Role of ETS1 in the Transcriptional Network of Diffuse Large B Cell Lymphoma of the Activated B Cell-Like Type
Abstract
:1. Introduction
2. Material and Methods
2.1. Cell Lines
2.2. Gene Silencing
2.3. RNA Extraction
2.4. PCR Amplification and Quantitative Real-Time PCR
2.5. Western Blotting
2.6. Transcriptome Analysis
2.7. Data Mining
3. Results
3.1. Silencing Experiments Identify ETS1-Regulated Genes in ABC-DLBCL
3.2. Integration with ChIP-Seq Data Identifies Putative Direct ETS1 Targets and Their Overlap with BCL6, BLIMP1, and PAX5 Targets
3.3. The Novel ETS1 Target FCMR Is Mainly Expressed in ABC-DLBCL
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gascoyne, R.D.; Campo, E.; Jaffe, E.S.; Chan, W.C.; Chan, J.K.C.; Rosenwald, A.; Stein, H.; Swerdlow, S.H. Diffuse Large B-cell Lymphoma, NOS. In WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues—Revised, 4th ed.; Swerdlow, S.H., Campo, E., Harris, N.L., Jaffe, E.S., Pileri, A., Stein, H., Thiele, J., Arber, D.A., Hasserjian, R.P., Le Beau, M.M., et al., Eds.; IARC Press: Lyon, France, 2017; pp. 291–297. [Google Scholar]
- Pasqualucci, L.; Dalla-Favera, R. Genetics of diffuse large B-cell lymphoma. Blood 2018, 131, 2307–2319. [Google Scholar] [CrossRef] [PubMed]
- Lenz, G.; Wright, G.; Dave, S.S.; Xiao, W.; Powell, J.; Zhao, H.; Xu, W.; Tan, B.; Goldschmidt, N.; Iqbal, J.; et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 2008, 359, 2313–2323. [Google Scholar] [CrossRef] [Green Version]
- Chapuy, B.; Stewart, C.; Dunford, A.J.; Kim, J.; Kamburov, A.; Redd, R.A.; Lawrence, M.S.; Roemer, M.G.M.; Li, A.J.; Ziepert, M.; et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 2018, 24, 679–690. [Google Scholar] [CrossRef]
- Wright, G.W.; Huang, D.W.; Phelan, J.D.; Coulibaly, Z.A.; Roulland, S.; Young, R.M.; Wang, J.Q.; Schmitz, R.; Morin, R.D.; Tang, J.; et al. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell 2020, 37, 551–568.e514. [Google Scholar] [CrossRef]
- Lacy, S.E.; Barrans, S.L.; Beer, P.A.; Painter, D.; Smith, A.G.; Roman, E.; Cooke, S.L.; Ruiz, C.; Glover, P.; Van Hoppe, S.J.L.; et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: A Haematological Malignancy Research Network report. Blood 2020, 135, 1759–1771. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, P.; Testoni, M.; Scandurra, M.; Ponzoni, M.; Piva, R.; Mensah, A.A.; Rinaldi, A.; Kwee, I.; Tibiletti, M.G.; Iqbal, J.; et al. Deregulation of ETS1 and FLI1 contributes to the pathogenesis of diffuse large B-cell lymphoma. Blood 2013, 122, 2233–2241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasqualucci, L.; Trifonov, V.; Fabbri, G.; Ma, J.; Rossi, D.; Chiarenza, A.; Wells, V.A.; Grunn, A.; Messina, M.; Elliot, O.; et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 2011, 43, 830–837. [Google Scholar] [CrossRef] [Green Version]
- Dittmer, J. The role of the transcription factor Ets1 in carcinoma. Semin Cancer Biol. 2015, 35, 20–38. [Google Scholar] [CrossRef]
- Garrett-Sinha, L.A. Review of Ets1 structure, function, and roles in immunity. Cell. Mol. Life Sci. 2013, 70, 3375–3390. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Mayeux, J.; Gutierrez, T.; Russell, L.; Getahun, A.; Muller, J.; Tedder, T.; Parnes, J.; Rickert, R.; Nitschke, L.; et al. A balance between B cell receptor and inhibitory receptor signaling controls plasma cell differentiation by maintaining optimal Ets1 levels. J. Immunol. 2014, 193, 909–920. [Google Scholar] [CrossRef] [Green Version]
- Mayeux, J.; Skaug, B.; Luo, W.; Russell, L.M.; John, S.; Saelee, P.; Abbasi, H.; Li, Q.Z.; Garrett-Sinha, L.A.; Satterthwaite, A.B. Genetic Interaction between Lyn, Ets1, and Btk in the Control of Antibody Levels. J. Immunol. 2015, 195, 1955–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelsen, B.; Tian, G.; Erman, B.; Gregoire, J.; Maki, R.; Graves, B.; Sen, R. Regulation of lymphoid-specific immunoglobulin mu heavy chain gene enhancer by ETS-domain proteins. Science 1993, 261, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Russell, L.; John, S.; Cullen, J.; Luo, W.; Shlomchik, M.J.; Garrett-Sinha, L.A. Requirement for Transcription Factor Ets1 in B Cell Tolerance to Self-Antigens. J. Immunol. 2015, 195, 3574–3583. [Google Scholar] [CrossRef] [Green Version]
- Testoni, M.; Chung, E.Y.; Priebe, V.; Bertoni, F. The transcription factor ETS1 in lymphomas: Friend or foe? Leuk. Lymphoma 2015, 56, 1975–1980. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y.; Levi, B.-Z.; Tamura, T.; Ozato, K. Immune Cell-Specific Amplification of Interferon Signaling by the IRF-4/8-PU.1 Complex. J. Interferon Cytokine Res. 2005, 25, 770–779. [Google Scholar] [CrossRef]
- Hauser, J.; Verma-Gaur, J.; Wallenius, A.; Grundstrom, T. Initiation of antigen receptor-dependent differentiation into plasma cells by calmodulin inhibition of E2A. J. Immunol. 2009, 183, 1179–1187. [Google Scholar] [CrossRef]
- Chung, E.Y.; Ponzoni, M.; Xu-Monette, Z.Y.; Priebe, V.; Cascione, L.; Gaudio, E.; Zucca, E.; Rossi, D.; Young, K.H.; Bertoni, F. ETS1 Phosphorylation at Threonine-38 Is a Marker of B Cell Receptor Activation, Associating with Cell of Origin and Outcome in Diffuse Large B Cell Lymphoma. Blood 2016, 128, 1755. [Google Scholar] [CrossRef]
- Chila, R.; Basana, A.; Lupi, M.; Guffanti, F.; Gaudio, E.; Rinaldi, A.; Cascione, L.; Restelli, V.; Tarantelli, C.; Bertoni, F.; et al. Combined inhibition of Chk1 and Wee1 as a new therapeutic strategy for mantle cell lymphoma. Oncotarget 2015, 6, 3394–3408. [Google Scholar] [CrossRef] [Green Version]
- Tarantelli, C.; Gaudio, E.; Arribas, A.J.; Kwee, I.; Hillmann, P.; Rinaldi, A.; Cascione, L.; Spriano, F.; Bernasconi, E.; Guidetti, F.; et al. PQR309 Is a Novel Dual PI3K/mTOR Inhibitor with Preclinical Antitumor Activity in Lymphomas as a Single Agent and in Combination Therapy. Clin. Cancer Res. 2018, 24, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.H.; Karlen, Y.; Bakker, O.; van den Hoff, M.J.B.; Moorman, A.F.M. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009, 37, e45. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Spriano, F.; Chung, E.Y.L.; Gaudio, E.; Tarantelli, C.; Cascione, L.; Napoli, S.; Jessen, K.; Carrassa, L.; Priebe, V.; Sartori, G.; et al. The ETS Inhibitors YK-4-279 and TK-216 Are Novel Antilymphoma Agents. Clin. Cancer Res. 2019, 25, 5167–5176. [Google Scholar] [CrossRef] [PubMed]
- Tarantelli, C.; Bernasconi, E.; Gaudio, E.; Cascione, L.; Restelli, V.; Arribas, A.J.; Spriano, F.; Rinaldi, A.; Mensah, A.A.; Kwee, I.; et al. BET bromodomain inhibitor birabresib in mantle cell lymphoma: In vivo activity and identification of novel combinations to overcome adaptive resistance. ESMO Open 2018, 3, e000387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cascione, L.; Rinaldi, A.; Bruscaggin, A.; Tarantelli, C.; Arribas, A.J.; Kwee, I.; Pecciarini, L.; Mensah, A.A.; Spina, V.; Chung, E.Y.L.; et al. Novel insights into the genetics and epigenetics of MALT lymphoma unveiled by next generation sequencing analyses. Haematologica 2019, 104, e558–e561. [Google Scholar] [CrossRef]
- Visco, C.; Li, Y.; Xu-Monette, Z.Y.; Miranda, R.N.; Green, T.M.; Li, Y.; Tzankov, A.; Wen, W.; Liu, W.M.; Kahl, B.S.; et al. Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: A report from the International DLBCL Rituximab-CHOP Consortium Program Study. Leukemia 2012, 26, 2103–2113. [Google Scholar]
- Hummel, M.; Bentink, S.; Berger, H.; Klapper, W.; Wessendorf, S.; Barth, T.F.; Bernd, H.W.; Cogliatti, S.B.; Dierlamm, J.; Feller, A.C.; et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N. Engl. J. Med. 2006, 354, 2419–2430. [Google Scholar] [CrossRef] [Green Version]
- Salaverria, I.; Philipp, C.; Oschlies, I.; Kohler, C.W.; Kreuz, M.; Szczepanowski, M.; Burkhardt, B.; Trautmann, H.; Gesk, S.; Andrusiewicz, M.; et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood 2011, 118, 139–147. [Google Scholar] [CrossRef]
- Pak, H.K.; Gil, M.; Lee, Y.; Lee, H.; Lee, A.N.; Roh, J.; Park, C.S. Regulator of G protein signaling 1 suppresses CXCL12-mediated migration and AKT activation in RPMI 8226 human plasmacytoma cells and plasmablasts. PLoS ONE 2015, 10, e0124793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carreras, J.; Kikuti, Y.Y.; Bea, S.; Miyaoka, M.; Hiraiwa, S.; Ikoma, H.; Nagao, R.; Tomita, S.; Martin-Garcia, D.; Salaverria, I.; et al. Clinicopathological characteristics and genomic profile of primary sinonasal tract diffuse large B cell lymphoma (DLBCL) reveals gain at 1q31 and RGS1 encoding protein; high RGS1 immunohistochemical expression associates with poor overall survival in DLBCL not otherwise specified (NOS). Histopathology 2017, 70, 595–621. [Google Scholar] [PubMed]
- Yi, J.H.; Kim, S.J.; Ko, Y.H.; Kim, W.S. Treatment of patients with refractory diffuse large B-cell lymphoma or mantle cell lymphoma with alemtuzumab, alone or in combination with cytotoxic chemotherapy. Leuk. Lymphoma 2011, 52, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Shima, H.; Takatsu, H.; Fukuda, S.; Ohmae, M.; Hase, K.; Kubagawa, H.; Wang, J.Y.; Ohno, H. Identification of TOSO/FAIM3 as an Fc receptor for IgM. Int. Immunol. 2010, 22, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vire, B.; David, A.; Wiestner, A. TOSO, the Fcmicro receptor, is highly expressed on chronic lymphocytic leukemia B cells, internalizes upon IgM binding, shuttles to the lysosome, and is downregulated in response to TLR activation. J. Immunol. 2011, 187, 4040–4050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanier, L.L. DAP10- and DAP12-associated receptors in innate immunity. Immunol. Rev. 2009, 227, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marusina, A.I.; Burgess, S.J.; Pathmanathan, I.; Borrego, F.; Coligan, J.E. Regulation of human DAP10 gene expression in NK and T cells by Ap-1 transcription factors. J. Immunol. 2008, 180, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, S.; Russell, L.; Chin, S.S.; Luo, W.; Oshima, R.; Garrett-Sinha, L.A. Transcription factor Ets1, but not the closely related factor Ets2, inhibits antibody-secreting cell differentiation. Mol. Cell. Biol. 2014, 34, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Qin, Q.; Wu, Q.; Sun, H.; Zheng, R.; Zang, C.; Zhu, M.; Wu, J.; Shi, X.; Taing, L.; et al. Cistrome Data Browser: A data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2017, 45, D658–D662. [Google Scholar] [CrossRef]
- Gertz, J.; Savic, D.; Varley, K.E.; Partridge, E.C.; Safi, A.; Jain, P.; Cooper, G.M.; Reddy, T.E.; Crawford, G.E.; Myers, R.M. Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol. Cell 2013, 52, 25–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez-Sola, D.; Kung, J.; Holmes, A.B.; Wells, V.A.; Mo, T.; Basso, K.; Dalla-Favera, R. The FOXO1 Transcription Factor Instructs the Germinal Center Dark Zone Program. Immunity 2015, 43, 1064–1074. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.M.M.; Watters, J.; Reusch, J.A.; Maurin, M.; Nepon-Sixt, B.S.; Vrzalikova, K.; Alexandrow, M.G.; Murray, P.G.; Wright, K.L. Selective expression of the transcription elongation factor ELL3 in B cells prior to ELL2 drives proliferation and survival. Mol. Immunol. 2017, 91, 8–16. [Google Scholar] [CrossRef]
- Hitoshi, Y.; Lorens, J.; Kitada, S.I.; Fisher, J.; LaBarge, M.; Ring, H.Z.; Francke, U.; Reed, J.C.; Kinoshita, S.; Nolan, G.P. Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity 1998, 8, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Kubagawa, H.; Oka, S.; Kubagawa, Y.; Torii, I.; Takayama, E.; Kang, D.-W.; Gartland, G.L.; Bertoli, L.F.; Mori, H.; Takatsu, H.; et al. Identity of the elusive IgM Fc receptor (FcmuR) in humans. J. Exp. Med. 2009, 206, 2779–2793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, R.M.; Wu, T.; Schmitz, R.; Dawood, M.; Xiao, W.; Phelan, J.D.; Xu, W.; Menard, L.; Meffre, E.; Chan, W.C.; et al. Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. Proc. Natl. Acad. Sci. USA 2015, 112, 13447–13454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouchida, R.; Lu, Q.; Liu, J.; Li, Y.; Chu, Y.; Tsubata, T.; Wang, J.Y. FcμR interacts and cooperates with the B cell receptor To promote B cell survival. J. Immunol. 2015, 194, 3096–3101. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.T.; Kläsener, K.; Zürn, C.; Castillo, P.A.; Brust-Mascher, I.; Imai, D.M.; Bevins, C.L.; Reardon, C.; Reth, M.; Baumgarth, N. The IgM receptor FcμR limits tonic BCR signaling by regulating expression of the IgM BCR. Nat. Immunol. 2017, 18, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Garvie, C.W.; Hagman, J.; Wolberger, C. Structural studies of Ets-1/Pax5 complex formation on DNA. Mol. Cell 2001, 8, 1267–1276. [Google Scholar] [CrossRef]
- Ang, B.K.; Lim, C.Y.; Koh, S.S.; Sivakumar, N.; Taib, S.; Lim, K.B.; Ahmed, S.; Rajagopal, G.; Ong, S.H. ArhGAP9, a novel MAP kinase docking protein, inhibits Erk and p38 activation through WW domain binding. J. Mol. Signal. 2007, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Robichaux, W.G., 3rd; Branham-O’Connor, M.; Hwang, I.Y.; Vural, A.; Kehrl, J.H.; Blumer, J.B. Regulation of Chemokine Signal Integration by Activator of G-Protein Signaling 4 (AGS4). J. Pharmacol. Exp. Ther. 2017, 360, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Sergienko, E.; Xu, J.; Liu, W.H.; Dahl, R.; Critton, D.A.; Su, Y.; Brown, B.T.; Chan, X.; Yang, L.; Bobkova, E.V.; et al. Inhibition of hematopoietic protein tyrosine phosphatase augments and prolongs ERK1/2 and p38 activation. ACS Chem. Biol. 2012, 7, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Zhang, Q.; Huang, Y.; Song, J.; Tomaino, R.; Ehrenberger, T.; Lim, E.; Liu, W.; Bronson, R.T.; Bowden, M.; et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell 2014, 26, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Plotnik, J.P.; Budka, J.A.; Ferris, M.W.; Hollenhorst, P.C. ETS1 is a genome-wide effector of RAS/ERK signaling in epithelial cells. Nucleic Acids Res. 2014, 42, 11928–11940. [Google Scholar] [CrossRef]
- Beer, S.; Simins, A.B.; Schuster, A.; Holzmann, B. Molecular cloning and characterization of a novel SH3 protein (SLY) preferentially expressed in lymphoid cells. Biochim. Biophys. Acta 2001, 1520, 89–93. [Google Scholar] [CrossRef]
- Pridans, C.; Holmes, M.L.; Polli, M.; Wettenhall, J.M.; Dakic, A.; Corcoran, L.M.; Smyth, G.K.; Nutt, S.L. Identification of Pax5 Target Genes in Early B Cell Differentiation. J. Immunol. 2008, 180, 1719–1728. [Google Scholar] [CrossRef] [Green Version]
- Fitzsimmons, D.; Lukin, K.; Lutz, R.; Garvie, C.W.; Wolberger, C.; Hagman, J. Highly cooperative recruitment of Ets-1 and release of autoinhibition by Pax5. J. Mol. Biol. 2009, 392, 452–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenz, G.; Nagel, I.; Siebert, R.; Roschke, A.V.; Sanger, W.; Wright, G.W.; Dave, S.S.; Tan, B.; Zhao, H.; Rosenwald, A.; et al. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma. J. Exp. Med. 2007, 204, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Kubagawa, H.; Honjo, K.; Ohkura, N.; Sakaguchi, S.; Radbruch, A.; Melchers, F.; Jani, P.K. Functional Roles of the IgM Fc Receptor in the Immune System. Front. Immunol. 2019, 10, 945. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.C.; Wang, H.; Tian, L.; Murakami, Y.; Shin, D.M.; Borrego, F.; Morse, H.C., 3rd; Coligan, J.E. Mouse IgM Fc receptor, FCMR, promotes B cell development and modulates antigen-driven immune responses. J. Immunol. 2013, 190, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Pallasch, C.P.; Schulz, A.; Kutsch, N.; Schwamb, J.; Hagist, S.; Kashkar, H.; Ultsch, A.; Wickenhauser, C.; Hallek, M.; Wendtner, C.M. Overexpression of TOSO in CLL is triggered by B-cell receptor signaling and associated with progressive disease. Blood 2008, 112, 4213–4219. [Google Scholar] [CrossRef]
- Da Palma Guerreiro, A.; Dorweiler, C.; Kintzelé, L.; Baatout, D.; Huelsemann, M.; Berg, V.; Merkel, O.; Reinart, N.; Fingerle-Rowson, G.; Knittel, G.; et al. Loss of TOSO Promotes Richter’s Transformation of TCL1A Driven CLL. Blood 2016, 128, 354. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, H.; Qian, J.; Xiong, E.; Zhang, L.; Wang, Y.Q.; Chu, Y.; Kubagawa, H.; Tsubata, T.; Wang, J.Y. Fcµ Receptor Promotes the Survival and Activation of Marginal Zone B Cells and Protects Mice against Bacterial Sepsis. Front. Immunol. 2018, 9, 160. [Google Scholar] [CrossRef]
Biological Processes | NAME | NES | FDR | Source |
---|---|---|---|---|
B Cell Signaling Pathways | BASSO CD40 SIGNALING UP | 2.28 | <0.001 | MSigDB |
NFKB UP ALL OCILY3 LY10 | 2.11 | 0.002 | SignatureDB | |
PID BCR 5PATHWAY | 2.06 | 0.006 | MSigDB | |
B CELL ACTIVATION | 1.82 | 0.038 | MSigDB | |
TIAN TNF SIGNALING VIA NFKB | 1.80 | 0.039 | MSigDB | |
PI3K OVEREXPRESSION UP | 1.78 | 0.014 | SignatureDB | |
ACTIVATION OF NF KAPPAB TRANSCRIPTION FACTOR | 1.75 | 0.049 | MSigDB | |
WIERENGA STAT5A TARGETS GROUP2 | 1.63 | 0.087 | MSigDB | |
PI3K OVEREXPRESSION DOWN | −1.53 | 0.070 | Staudt | |
PID PI3KCI AKT PATHWAY | −1.76 | 0.076 | MSigDB | |
PID P38 MK2 PATHWAY | −1.86 | 0.045 | MSigDB | |
Cell Cycle | REACTOME G2 M CHECKPOINTS | 2.48 | <0.001 | MSigDB |
HALLMARK E2F TARGETS | 2.23 | 0.001 | MSigDB | |
REACTOME S PHASE | 2.01 | 0.010 | MSigDB | |
B Cell Differentiation | MARSON FOXP3 TARGETS UP | 2.33 | <0.001 | MSigDB |
QI PLASMACYTOMA UP | 2.29 | <0.001 | MSigDB | |
ZHAN EARLY DIFFERENTIATION GENES DN | 2.26 | 0.001 | MSigDB | |
PASQUALUCCI LYMPHOMA BY GC STAGE DN | 2.12 | 0.003 | MSigDB | |
POSITIVE REGULATION OF CELL DIFFERENTIATION | 2.06 | 0.006 | MSigDB | |
BLIMP BCELL REPRESSED | 1.82 | 0.012 | SignatureDB | |
REGULATION OF CELL DIFFERENTIATION | 1.80 | 0.038 | MSigDB | |
XBP1 TARGET ALL | −1.75 | 0.030 | SignatureDB | |
ZHAN LATE DIFFERENTIATION GENES UP | −1.95 | 0.044 | MSigDB | |
TARTE PLASMA CELL vs. B LYMPHOCYTE UP | −2.11 | 0.016 | MSigDB | |
PLASMACELL GENES INDUCED BYIRF4 SPIB | −2.49 | <0.001 | CustomIOR | |
DLBCL Signatures | DLBCL CLUSTER 4 FIG5 | 2.01 | 0.004 | CustomIOR |
IMMUNE DLBCL GENES | 1.74 | 0.019 | CustomIOR | |
GENES DOWNREGULATED AFTER IRF4 KNOCKDOWN IN ABC DLBCL HBL1 | 1.60 | 0.037 | CustomIOR | |
GENES UPREGULATED AFTER IRF4 KNOCKDOWN IN ABC DLBCL HBL1 | −1.68 | 0.024 | CustomIOR | |
GENES UPREGULATED AFTER SPIB KNOCKDOWN IN ABC DLBCL HBL1 | −1.69 | 0.024 | CustomIOR | |
IL6, IL10 STAT3 REGULATED GENES REPRESSED BY IRF4 SPIB | −1.83 | 0.009 | CustomIOR | |
Hypoxia | HIF1ALPHA 2X DOWN | 1.93 | 0.005 | SignatureDB |
WINTER HYPOXIA DN | 1.77 | 0.044 | MSigDB | |
Immune Processes | IMMUNE RESPONSE | 2.15 | 0.002 | MSigDB |
IMMUNE SYSTEM PROCESS | 2.11 | 0.004 | MSigDB | |
HUMORAL IMMUNE RESPONSE | 1.79 | 0.041 | MSigDB | |
PELLICCIOTTA HDAC IN ANTIGEN PRESENTATION UP | −1.91 | 0.038 | MSigDB | |
Myc Network | KONG E2F3 TARGETS | 2.31 | <0.001 | MSigDB |
YU MYC TARGETS DN | 1.97 | 0.013 | MSigDB | |
ODONNELL TARGETS OF MYC AND TFRC DN | 1.85 | 0.031 | MSigDB | |
YU MYC TARGETS UP | 1.78 | 0.041 | MSigDB | |
E2F3 OVEREXPRESSION 2X UP | 1.68 | 0.027 | SignatureDB | |
CEBALLOS TARGETS OF TP53 AND MYC UP | −1.81 | 0.062 | MSigDB |
Biological Process | Gene Set | NES | FDR | Source |
---|---|---|---|---|
B Cell Signaling Pathways | MYD88 ALL DOWN | 2.12 | <0.001 | SignatureDB |
BASSO CD40 SIGNALING UP | 1.91 | 0.008 | MSigDB | |
PID RAS PATHWAY | 1.90 | 0.009 | MSigDB | |
PID IL2 STAT5 PATHWAY | 1.82 | 0.018 | MSigDB | |
SIG BCR SIGNALING PATHWAY | 1.74 | 0.039 | MSigDB | |
REACTOME ACTIVATION OF NF KAPPAB IN B CELLS | −1.74 | 0.025 | MSigDB | |
PI3K OVEREXPRESSION UP | −2.03 | 0.001 | SignatureDB | |
EGUCHI CELL CYCLE RB1 TARGETS | −2.13 | 0.001 | MSigDB | |
REACTOME CELL CYCLE | −2.44 | <0.001 | MSigDB | |
REACTOME MEIOSIS | −2.63 | <0.001 | MSigDB | |
B Cell Differentiation | MORI IMMATURE B LYMPHOCYTE UP | 2.06 | 0.001 | MSigDB |
BLIMP BCELL REPRESSED | 2.04 | <0.001 | SignatureDB | |
PAX5 REPRESSED | 1.97 | 0.001 | SignatureDB | |
MORI MATURE B LYMPHOCYTE UP | 1.92 | 0.008 | MSigDB | |
TARTE PLASMA CELL vs. B LYMPHOCYTE DN | 1.66 | 0.064 | MSigDB | |
PLASMACELL GENES INDUCED BYIRF4 SPIB | −1.80 | 0.009 | CustomIOR | |
MYELOMA TACI LOW PLASMABLAST GENE | −1.85 | 0.005 | SignatureDB | |
XBP1 TARGET SECRETORY | −1.98 | 0.002 | SignatureDB | |
MORI IMMATURE B LYMPHOCYTE DN | −2.51 | 0.000 | MSigDB | |
DLBCL Signatures | IMMUNE DLBCL GENES | 1.79 | 0.010 | CustomIOR |
GENES REPRESSED BYIRF4 SPIB GCB DLBCL | 1.65 | 0.026 | CustomIOR | |
Hypoxia | HARRIS HYPOXIA | 2.03 | 0.002 | MSigDB |
HIF1ALPHA 2X UP | 1.79 | 0.009 | SignatureDB | |
HIF1ALPHA 1.5X DOWN | −3.04 | <0.001 | SignatureDB | |
MANALO HYPOXIA DN | −3.10 | <0.001 | MSigDB | |
Immune processes | KEGG CELL ADHESION MOLECULES CAMS | 2.41 | <0.001 | MSigDB |
IMMUNE RESPONSE | 1.96 | 0.006 | MSigDB | |
IMMUNE SYSTEM PROCESS | 1.95 | 0.007 | MSigDB | |
REACTOME INTEGRIN CELL SURFACE INTERACTIONS | 1.84 | 0.015 | MSigDB | |
RNA Processing | ||||
REACTOME MRNA SPLICING MINOR PATHWAY | −1.98 | 0.003 | MSigDB | |
KEGG SPLICEOSOME | −2.04 | 0.002 | MSigDB | |
REACTOME METABOLISM OF NON-CODING RNA | −2.14 | 0.001 | MSigDB | |
REACTOME MRNA SPLICING | −2.16 | 0.001 | MSigDB | |
REACTOME MRNA PROCESSING | −2.24 | 0.000 | MSigDB | |
Myc Network | ODONNELL TARGETS OF MYC AND TFRC UP | 2.11 | 0.001 | MSigDB |
MYC CHIP PET EXPR DOWN | 1.90 | 0.002 | SignatureDB | |
MYC RNAI OCILY3 | −1.91 | 0.003 | SignatureDB | |
HALLMARK MYC TARGETS V1 | −2.70 | <0.001 | MSigDB | |
MYC OVEREXPRESSION 1.5X UP | −2.96 | <0.001 | SignatureDB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priebe, V.; Sartori, G.; Napoli, S.; Chung, E.Y.L.; Cascione, L.; Kwee, I.; Arribas, A.J.; Mensah, A.A.; Rinaldi, A.; Ponzoni, M.; et al. Role of ETS1 in the Transcriptional Network of Diffuse Large B Cell Lymphoma of the Activated B Cell-Like Type. Cancers 2020, 12, 1912. https://doi.org/10.3390/cancers12071912
Priebe V, Sartori G, Napoli S, Chung EYL, Cascione L, Kwee I, Arribas AJ, Mensah AA, Rinaldi A, Ponzoni M, et al. Role of ETS1 in the Transcriptional Network of Diffuse Large B Cell Lymphoma of the Activated B Cell-Like Type. Cancers. 2020; 12(7):1912. https://doi.org/10.3390/cancers12071912
Chicago/Turabian StylePriebe, Valdemar, Giulio Sartori, Sara Napoli, Elaine Yee Lin Chung, Luciano Cascione, Ivo Kwee, Alberto Jesus Arribas, Afua Adjeiwaa Mensah, Andrea Rinaldi, Maurilio Ponzoni, and et al. 2020. "Role of ETS1 in the Transcriptional Network of Diffuse Large B Cell Lymphoma of the Activated B Cell-Like Type" Cancers 12, no. 7: 1912. https://doi.org/10.3390/cancers12071912
APA StylePriebe, V., Sartori, G., Napoli, S., Chung, E. Y. L., Cascione, L., Kwee, I., Arribas, A. J., Mensah, A. A., Rinaldi, A., Ponzoni, M., Zucca, E., Rossi, D., Efremov, D., Lenz, G., Thome, M., & Bertoni, F. (2020). Role of ETS1 in the Transcriptional Network of Diffuse Large B Cell Lymphoma of the Activated B Cell-Like Type. Cancers, 12(7), 1912. https://doi.org/10.3390/cancers12071912