 9–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dottino, J.A.; Hasselblad, V.; Secord, A.A.; Myers, E.R.; Chino, J.; Havrilesky, L.J. Levonorgestrel Intrauterine Device as an Endometrial Cancer Prevention Strategy in Obese Women. Obstet. Gynecol. 2016, 128, 747–753. [Google Scholar] [CrossRef]
- Havrilesky, L.J.; Maxwell, G.L.; Myers, E.R. Cost-effectiveness analysis of annual screening strategies for endometrial cancer. Am. J. Obstet. Gynecol. 2009, 200, 640.e1–640.e8. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.S.; Lu, K.H. Cost-Effectiveness Analysis of Endometrial Cancer Prevention Strategies for Obese Women. Obstet. Gynecol. 2008, 112, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.; Sun, C.C.; Peterson, S.K.; White, K.G.; Daniels, M.; Boyd-Rogers, S.G.; Lu, K.H. Cost-effectiveness analysis of prevention strategies for gynecologic cancers in Lynch syndrome. Cancer 2008, 113, 326–335. [Google Scholar] [CrossRef]
- Yang, K.Y.; Caughey, A.B.; Little, S.E.; Cheung, M.K.; Chen, L.-M. A cost-effectiveness analysis of prophylactic surgery versus gynecologic surveillance for women from hereditary non-polyposis colorectal cancer (HNPCC) Families. Fam. Cancer 2011, 10, 535–543. [Google Scholar] [CrossRef]
- Havrilesky, L.J.; Moss, H.A.; Chino, J.; Myers, E.R.; Kauff, N. Mortality reduction and cost-effectiveness of performing hysterectomy at the time of risk-reducing salpingo-oophorectomy for prophylaxis against serous/serous-like uterine cancers in BRCA1 mutation carriers. Gynecol. Oncol. 2017, 145, 549–554. [Google Scholar] [CrossRef]
- Kastrinos, F.; Steyerberg, E.W.; Mercado, R.; Balmaña, J.; Holter, S.; Gallinger, S.; Siegmund, K.D.; Church, J.M.; Jenkins, M.A.; Lindor, N.M.; et al. The PREMM1,2,6 Model Predicts Risk of MLH1, MSH2, and MSH6 Germline Mutations Based on Cancer History. Gastroenterol. 2011, 140, 73–81.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoch, J.S.; Dewa, C.S. A clinician’s guide to correct cost-effectiveness analysis: Think incremental not average. Can. J. Psychiatry 2008, 53, 267–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith-Bindman, R.; Kerlikowske, K.; Feldstein, V.A.; Subak, L.; Scheidler, J.; Segal, M.; Brand, R.; Grady, D. Endovaginal ultrasound to exclude endometrial cancer and other endometrial abnormalities. JAMA 1998, 280, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, I.J.; Gentry-Maharaj, A.; Burnell, M.; Manchanda, R.; Singh, N.; Sharma, A.; Ryan, A.; Seif, M.W.; Amso, N.; Turner, G.; et al. Sensitivity of transvaginal ultrasound screening for endometrial cancer in postmenopausal women: A case-control study within the UKCTOCS cohort. Lancet Oncol. 2011, 12, 38–48. [Google Scholar] [CrossRef]
- Smith-Bindman, R.; Weiss, E.; Feldstein, V. How thick is too thick? When endometrial thickness should prompt biopsy in postmenopausal women without vaginal bleeding. Ultrasound Obstet. Gynecol. 2004, 24, 558–565. [Google Scholar] [CrossRef]
- Van Oostrom, I.; Meijers-Heijboer, H.E.; Lodder, L.; Duivenvoorden, H.J.; Van Gool, A.R.; Seynaeve, C.; Van Der Meer, C.A.; Klijn, J.G.; Van Geel, B.N.; Burger, C.W.; et al. Long-Term Psychological Impact of Carrying a BRCA1/2 Mutation and Prophylactic Surgery: A 5-Year Follow-Up Study. J. Clin. Oncol. 2003, 21, 3867–3874. [Google Scholar] [CrossRef]
- Siebert, U.; Alagoz, O.; Bayoumi, A.M.; Jahn, B.; Owens, U.K.; Cohen, D.J.; Kuntz, K.M. State-Transition Modeling. Med Decis. Mak. 2012, 32, 690–700. [Google Scholar] [CrossRef]
- Siebert, U.; Mdh, M.U.S. When should decision-analytic modeling be used in the economic evaluation of health care? Eur. J. Heal. Econ. 2003, 4, 143–150. [Google Scholar] [CrossRef]
- Caro, J.J.; Briggs, A.H.; Siebert, U.; Kuntz, K.M. Modeling Good Research Practices—Overview. Med Decis. Mak. 2012, 32, 667–677. [Google Scholar] [CrossRef]
- Roberts, M.; Russell, L.B.; Paltiel, A.D.; Chambers, M.; McEwan, P.; Krahn, M. Conceptualizing a Model. Med Decis. Mak. 2012, 32, 678–689. [Google Scholar] [CrossRef]
- O’Mahony, J.F.; Naber, S.K.; Normand, C.; Sharp, L.; O’Leary, J.J.; De Kok, I.M. Beware of Kinked Frontiers: A Systematic Review of the Choice of Comparator Strategies in Cost-Effectiveness Analyses of Human Papillomavirus Testing in Cervical Screening. Value Heal. 2015, 18, 1138–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alblas, M.; Velt, K.B.; Pashayan, N.; Widschwendter, M.; Steyerberg, E.W.; Vergouwe, Y. Prediction models for endometrial cancer for the general population or symptomatic women: A systematic review. Crit. Rev. Oncol. 2018, 126, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Husereau, D.; Drummond, M.; Petrou, S.; Carswell, C.; Moher, D.; Greenberg, D.; Augustovski, F.; Briggs, A.H.; Mauskopf, J.; Loder, E.; et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. BMJ 2013, 346, f1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caro, J.J.; Briggs, A.H.; Siebert, U.; Kuntz, K.M. Modeling Good Research Practices—Overview: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-1. Value Heal. 2012, 15, 796–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siebert, U.; Alagoz, O.; Bayoumi, A.M.; Jahn, B.; Owens, U.K.; Cohen, D.J.; Kuntz, K.M. State-Transition Modeling: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-3. Value Heal. 2012, 15, 812–820. [Google Scholar] [CrossRef] [Green Version]
- OECD Purchasing power parities (PPP). Conversion rates. 2019. Available online: https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm (accessed on 17 January 2020).
- OECD. Inflation (CPI) (indicator). Available online: https://data.oecd.org/price/inflation-cpi.htm (accessed on 17 January 2020).
- Siebert, U. Using decision-analytic modelling to transfer international evidence from health technology assessment to the context of the German health care system. GMS Heal. Technol Assess 2005, 1. [Google Scholar]
- Hunink, M.M.; Weinstein, M.C.; Wittenberg, E.; Drummond, M.F.; Pliskin, J.S.; Wong, J.B.; Glasziou, P.P.; Fineberg, H.V. Decision Making in Health and Medicine; Cambridge University Press (CUP): Cambridge, UK, 2014. [Google Scholar]
- Neumann, P.J.; Cohen, J.T.; Weinstein, M.C. Updating Cost-Effectiveness — The Curious Resilience of the $50,000-per-QALY Threshold. New Engl. J. Med. 2014, 371, 796–797. [Google Scholar] [CrossRef] [Green Version]
- Schwarzer, R.; Rochau, U.; Saverno, K.; Jahn, B.; Bornschein, B.; Muehlberger, N.; Flatscher-Thoeni, M.; Schnell-Inderst, P.; Sroczynski, G.; Lackner, M.; et al. Systematic overview of cost–effectiveness thresholds in ten countries across four continents. J. Comp. Eff. Res. 2015, 4, 485–504. [Google Scholar] [CrossRef]
- WHO. Macroeconomics and health: Investing in health for economic development. Report of the Commission on Macroeconomics and Health. Available online: http://apps.who.int/iris/bitstream/10665/42435/1/924154550X.pdf.2001 (accessed on 17 January 2020).
- WHO. Choosing interventions that are cost-effective [Internet]. Available online: http://www.who.int/choice/en/2014 (accessed on 17 January 2020).
Study, Publication Year, Country | Objectives, Compared Strategies, Target Population | Model Type, Analysis Approach, Time Horizon | Study Type, Perspective, Costs, Discount Rate, Index Year, Currency | Outcome Measures | Sensitivity Analyses | Model Validation |
---|---|---|---|---|---|---|
Havrilesky, 2009, USA [17] | Evaluation of screening strategies. Annual EB, annual TVS, and annual serum screening with a hypothetical biomarker vs. no screening, (1) increased risk: obese women and (2) average risk: women from the general population | Markov model, cohort simulation, lifetime | CEA, societal, direct medical costs (indirect costs were not explicitly mentioned), 3% (costs and effects) 2006, U.S. dollars | LY, costs, ICER (costs/LYG), ACER (costs/LY) | Scenario analyses (Univariate) | n.r. |
Kwon and Lu, 2008, USA [18] | Evaluation of screening and preventive interventions, no prevention (reference strategy), oral contraceptive pills for 5 yrs, annual screening with EB from age 30, biennial screening from age 30, increased risk: obese women, age 30 yrs | Markov model, cohort simulation, lifetime | CEA, societal direct and indirect health care costs, 3% (costs and effects) 2006, U.S. dollars | LY, costs, ICER (costs/LYG) | Scenario analyses (Univariate) | n.r. |
Kwon et al., 2008, USA [19] | Evaluation of prophylactic surgery and screening, prophylactic surgery, annual screening with EB, TVS, and CA-125 vs. no prevention, high-risk: women with Lynch syndrome age 30+ yrs | Markov model, cohort simulation, lifetime (40 yrs) | CUA, societal, direct and indirect costs, 3% (costs and effects) 2006, U.S. dollars | LY, QALY, costs, ICUR (costs/QALY gained) | Deterministic, probabilistic | n.r. |
Yang, 2011, USA [20] | Evaluation of prophylactic surgery and screening, risk-reducing hysterectomy with PBSO vs. annual gynecologic examination + TVS (and CA- 125, EB), high-risk: women with Lynch syndrome age 30+ yrs | Decision tree, cohort simulation, lifetime | CUA, societal, direct costs (only health care costs reported), 3% (costs and effects) 2010, U.S. dollars | QALY, lifetime costs, ICUR (costs/QALY gained) | Deterministic univariate and probabilistic multivariate | n.r. |
Havrilesky, 2017, USA [21] | Evaluation of prophylactic surgery. PBM+PBSO alone vs. PBM+PBSO with hysterectomy. High-risk: BRCA-1 mutation carriers with no cancer, age 40 yrs, following PBM+PBSO | Markov model, cohort simulation, lifetime | CEA, health care sector, direct costs, 3% (costs and effects) 2015, U.S. dollars | LY, ICER (costs/LYG), QALY (scenario) | One-way and Monte Carlo probabilistic, scenario analyses | n.r. |
Dottino, 2016, USA [16] | Evaluation of preventive intervention, Levonorgestrel intrauterine device vs. usual care. Increased risk: obese women, age 50 yrs | Markov model, cohort simulation, lifetime | CEA, payer, direct costs, 3% (costs and effects) 2015, U.S. dollars | ICER (costs/LYG) | One-way, two-way and Monte Carlo probabilistic | n.r. |
Dinh, 2010, USA [15] | Evaluation of annual genetic screening strategies for Lynch syndrome, (1) screening of unaffected individuals via demographic and family histories, and offering genetic testing to those individuals whose risks for carrying a mutation exceed a selected threshold vs. standard of care. (2) Universal genetic testing, both strategies were compared to current practice of genetic testing for persons with family history of Lynch syndrome and to each other. General population | Mathematical equation model (Archimedes model), microsimulation, lifetime | CUA, societal, direct medical costs (indirect costs were not explicitly mentioned), 3% (costs and effects) 2009, U.S. dollars | LY, QALYs, costs, ICUR (costs/QALY) | Scenario analyses (Univariate SA), | Against observed data |
Author | Year | Title | Abstract | Introduction | Target Population and Subgroups | Setting and Location | Study Perspective | Comparators | Time Horizon | Discount Rate | Choice of Health Outcome | Measurement of Effectiveness | Measurement and Valuation of Preference-Based Outcomes | Estimating Resources and Costs | Currency, Price Date, and Conversion | Choice of Model | Assumptions | Analytic Methods | Study Parameters | Incremental Costs and Outcomes | Characterizing Uncertainty | Characterizing Heterogeneity | Discussion | Source of Funding | Conflicts of Interest | Points (out of 24) | Items Present in % |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Havrilesky et al. [21] | 2017 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | N | Y | Y | Y | N | Y | N | Y | 20 | 83 |
Dottino et al. [16] | 2016 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | N | Y | Y | Y | N | Y | N | Y | 20 | 83 |
Yang et al. [20] | 2011 | Y | Y | Y | Y | N | N | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | 20 | 83 |
Dinh et al. [15] | 2011 | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | 21 | 88 |
Havrilesky et al. [17] | 2009 | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | N | N | 19 | 79 |
Kwon et al. [19] | 2008 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | N | N | 19 | 79 |
Kwon and Lu [18] | 2008 | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | N | Y | Y | Y | N | Y | N | N | 18 | 75 |
Number of studies missing item (out of 7 studies) | 0 | 0 | 1 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 3 | 0 | 5 | 3 | |||
Studies missing item (%) | 0 | 0 | 14 | 0 | 14 | 43 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 43 | 0 | 71 | 43 |
Study, Country, Currency | Target Population Compared Strategies | Over no Intervention or Current Practice | Compared to Next Non-Dominated | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Incr. Costs in 2019 Euro (in 2019 USD) | Incr. LY | Incr. QALY | ICER in 2019 Euro/LYG (in 2019 USD/LYG) | ICUR in 2019 Euro/QALY (in 2019 USD/ QALY) | Incr. Costs in 2019 Euro a (in 2019 USD) | Incr. LYG a | Incr. QALYa | ICER in 2019 EUR/ LYG a (in 2019 USD/LYG) | ICUR in 2019 EUR/ QALY a (in 2019 USD/QALY) | ||
Kwon et al., 2008, USA, USD [19] | Target population: women with Lynch syndrome, age 30 yrs and older, 40–60% lifetime risk for endometrial cancer (colon and endometrial cancer) | ||||||||||
Strategies: | |||||||||||
No intervention | - | - | - | - | - | - | - | - | - | - | |
EB, TVS, CA-125, age 30+, 1 yr | 19,592 (21,930) | 0.45 | 0.20 | 43,586 (48,787) | 95,804 (107,235) | 19,592 (21,930) | 0.45 | 0.20 | 43,586 (48,787) | 95,804 (107,235) | |
Yang et al., 2011, USA, USD [20] | Target population: high-risk: Lynch syndrome, women age 30 yrs, 40–60% lifetime risk of endometrial cancer (colon and endometrial cancer) | ||||||||||
Strategies: | |||||||||||
Exam, TVS, CA- 125, EB, age 30+, 1 yr | - | n.r. | - | n.r. | - | - | n.r. | - | n.r. | - | |
Exam, TVS, age 30+, 1 yr | Dom | n.r. | Dom | n.r. | Dom | Dom | n.r. | Dom | n.r. | Dom | |
Havrilesky, 2009, USA, USD [17] | Target population: women with a history of breast cancer using tamoxifen for 5 yrs, age 61 to 80 yrs, 6% lifetime risk for endometrial cancer | ||||||||||
Strategies: | |||||||||||
No intervention | - | - | - | - | - | - | - | - | - | - | |
HBS, age 61–80, 1 yr | n.r. | n.r. | n.r. | 22,988 (25,730) | n.r. | n.r. | n.r. | n.r. | 22,988 (25,730) | n.r. | |
TVS, age 61–80, 1 yr | n.r. | n.r. | n.r. | n.r. | n.r. | Dom | Dom | n.r. | Dom | n.r. | |
EB, age 61–80, 1 yr | n.r. | n.r. | n.r. | n.r. | n.r. | Dom | Dom | n.r. | Dom | n.r. | |
Havrilesky, 2009, USA, USD [17] | Target population: obese (>BMI 30 kg/m²) women, age 45 to 80 yrs, from 4% to 7% (age dependent) lifetime risk for endometrial cancer | ||||||||||
Strategies: | |||||||||||
No intervention | - | - | - | - | - | - | - | - | - | - | |
HBS, age 45–80, 1 yr | 541 (606) | 0.0116 | n.r. | 46,678 (52,247) | n.r. | 541 (606) | 0.0116 | n.r. | 46,678 (52,247) | n.r. | |
TVS, age 45–80, 1 yr | 2892 (3237) | 0.0105 | n.r. | 275,417 (308,280) | n.r. | Dom | Dom | n.r. | Dom | n.r. | |
EB, age 45–80, 1 yr | 3453 (3865) | 0.0092 | n.r. | 375,283 (420,062) | n.r. | Dom | Dom | n.r. | Dom | n.r. | |
Kwon and Lu, 2008, USA, USD [18] | Target population: obese (> BMI 30 kg/m²) women, age 30 to 80 yrs, 3% lifetime risk for endometrial cancer | ||||||||||
Strategies: | |||||||||||
No intervention | - | - | - | - | - | - | - | - | - | - | |
Exam +EB, age 30–80, 2 yrs | 18,409 (20,606) | 0.0100 | n.r. | 1,840,907 (2,060,562) | n.r. | 18,409 (20,606) | 0.0100 | n.r. | 1,840,907 (2,060,562) | n.r. | |
Exam +EB, age 30–80, 1 yr | 29,551 (33,077) | 0.0172 | n.r. | 1,718,084 (1,923,084) | n.r. | 11,142 (12,471) | 0.0072 | n.r. | 1,547,496 (1,732,142) | n.r. | |
Havrilesky, 2009, USA, USD [17] | Target population: general population, women age 50 to 75 yrs, 2.5% lifetime risk for endometrial cancer | ||||||||||
Strategies: | |||||||||||
No intervention | - | - | - | - | - | - | - | - | - | - | |
HBS, age 50–75, 1 yr | n.r. | n.r. | n.r. | 68,392 (76,552) | n.r. | n.r. | n.r. | n.r. | 68,392 (76,552) | n.r. | |
TVS age 50–75, 1 yr | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | Dom | n.r. | |
EB, age 50–75, 1 yr | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | Dom | n.r. |
Study, Country, Currency | Target Population Compared Strategies | Over no Intervention or Current Practice | Compared to Next Non-Dominated | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Incr. Costs in 2019 Euro (in 2019 USD) | Incr. LY | Incr. QALY | ICER in 2019 EUR/LYG (in 2019 USD/LYG) | ICUR in 2019 EUR/QALY (in 2019 USD/ QALY) | Incr. Costs in 2019 Euro a (in 2019 USD) | Incr. LYG a | Incr. QALY a | ICER in 2019 EUR/ LYG a (in 2019 USD/LYG) | ICUR in 2019 EUR/ QALY a (in 2019 USD/QALY) | ||
Kwon et al., 2008, USA, USD [19] | Target population: women with Lynch syndrome, age 30 yrs and older, 40–60% lifetime risk for endometrial cancer, 42% for colon cancer (colon and endometrial cancer) | ||||||||||
Strategies: | |||||||||||
No intervention | - | - | - | - | - | - | - | - | - | - | |
PBSO + hysterectomy at 30 yrs | 5555 (6218) | 1.996 | 0.353 | 2783 (3115) | 15,724 (17,600) | 5555 (6218) | 1.996 | 0.353 | 2783 (3115) | Ext dom | |
PBSO + hysterectomy at 40 yrs | 6304 (7056) | 1.053 | 0.485 | 5984 (6699) | 13,003 (14,555) | 749 (838) | Dom | 0.132 | Dom | 5695 (6375) | |
EB, TVS, CA-125, age 30–39, 1 yr; PBSO + hysterectomy, age 40 | 13,716 (15,353) | 1.118 | 0.518 | 12,272 (13,736) | 26,459 (29,616) | 7412 (8297) | Dom | 0.034 | Dom | 220,599 (246,920) | |
EB, TVS, CA-125, age 30+, 1 yr | 19,592 (21,930) | 0.45 | 0.20 | 43,586 (48,787) | 95,804 (107,235) | Dom | Dom | Dom | Dom | Dom | |
Yang et al., 2011, USA, USD [20] | Target population: high-risk: Lynch syndrome, women age 30 yrs, 40–60% lifetime risk of endometrial cancer (colon and endometrial cancer) | ||||||||||
Strategies: | |||||||||||
PBSO+hysterectomy, at 30 yrs | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | - | - | |
Exam, TVS, CA- 125, EB, age 30+, 1 yr | n.r. | n.r. | n.r. | n.r. | n.r. | Dom | n.r. | Dom | n.r. | Dom | |
Exam, TVS, age 30+, 1 yr | n.r. | n.r. | n.r. | n.r. | n.r. | Dom | n.r. | Dom | n.r. | Dom | |
Havrilesky et al., 2017, USA, USD [21] | Target population: BRCA-1 mutation carriers, women age 40 yrs with no cancer (following PBM+PBSO), 3.5% lifetime risk for endometrial cancer | ||||||||||
Strategies: | |||||||||||
PBM + PBSO + hysterectomy, at 40 yrs | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | - | - | |
PBM+PBSO, at 40 yrs | n.r. | n.r. | n.r. | n.r. | n.r. | Dom | Dom | n.r. | Dom | 12,989 (14,539) | |
Dottino, 2016, USA USD [16] | Target population: obese women, age 50 yrs, from 4% to 7% (age dependent) lifetime risk for endometrial cancer | ||||||||||
Strategies: | |||||||||||
No intervention | - | - | - | - | - | - | - | - | - | - | |
Levonorgestrel, age 50–55 | n.r. | n.r. | n.r. | 71,992 (80,582) | n.r. | n.r. | n.r. | n.r. | 71,992 (80,582) | n.r. | |
Kwon and Lu, 2008, USA, USD [18] | Target population: obese (> BMI 30 kg/m²) women, age 30–80 yrs, 3% lifetime risk for endometrial cancer | ||||||||||
Strategies: | |||||||||||
No intervention | - | - | - | - | - | - | - | - | - | - | |
OCP, age 30–35 | 2982 (3338) | 0.0065 | n.r. | 458,780 (513,521) | n.r. | 2982 (3338) | 0.0065 | n.r. | 458,780 (513,521) | n.r. | |
Exam, EB, age 30–80, 2 yrs | 18,409 (20,606) | 0.0100 | n.r. | 1,840,907 (2,060,562) | n.r. | Ext dom | Ext dom | n.r. | Ext dom | n.r. | |
Exam, EB, age 30–80,1 yr | 29,551 (33,077) | 0.0172 | n.r. | 1,718,084 (1,923,084) | n.r. | 26,569 (29,739) | 0.0107 | n.r. | 2,483,081 (2,779,361) | n.r. |
Study, Country, Currency | Target Population Compared Strategies | Over no Intervention or Current Practice | Compared to Next Non-Dominated | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Incr. Costs in 2019 Euro (in 2019 USD) | Incr. LY | Incr. QALY | ICER in 2019 EUR/LYG (in 2019 USD/LYG) | ICUR in 2019 EUR/QALY (in 2019 USD/ QALY) | Incr. Costs in 2019 Euro a (in 2019 USD) | Incr. LYG a | Incr. QALY a | ICER in 2019 EUR/LYG a (in 2019 USD/LYG) | ICUR in 2019 EUR/QALY a (in 2019 USD/QALY) | ||
Dinh, 2010, USA, USD [15] | Target population: general population, women age 20–40 yrs, different lifetime risks for endometrial cancer. Costs and QALYs are per 100,000 persons. | ||||||||||
Strategies: standard of care vs. genetic testing at different ages and risk thresholds (%) of carrying mutation b,c | |||||||||||
Genetic testing above 10% risk of having the mutation at different ages | |||||||||||
40 yrs | 319,392 (357,501) | n.r. | 45 | n.r. | 7098 (7944) | 319,392 (357,501) | n.r. | 45 | n.r. | 8246 (9229) | |
35 yrs | 532,319 (595,835) | n.r. | 56 | n.r. | (10,640) | 212,928 (238,334) | n.r. | 11 | n.r. | 10,999 (12,311) | |
30 yrs | 638,783 (715,002) | n.r. | 63 | n.r. | 10,139 (11,349) | 106,464 (119,167) | n.r. | 7 | n.r. | 15,887 (17,782) | |
25 yrs | 745,247 (834,169) | n.r. | 67 | n.r. | 11,123 (12,450) | 106,464 (119,167) | n.r. | 4 | n.r. | 39,677 (44,411) | |
20 yrs | 958,175 (1,072,504) | n.r. | 69 | n.r. | 13,887 (15,544) | Ext dom | n.r. | Ext dom | n.r. | Ext dom | |
Genetic testing above 5% risk of having the mutation at different ages | |||||||||||
40 yrs | 2,874,524 (3,217,511) | n.r. | 102 | n.r. | 28,182 (31,544) | Ext dom | n.r. | Ext dom | n.r. | Ext dom | |
35 yrs | 3,300,379 (3,694,179) | n.r. | 125 | n.r. | 26,403 (29,553) | 2,555,132 (2,860,009) | n.r. | 58 | n.r. | 43,272 (48,435) | |
30 yrs | 3,726,235 (4,170,847) | n.r. | 135 | n.r. | 27,602 (30,895) | Ext dom | n.r. | Ext dom | n.r. | Ext dom | |
25 yrs | 4,365,018 (4,885,849) | n.r. | 147 | n.r. | 29,694 (33,237) | 1,064,639 (1,191,671) | n.r. | 22 | n.r. | 47,416 (53,073) | |
20 yrs | 5,003,801 (5,600,852) | n.r. | 151 | n.r. | 33,138 (37,092) | Ext dom | n.r. | Ext dom | n.r. | Ext dom | |
Genetic testing above 2.5% risk of having the mutation at different ages | |||||||||||
40 yrs | 12,562,734 (14,061,713) | n.r. | 220 | n.r. | 57,103 (63,917) | Ext dom | n.r. | Ext dom | n.r. | Ext dom | |
35 yrs | 13,733,837 (15,372,551) | n.r. | 266 | n.r. | 51,631 (57,792) | 9,368,819 (10,486,701) | n.r. | 119 | n.r. | 78,808 (88,211) | |
30 yrs | 15,863,114 (17,755,892) | n.r. | 288 | n.r. | 55,080 (61,652) | Ext dom | n.r. | Ext dom | n.r. | Ext dom | |
25 yrs | 18,098,855 (20,258,400) | n.r. | 311 | n.r. | 58,196 (65,140) | 4,365,018 (4,885,849) | n.r. | 45 | n.r. | 98,538 (110,295) | |
20 yrs | 19,802,276 (22,165,073) | n.r. | 313 | n.r. | 63,266 (70,815) | Ext dom | n.r. | Ext dom | n.r. | Ext dom | |
Universal genetic testing at different ages | |||||||||||
40 yrs | 206,433,407 (231,064,928) | n.r. | 546 | n.r. | 378,083 (423,196) | Ext dom | n.r. | Ext dom | n.r. | Ext dom | |
35 yrs | 241,672,941 (270,509,225) | n.r. | 675 | n.r. | 358,034 (400,754) | Ext dom | n.r. | Ext dom | n.r. | Ext dom | |
30 yrs | 286,068,367 (320,201,888) | n.r. | 800 | n.r. | 357,585 (400,252) | Ext dom | n.r. | Ext dom | n.r. | Ext dom | |
25 yrs | 338,661,509 (379,070,416) | n.r. | 925 | n.r. | 366,121 (409,806) | 320,562,655 (358,812,016) | n.r. | 614 | n.r. | 522,008 (584,294) | |
20 yrs | 398,387,730 (445,923,136) | n.r. | 933 | n.r. | 426,996 (477,945) | 59,726,220 (66,852,720) | n.r. | 8 | n.r. | 7,461,915 (8,352,267) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sroczynski, G.; Gogollari, A.; Conrads-Frank, A.; Hallsson, L.R.; Pashayan, N.; Widschwendter, M.; Siebert, U. Cost-Effectiveness of Early Detection and Prevention Strategies for Endometrial Cancer—A Systematic Review. Cancers 2020, 12, 1874. https://doi.org/10.3390/cancers12071874
Sroczynski G, Gogollari A, Conrads-Frank A, Hallsson LR, Pashayan N, Widschwendter M, Siebert U. Cost-Effectiveness of Early Detection and Prevention Strategies for Endometrial Cancer—A Systematic Review. Cancers. 2020; 12(7):1874. https://doi.org/10.3390/cancers12071874
Chicago/Turabian StyleSroczynski, Gaby, Artemisa Gogollari, Annette Conrads-Frank, Lára R. Hallsson, Nora Pashayan, Martin Widschwendter, and Uwe Siebert. 2020. "Cost-Effectiveness of Early Detection and Prevention Strategies for Endometrial Cancer—A Systematic Review" Cancers 12, no. 7: 1874. https://doi.org/10.3390/cancers12071874
APA StyleSroczynski, G., Gogollari, A., Conrads-Frank, A., Hallsson, L. R., Pashayan, N., Widschwendter, M., & Siebert, U. (2020). Cost-Effectiveness of Early Detection and Prevention Strategies for Endometrial Cancer—A Systematic Review. Cancers, 12(7), 1874. https://doi.org/10.3390/cancers12071874