TP53 Mutation Analysis in Gastric Cancer and Clinical Outcomes of Patients with Metastatic Disease Treated with Ramucirumab/Paclitaxel or Standard Chemotherapy
Abstract
:1. Introduction
2. Results
2.1. TP53 Analysis in Primary Gastric Tumors
2.2. Classification of TP53 Mutations and Study Groups
2.3. Ramucirumab/Paclitaxel Second-Line Therapy and TP53 Analysis
2.4. Standard First-Line Chemotherapy and TP53 Analysis
2.5. VEGF/VEGFR Analysis and TP53 Mutational Status in Gastric Cancer Tissues
3. Discussion
4. Materials and Methods
4.1. Samples and Nucleic Acids Extraction
4.2. Amplicons Library Preparation and Next-Generation Sequencing (NGS) for TP53 Analysis
4.3. Classification of TP53 Mutations
4.4. VEGF and VEGFR Analyses
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sabapathy, K.; Lane, D. Therapeutic Targeting of p53: All Mutants are Equal, but Some Mutants are more Equal than Others. Nat. Rev. Clin. Oncol. 2017, 15, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.A.J.; Vousden, K.H. Mutant p53 in Cancer: New Functions and Therapeutic Opportunities. Cancer Cell 2014, 25, 304–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghahremani, M.F.; Goossens, S.; Nittner, D.; Bisteau, X.; Bartunkova, S.; Zwolinska, A.; Hulpiau, P.; Haigh, K.; Haenebalcke, L.; Drogat, B.; et al. p53 Promotes VEGF Expression and Angiogenesis in the Absence of an Intact p21-Rb Pathway. Cell Death Differ. 2013, 20, 888–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravi, R.; Mookerjee, B.; Bhujwalla, Z.M.; Sutter, C.H.; Artemov, D.; Zeng, Q.; Dillehay, L.E.; Madan, A.; Semenza, G.L.; Bedi, A. Regulation of Tumor Angiogenesis by p53-Induced Degradation of Hypoxia-Inducible Factor 1α. Genome Res. 2000, 14, 34–44. [Google Scholar]
- Hayashi, Y.; Tsujii, M.; Kodama, T.; Akasaka, T.; Kondo, J.; Hikita, H.; Inoue, T.; Tsujii, Y.; Maekawa, A.; Yoshii, S.; et al. p53 Functional Deficiency in Human Colon Cancer Cells Promotes Fibroblast-Mediated Angiogenesis and Tumor Growth. Carcinogenesis 2016, 37, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Kishore, R.; Dolan, C.M.; Silver, M.; Wecker, A.; Luedemann, C.N.; Thorne, T.; Hanley, A.; Curry, C.; Heyd, L.; et al. Cell Cycle Regulator E2F1 Modulates Angiogenesis via p53-Dependent Transcriptional Control of VEGF. Proc. Natl. Acad. Sci. USA 2006, 103, 11015–11020. [Google Scholar] [CrossRef] [Green Version]
- Pfister, N.T.; Fomin, V.; Regunath, K.; Zhou, J.Y.; Zhou, W.; Silwal-Pandit, L.; Freed-Pastor, W.A.; Laptenko, O.; Neo, S.P.; Bargonetti, J.; et al. Mutant p53 Cooperates with the SWI/SNF Chromatin Remodeling Complex to Regulate VEGFR2 in Breast Cancer Cells. Genes Dev. 2015, 29, 1298–1315. [Google Scholar] [CrossRef] [Green Version]
- Schwaederle, M.; Lazar, V.; Validire, P.; Hansson, J.; Lacroix, L.; Soria, J.-C.; Pawitan, Y.; Kurzrock, R.; Vladimir, L. VEGF-A Expression Correlates with TP53 Mutations in Non–Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy. Cancer Res. 2015, 75, 1187–1190. [Google Scholar] [CrossRef] [Green Version]
- Li, A.M.; Boichard, A.; Kurzrock, R. Mutated TP53 is a Marker of Increased VEGF Expression: Analysis of 7525 Pan-Cancer Tissues. Cancer Boil. Ther. 2019, 21, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Joshi, H.; Bhanot, G.; Børresen-Dale, A.-L.; Kristensen, V. Potential Tumorigenic Programs Associated with TP53 Mutation Status Reveal Role of VEGF Pathway. Br. J. Cancer 2012, 107, 1722–1728. [Google Scholar] [CrossRef]
- Said, R.; Hong, D.S.; Warneke, C.L.; Lee, J.J.; Wheler, J.J.; Janku, F.; Naing, A.; Falchook, G.S.; Fu, S.; Piha-Paul, S.A.; et al. P53 Mutations in Advanced Cancers: Clinical Characteristics, Outcomes, and Correlation between Progression-Free Survival and Bevacizumab-Containing Therapy. Oncotarget 2013, 4, 705–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheler, J.J.; Janku, F.; Naing, A.; Li, Y.; Stephen, B.; Zinner, R.; Subbiah, V.; Fu, S.; Karp, D.; Falchook, G.S.; et al. TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics. Mol. Cancer Ther. 2016, 15, 2475–2485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, H.-C.; You, J.-F.; Chen, S.-J.; Chen, H.-C.; Yeh, C.-Y.; Tsai, W.-S.; Hung, H.-Y.; Yang, T.-S.; Lapke, N.; Tan, K.-T. TP53 DNA Binding Domain Mutations Predict Progression-Free Survival of Bevacizumab Therapy in Metastatic Colorectal Cancer. Cancers 2019, 11, 1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallen, A.; Filiaci, V.; Levine, D.; Thiel, K.; Aghajanian, C.; Meng, X.; Devor, E.; Moore, K.; Powell, M.; Secord, A.; et al. Evidence for Synthetic Lethality between Bevacizumab and Chemotherapy in Advanced, p53 Null Endometrial Cancers. Gynecol. Oncol. 2018, 149, 29–30. [Google Scholar] [CrossRef]
- Koehler, K.; Liebner, D.; Chen, J.L. TP53 Mutational Status is Predictive of Pazopanib Response in Advanced Sarcomas. Ann. Oncol. 2016, 27, 539–543. [Google Scholar] [CrossRef]
- Cao, X.; Hou, J.; An, Q.; Assaraf, Y.G.; Wang, X. Towards the Overcoming of Anticancer Drug Resistance Mediated by p53 Mutations. Drug Resist. Updat. 2020, 49, 100671. [Google Scholar] [CrossRef]
- Fischer, N.W.; Prodeus, A.; Gariépy, J. Survival in Males with Glioma and Gastric Adenocarcinoma Correlates with Mutant p53 Residual Transcriptional Activity. JCI Insight 2018, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Kato, S.; Han, S.-Y.; Liu, W.; Otsuka, K.; Shibata, H.; Kanamaru, R.; Ishioka, C. Understanding the Function–Structure and Function–Mutation Relationships of p53 Tumor Suppressor Protein by High-Resolution Missense Mutation Analysis. Proc. Natl. Acad. Sci. 2003, 100, 8424–8429. [Google Scholar] [CrossRef] [Green Version]
- Tan, P.; Guan, Y.K. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology 2015, 149, 1153–1162. [Google Scholar] [CrossRef] [Green Version]
- Casak, S.J.; Fashoyin-Aje, I.; Lemery, S.J.; Zhang, L.; Jin, R.; Li, H.; Zhao, L.; Zhao, H.; Zhang, H.; Chen, H.; et al. FDA Approval Summary: Ramucirumab for Gastric Cancer. Clin. Cancer Res. 2015, 21, 3372–3376. [Google Scholar] [CrossRef] [Green Version]
- Khan, U.; Shah, M.A. Ramucirumab for the Treatment of Gastric or Gastro-Esophageal Junction Cancer. Expert Opin. Boil. Ther. 2019, 19, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Wahl, A.F.; Donaldson, K.L.; Fairchild, C.; Lee, F.Y.; Foster, S.A.; Demers, G.W.; Galloway, D.A. Loss of Normal p53 Function Confers Sensitization to Taxol by Increasing G2/M Arrest and Apoptosis. Nat. Med. 1996, 2, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Jean, S.; Li, J.; Katsaros, D.; Wubbenhorst, B.; Maxwell, K.N.; Fishbein, L.; McLane, M.W.; Benedetto, C.; Canuto, E.M.; Mitra, N.; et al. Paclitaxel is Necessary for Improved Survival in Epithelial Ovarian Cancers with Homologous Recombination Gene Mutations. Oncotarget 2016, 7, 48577–48585. [Google Scholar] [CrossRef] [Green Version]
- Bocci, G.; Di Paolo, A.; Danesi, R. The Pharmacological Bases of the Antiangiogenic Activity of Paclitaxel. Angiogenesis 2013, 16, 481–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, C.; Hristova, K. Direct Measurements of VEGF-VEGFR2 Binding Affinities Reveal the Coupling between Ligand Binding and Receptor Dimerization. J. Boil. Chem. 2019, 294, 9064–9075. [Google Scholar] [CrossRef] [Green Version]
- Stiewe, T.; Haran, T.E. How Mutations Shape p53 Interactions with the Genome to Promote Tumorigenesis and Drug Resistance. Drug Resist. Updat. 2018, 38, 27–43. [Google Scholar] [CrossRef]
- Khromova, N.V.; Kopnin, P.B.; Stepanova, E.V.; Agapova, L.S.; Kopnin, B.P. p53 Hot-Spot Mutants Increase Tumor Vascularization via ROS-Mediated Activation of the HIF1/VEGF-A Pathway. Cancer Lett. 2009, 276, 143–151. [Google Scholar] [CrossRef]
- Zhou, X.; Hao, Q.; Lu, H. Mutant p53 in Cancer Therapy—The Barrier or the Path. J. Mol. Cell Boil. 2018, 11, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Sethi, N.; Kikuchi, O.; McFarland, J.; Zhang, Y.; Chung, M.; Kafker, N.; Islam, M.; Lampson, B.; Chakraborty, A.; Kaelin, W.G.; et al. Mutant p53 Induces a Hypoxia Transcriptional Program in Gastric and Esophageal Adenocarcinoma. JCI Insight 2019, 4, 15. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature 2014, 513, 202–209. [CrossRef] [Green Version]
- De Braud, F.; Niger, M.; Tirino, G.; Pappalardo, A.; Berenato, R.; Laterza, M.M.; Pietrantonio, F.; Morano, F.; Antista, M.; Lonardi, S.; et al. Ramucirumab as Second-Line Therapy in Metastatic Gastric Cancer: Real-World Data from the RAMoss Study. Target. Oncol. 2018, 13, 227–234. [Google Scholar]
- Catalano, V.; Graziano, F.; Santini, D.; D’Emidio, S.; Baldelli, A.M.; Rossi, D.; Vincenzi, B.; Giordani, P.; Alessandroni, P.; Testa, E.; et al. Second-Line Chemotherapy for Patients with Advanced Gastric Cancer: Who May Benefit? Br. J. Cancer 2008, 99, 1402–1407. [Google Scholar] [CrossRef] [PubMed]
- McShane, L.M.; Altman, D.G.; Sauerbrei, W.; Taube, S.E.; Gion, M.; Clark, G.M. Reporting recommendations for tumor marker prognostic studies. J. Clin. Oncol. 2005, 23, 9067–9072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative Genomics Viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, C.S.; Shitara, K.; Di Bartolomeo, M.; Lonardi, S.; Al-Batran, S.-E.; Van Cutsem, E.; Ilson, D.H.; Alsina, M.; Chau, I.; Lacy, J.; et al. Ramucirumab with Cisplatin and Fluoropyrimidine as First-Line Therapy in Patients with Metastatic Gastric or Junctional Adenocarcinoma (RAINFALL): A Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2019, 20, 420–435. [Google Scholar] [CrossRef]
Mutation | Amino Acid Change | Effect | RTAS | Functional Classification | Hg19 Coordinates | Therapy Group |
---|---|---|---|---|---|---|
G > T | G245C | missense mutation | 0 | Inactive | 7577548 | R/P-SC |
G > A | M246I | missense mutation | 0 | Inactive | 7577543 | R/P |
C > T | R248W | missense mutation | 0 | Inactive | 7577539 | R/P-SC |
C > T | R282W | missense mutation | 0 | Inactive | 7577094 | R/P 2-SC |
G > A | R283H | missense mutation | 0 | Inactive | 7577090 | R/P 3 |
C > T | T304I | missense mutation | 0 | Inactive | 7577027 | R/P-SC |
G > A | G244D | missense mutation | 0.2 | Inactive | 7577550 | R/P-SC 2 |
C > T | R273C | missense mutation | 0.4 | Inactive | 7577121 | SC3 5 |
G > A | V216M | missense mutation | 1.2 | Active | 7578203 | SC |
C > T | P151S | missense mutation | 5.2 | Active | 7578479 | SC |
G > A | R175H | missense mutation | 9.2 | Active | 7578406 | R/P-SC |
T > C | I195T | missense mutation | 11.4 | Active | 7578265 | SC |
C > G | P177R | missense mutation | 12.0 | Active | 7578400 | R/P |
C > T | L194F | missense mutation | 12.0 | Active | 7578269 | SC |
C > T | S260F | missense mutation | 12.6 | Active | 7577502 | SC |
G > A | G105S | missense mutation | 15.0 | Active | 7579374 | SC |
C > T | H214Y | missense mutation | 20.9 | Active | 7578209 | SC |
C > T | H179Y | missense mutation | 22 | Active | 7578395 | R/P |
G > A | E180K | missense mutation | 22.8 | Active | 7578392 | R/P |
C > T | P177S | missense mutation | 26.9 | Active | 7578401 | SC |
G > A | R282Q | missense mutation | 30.5 | Active | 7577093 | R/P |
C > T | P190S | missense mutation | 32.0 | Active | 7578281 | SC |
C > T | R181C | missense mutation | 32.4 | Active | 7578389 | R/P |
G > A | D228N | missense mutation | 40.7 | Active | 7577599 | SC |
G > A | C229Y | missense mutation | 69.3 | Active | 7577595 | SC |
C > T | R175C | missense mutation | 72.5 | Active | 7578407 | R/P |
C > T | L252F | missense mutation | 76.7 | Active | 7577527 | SC |
G > A | R379H | missense mutation | 77.8 | Active | 7572974 | SC |
C > T | H115Y | missense mutation | 81.1 | Active | 7679344 | R/P |
G > A | G356R | missense mutation | 88.3 | Active | 7573961 | SC |
C > T | S116F | missense mutation | 90.7 | Active | 7579340 | SC |
G > A | V225I | missense mutation | 91.7 | Active | 7577608 | R/P |
G > A | A353T | missense mutation | 96.9 | Active | 7573970 | SC |
C > T | L383F | missense mutation | 97.5 | Active | 7572962 | R/P |
C > T | S90F | missense mutation | 99.2 | Active | 7579418 | SC |
G > A | R174K | missense mutation | 102.0 | Active | 7578409 | SC |
C > T | P222L | missense mutation | 102.9 | Active | 7578184 | R/P |
G > A | E294K | missense mutation | 107.7 | Active | 7577058 | SC |
G > A | S261N | missense mutation | 108.0 | Active | 7577499 | SC |
C > T | S314F | missense mutation | 110.0 | Active | 7576905 | SC |
G > A | V217M | missense mutation | 116.0 | Active | 7578200 | SC |
G > A | G226D | missense mutation | 120.1 | Active | 7577604 | R/P |
C > T | R290C | missense mutation | 134.2 | Active | 7577070 | SC |
C > T | T329I | missense mutation | 138.6 | Active | 7576860 | SC |
C > T | T312I | missense mutation | 139.8 | Active | 7576911 | R/P |
G > A | A307T | missense mutation | 142.7 | Active | 7577019 | SC |
C > T | P309S | missense mutation | 151.2 | Active | 7576920 | R/P |
C > T | R196 * | nonsense mutation | - | Other | 7578263 | SC |
C > T | Q192 * | nonsense mutation | - | Other | 7578275 | SC |
C > T | R342 * | nonsense mutation | - | Other | 7574003 | R/P |
C > T | Q317 * | nonsense mutation | - | Other | 7576897 | SC |
C > T | R306 * | nonsense mutation | - | Other | 7577002 | R/P |
C > T | Q165 * | nonsense mutation | - | Other | 7578437 | SC |
C > G | Y107 * | nonsense mutation | - | Other | 7579366 | R/P |
GTC > GT | L93X | reading frameshift | - | Other | 7579408 | R/P |
tGCCCCCac > tTCCCCCCac | CPH176-178FPPX | reading frameshift | - | Other | 7578397-403 | SC |
GCCCCCTCC > gCCCCTCcc | APS88-90VPS | reading frameshift | - | Other | 7579419-424 | R/P |
AGA > A | R209X | reading frameshift | - | Other | 7578221-223 | SC |
CCT > - | P190- | inframe deletion | - | Other | 75782780-281 | R/P |
G > T | - | acceptor intron 8 | - | Other | 7576927 | R/P |
G > A | - | acceptor intron 9 | - | Other | 7576852 | SC |
Number of Patients (%) | |||||||
---|---|---|---|---|---|---|---|
Variable | Ramucirumab/Paclitaxel | Standard Chemotherapy | Total | p-Value | |||
TP53 wt | TP53 mut | TP53 wt | TP53 mut | TP53 wt | TP53 mut | ||
Age | |||||||
>65 years | 12 (63.2) | 15 (51.7) | 11 (52.4) | 20 (48.8) | 23 (57.5) | 35 (50) | 0.5 |
≤65 years | 7 (36.8) | 14 (48.3) | 10 (47.6) | 21 (51.2) | 17 (42.5) | 35 (50) | |
Gender | |||||||
Male | 11 (57.9) | 16 (55.2) | 15 (71.4) | 23 (56.1) | 26 (65) | 39 (55.7) | 0.4 |
Female | 8 (42.1) | 13 (44.8) | 6 (28.6) | 18 (43.9) | 14 (35) | 31 (44.3) | |
Grading | |||||||
1–2 | 16 (84.2) | 20 (68.9) | 14 (66.6) | 24 (58.5) | 30 (75) | 44 (62.8) | 0.2 |
3 | 3 (15.8) | 9 (31.1) | 7 (33.4) | 17 (41.5) | 10 (25) | 26 (37.2) | |
Peritoneum involvement | |||||||
Positive | 10 (52.6) | 16 (55.2) | 3 (14.3) | 14 (34.2) | 13 (42.5) | 30 (42.8) | 0.4 |
Negative | 9 (47.4) | 13 (44.8) | 18 (85.7) | 27 (65.8) | 27 (67.5) | 40 (57.2) | |
ECOG PS | |||||||
0 | 9 (47.3) | 18 (62.1) | 18 (85.7) | 24 (58.5) | 27 (67.5) | 42 (60) | 0.5 |
1–2 | 10 (52.7) | 11 (37.9) | 3 (14.3) | 17 (41.5) | 13 (42.5) | 28 (40) | |
Lauren’s histology | |||||||
Intestinal | 12 (63.2) | 23 (79.3) | 11 (52.4) | 32 (78) | 23 (57.6) | 55 (78.5) | 0.02 |
Diffuse | 7 (36.8) | 6 (20.7) | 10 (47.6) | 9 (22) | 17 (42.5) | 15 (21.5) | |
Grading | |||||||
1–2 | 10 (52.6) | 19 (65.5) | 12 (57.1) | 31 (75.6) | 22 (55) | 50 (71.4) | 0.09 |
3 | 9 (47.4) | 10 (34.5) | 9 (42.9) | 10 (24.4) | 18 (45) | 20 (28.6) | |
Primary tumor resected | |||||||
Yes | 12 (63.2) | 9 (31.1) | 10 (52.4) | 18 (43.9) | 22 (55) | 27 (38.5) | 0.1 |
No | 7 (36.8) | 20 (68.9) | 11 (47.6) | 23 (56.1) | 18 (45) | 43 (61.5) | |
Primary tumor site | |||||||
Cardia | 7 (36.8) | 11 (37.9) | 9 (42.9) | 15 (36.5) | 16 (40) | 26 (37.1) | 0.8 |
non-cardia | 12 (63.2) | 18 (62.1) | 12 (57.1) | 26 (63.5) | 24 (60) | 44 (62.9) | |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graziano, F.; Fischer, N.W.; Bagaloni, I.; Di Bartolomeo, M.; Lonardi, S.; Vincenzi, B.; Perrone, G.; Fornaro, L.; Ongaro, E.; Aprile, G.; et al. TP53 Mutation Analysis in Gastric Cancer and Clinical Outcomes of Patients with Metastatic Disease Treated with Ramucirumab/Paclitaxel or Standard Chemotherapy. Cancers 2020, 12, 2049. https://doi.org/10.3390/cancers12082049
Graziano F, Fischer NW, Bagaloni I, Di Bartolomeo M, Lonardi S, Vincenzi B, Perrone G, Fornaro L, Ongaro E, Aprile G, et al. TP53 Mutation Analysis in Gastric Cancer and Clinical Outcomes of Patients with Metastatic Disease Treated with Ramucirumab/Paclitaxel or Standard Chemotherapy. Cancers. 2020; 12(8):2049. https://doi.org/10.3390/cancers12082049
Chicago/Turabian StyleGraziano, Francesco, Nicholas W. Fischer, Irene Bagaloni, Maria Di Bartolomeo, Sara Lonardi, Bruno Vincenzi, Giuseppe Perrone, Lorenzo Fornaro, Elena Ongaro, Giuseppe Aprile, and et al. 2020. "TP53 Mutation Analysis in Gastric Cancer and Clinical Outcomes of Patients with Metastatic Disease Treated with Ramucirumab/Paclitaxel or Standard Chemotherapy" Cancers 12, no. 8: 2049. https://doi.org/10.3390/cancers12082049
APA StyleGraziano, F., Fischer, N. W., Bagaloni, I., Di Bartolomeo, M., Lonardi, S., Vincenzi, B., Perrone, G., Fornaro, L., Ongaro, E., Aprile, G., Bisonni, R., Prisciandaro, M., Malkin, D., Gariépy, J., Fassan, M., Loupakis, F., Sarti, D., Del Prete, M., Catalano, V., ... Ruzzo, A. (2020). TP53 Mutation Analysis in Gastric Cancer and Clinical Outcomes of Patients with Metastatic Disease Treated with Ramucirumab/Paclitaxel or Standard Chemotherapy. Cancers, 12(8), 2049. https://doi.org/10.3390/cancers12082049