Radiomics at a Glance: A Few Lessons Learned from Learning Approaches
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Radiomics
1.2. Directions in Radiomics
1.2.1. Pathology
1.2.2. Biobanking
1.2.3. Radiology
2. Multimodality and Integrative Radiomics
- (a)
- Imaging multimodality, which combines imaging modalities to overcome the limitations of each single technique and augments the informative data volumes available to each pre-clinical experiment;
- (b)
- Joint omics association, with a focus on genomic and metabolic aspects currently showing great promise for the discovery of new candidate imaging markers; and
- (c)
- Role of features in radiomic models.
2.1. Inter-Modality Feature Integration Strategies
2.2. Omics Associations
2.3. Feature-Driven Model Selection
3. Learning Approaches and Significance for Radiomics
3.1. Machine Learning (ML)
3.1.1. Definition
3.1.2. Significance
3.2. Deep Learning (DL)
3.2.1. Definition
3.2.2. Significance
3.3. Reinforcement Learning (RL)
3.3.1. Definition
3.3.2. Significance
3.4. Value-Based RL (VL)
3.4.1. Definition
3.4.2. Significance
3.5. Q-Learning (QL)
3.5.1. Definition
3.5.2. Significance
3.6. Active Learning (AL)
3.6.1. Definition
3.6.2. Significance
4. Application Contexts for Radiomics
5. Discussion
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Song, J.; Yin, Y.; Wang, H.; Chang, Z.; Liu, Z.; Cui, L. A review of original articles published in the emerging field of radiomics. Eur. J. Radiol. 2020, 127, 108991. [Google Scholar] [CrossRef] [PubMed]
- Hägele, M.; Seegerer, P.; Lapuschkin, S.; Bockmayr, M.; Samek, W.; Klauschen, F.; Müller, K.R.; Binder, A. Resolving challenges in deep learning-based analyses of histopathological images using explanation methods. Sci. Rep. 2020, 10, 6423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, T.; Kumar, A.; Feng, D.; Kim, J. Patch-level tumor classification in digital histopathology images with domain adapted deep learning. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 644–647. [Google Scholar] [CrossRef]
- Beaumont, J.; Acosta, O.; Devillers, A.; Palard-Novello, X.; Chajon, E.; de Crevoisier, R.; Castelli, J. Voxel-based Identification of Local Recurrence Sub-Regions from Pre-Treatment PET/CT for Locally Advanced Head and Neck Cancers. EJNMMI Res. 2019, 9, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Gadepalli, K.; Norouzi, M.; Dahl, G.E.; Kohlberger, T.; Boyko, E.; Venugopalan, S.; Timofeev, A.; Nelson, P.Q.; Corrado, G.S.; et al. Detecting Cancer Metastases on Gigapixel Pathology Images. arXiv 2017, arXiv:1703.02442. [Google Scholar]
- Hou, L.; Samaras, D.; Kurc, T.M.; Gao, Y.; Davis, J.E.; Saltz, J.H. Patch-based convolutional neural network for whole slide tissue image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition, San Francisco, CA, USA, 18–20 June 1996; pp. 2424–2433. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Hobbs, B.; Amer, A.; Li, X.; Behrens, C.; Rodriguez Canales, J.; Parra Cuentas, E.; Villalobos, P.; Fried, D.; Chang, J.Y.; et al. Development of an immune-pathology informed radiomics model for non-small cell lung cancer. Sci. Rep. 2018, 8, 1922. [Google Scholar] [CrossRef] [PubMed]
- Coppola, L.; Cianflone, A.; Grimaldi, A.M.; Incoronato, M.R.; Bevilacqua, P.; Messina, F.; Baselice, S.; Soricelli, A.; Mirabelli, P.; Salvatore, M. Biobanking in health care: Evolution and future directions. J. Transl. Med. 2019, 17, 172. [Google Scholar] [CrossRef] [Green Version]
- Parmar, C.; Grossmann, P.; Rietveld, D.; Rietbergen, M.M.; Lambin, P.; Aerts, H.J. Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer. Front. Oncol. 2015, 5, 272. [Google Scholar] [CrossRef] [Green Version]
- Fave, X.; Zhang, L.; Yang, J.; Mackin, D.; Balter, P.; Gomez, D.; Followill, D.; Jones, A.K.; Stingo, F.; Liao, Z.; et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci. Rep. 2017, 7, 588. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Peeken, J.C.; Bernhofer, M.; Wiestler, B.; Goldberg, T.; Cremers, D.; Rost, B.; Wilkens, J.J.; Combs, S.E.; Nüsslin, F. Radiomics in radiooncology-challenging the medical physicist. Phys. Med. 2018, 48, 27–36. [Google Scholar] [CrossRef]
- Azuaje, F. Artificial intelligence for precision oncology: Beyond patient stratification. NPJ Prec. Onc. 2019, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Rutman, A.M.; Kuo, M.D. Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging. Eur. J. Radiol. 2009, 70, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.D.; Jamshidi, N. Behind the numbers: Decoding molecular phenotypes with radiogenomics—Guiding principles and technical considerations. Radiology 2014, 270, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Rosenstein, B.S.; West, C.M.; Bentzen, S.M.; Alsner, J.; Andreassen, C.N.; Azria, D.; Barnett, G.C.; Baumann, M.; Burnet, N.; Chang-Claude, J.; et al. Radiogenomics: Radiobiology enters the era of big data and team science. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 709. [Google Scholar] [CrossRef] [Green Version]
- West, C.; Rosenstein, B.S. Establishment of a radiogenomics consortium. Int. J. Radiother. Oncol. 2010, 94, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Kickingereder, P.; Bonekamp, D.; Nowosielski, M.; Kratz, A.; Sill, M.; Burth, S.; Wick, A.; Eidel, O.; Schlemmer, H.-P.; Radbruch, A.; et al. Radiogenomics of glioblastoma: Machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 2016, 281, 907–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, E.K.; Choi, S.H.; Shin, D.J.; Jo, S.W.; Yoo, R.-E.; Kang, K.M.; Yun, T.J.; Kim, J.-H.; Sohn, C.H.; Park, S.-H.; et al. Radiogenomics correlation between MR imaging features and major genetic profiles in Glioblastoma. Eur Radiol. 2018, 28, 4350–4361. [Google Scholar] [CrossRef]
- Thawani, R.; McLane, M.; Beig, N.; Ghose, S.; Prasanna, P.; Velcheti, V.; Madabhushi, A. Radiomics and radiogenomics in lung cancer: A review for the clinician. Lung Cancer 2018, 115, 34–41. [Google Scholar] [CrossRef]
- Das, A.K.; Bell, M.H.; Nirodi, C.S.; Story, M.D.; Minna, J.D. Radiogenomics predicting tumor responses to radiotherapy in lung cancer. Semin. Radiat. Oncol. 2010, 20, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Stoyanova, R.; Takhar, M.; Tschudi, Y.; Ford, J.C.; Solórzano, G.; Erho, N.; Balagurunathan, Y.; Punnen, S.; Davicioni, E.; Gillies, R.J.; et al. Prostate cancer radiomics and the promise of radiogenomics. Transl. Cancer Res. 2016, 5, 432–447. [Google Scholar] [CrossRef] [Green Version]
- Pinker, K.; Chin, J.; Melsaether, A.A.; Morris, E.E.; Moy, L. Precision medicine and radiogenomics in breast cancer: New approaches toward diagnosis and treatment. Radiology 2018, 287, 732–747. [Google Scholar] [CrossRef] [PubMed]
- Pang, T.; Wong, J.H.D.; Ng, W.L.; Chan, C.S. Deep learning radiomics in breast cancer with different modalities: Overview and future. Exp. Syst. Appl. 2020, 113501. [Google Scholar] [CrossRef]
- Saha, A.; Harowicz, M.R.; Mazurowski, M.A. Breast cancer MRI radiomics: An overview of algorithmic features and impact of inter-reader variability in annotating tumors. Med. Phys. 2018, 45, 3076–3085. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, G.J.R.; Azad, G.; Owczarczyk, K.; Siddique, M.; Goh, V. Challenges and promises of PET radiomics. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1083–1089. [Google Scholar] [CrossRef] [Green Version]
- Ha, S.; Park, S.; Bang, J.I.; Kim, E.K.; Lee, H.Y. Metabolic radiomics for pretreatment 18F-FDG PET/CT to characterize locally advanced breast cancer: Histopathologic characteristics, response to neoadjuvant chemotherapy, and prognosis. Sci. Rep. 2017, 7, 1556. [Google Scholar] [CrossRef]
- Palaskas, N.; Larson, S.M.; Schultz, N.; Komisopoulou, E.; Wong, J.; Rohle, D.; Campos, C.; Yannuzzi, N.; Osborne, J.R.; Linkov, I.; et al. 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res. 2011, 71, 5164–5174. [Google Scholar] [CrossRef] [Green Version]
- Katsila, T.; Matsoukas, M.T.; Patrinos, G.P.; Kardamakis, D. Pharmacometabolomics informs quantitative radiomics for glioblastoma diagnostic innovation. OMICS 2017, 21, 429–439. [Google Scholar] [CrossRef]
- Langs, G.; Röhrich, S.; Hofmanninger, J.; Prayer, F.; Pan, J.; Herold., C.; Prosch, H. Machine learning: From radiomics to discovery and routine. Radiologe 2018, 58, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Giraud, P.; Giraud, P.; Gasnier, A.; El Ayachy, R.; Kreps, S.; Foy, J.-P.; Durdux, C.; Huguet, F.; Burgun, A.; Bibault, J.-E. Radiomics and machine learning for radiotherapy in head and neck cancers. Front. Oncol. 2019, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H.J.W.L. Machine learning methods for quantitative radiomic biomarkers. Sci. Rep. 2015, 5, 13087. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.F.; Hsu, F.T.; Hsieh, K.L.; Kao, Y.-C.J.; Cheng, S.-J.; Hsu, J.B.-K.; Tsai, P.-H.; Chen, R.-J.; Huang, C.-C.; Yen, Y.; et al. Machine learning-based radiomics for molecular subtyping of gliomas. Clin. Cancer Res. 2018, 24, 4429–4436. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Feng, B.; Li, C.; Chen, Y.; Chen, Q.; Li, X.; Guan, J.; Chen, X.; Cui, E.; Li, R.; et al. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics. J. Magn. Reson. Imaging. 2019, 50, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Bai, H.; Chen, Y.; Sun, Q.; Liu, L.; Zhou, S.; Wang, G.; Liang, C.; Li, Z.-C. A fully-automatic multiparametric radiomics model: Towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme. Sci. Rep. 2017, 7, 14331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Zhou, Z.; Sher, D.; Zhang, Q.; Shah, J.; Pham, N.-L.; Jiang, S.; Wang, J. Combining many-objective radiomics and 3D convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer. Phys. Med. Biol. 2019, 64, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, X.; Xia, W.; Li, Q.; Zhou, L.; Li, Q.; Zhang, R.; Cai, J.; Jian, J.; Fan, L.; et al. A cross-modal 3D deep learning for accurate lymph node metastasis prediction in clinical stage T1 lung adenocarcinoma. Lung Cancer 2020, 145, 10–17. [Google Scholar] [CrossRef]
- Thrun, S.; Schwartz, A. Finding Structure in Reinforcement Learning; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Tseng, H.H.; Luo, Y.; Cui, S.; Chien, J.T.; Ten Haken, R.K.; Naqa, I.E. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med. Phys. 2017, 44, 6690–6705. [Google Scholar] [CrossRef]
- Ghesu, F.C.; Krubasik, E.; Georgescu, B.; Singh, V.; Zheng, Y.; Hornegger, Y.; Comaniciu, D. Marginal space deep learning: Efficient architecture for volumetric image parsing. IEEE Trans. Med. Imaging 2016, 35, 1217–1228. [Google Scholar] [CrossRef]
- Ali, I.; Hart, G.R.; Gunabushanam, G.; Liang, Y.; Muhammad, W.; Nartowt, B.; Kane, M.; Ma, X.; Deng, J. Lung nodule detection via deep reinforcement learning. Front. Oncol. 2018, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Barreto, A.; Dabney, W.; Munos, R.; Hunt, J.; Schaul, T.; van Hasselt, H.; Silver, D. Successor Features for Transfer in Reinforcement Learning; MIT Press: Cambridge, MA, USA, 2017; pp. 4055–4065. [Google Scholar]
- Corrêa, N.K.; de Oliveira, N. Dynamic models applied to value learning in artificial intelligence. arXiv 2020, arXiv:2005.05538. [Google Scholar]
- Everitt, T.; Hutter, M. Avoiding wireheading with value reinforcement learning. Artif. Gen. Intellig. 2016, 9782. [Google Scholar]
- Leike, J.; Krueger, D.; Everitt, T.; Martic, M.; Maini, V.; Legg, S. Scalable agent alignment via reward modeling: A research direction. arXiv 2018, arXiv:1811.07871v1. [Google Scholar]
- Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [Google Scholar] [CrossRef]
- Buchman, P.; Sordoni, A.; Trischler, A. Learning algorithms for active learning. arXiv 2017, arXiv:1708.00088v1. [Google Scholar]
- Woodward, M.; Finn, C. Active one-shot learning. arXiv 2017, arXiv:1702.06559v1. [Google Scholar]
- Konyushkova, K.; Sznitman, R.; Fua, P. Learning active learning from data. Adv. NIPS 2017, 4225–4235. [Google Scholar]
- Chu, H.-M.; Lin, H.-T. Can active learning experience be transferred? arXiv 2020, arXiv:1608.00667v1 cs. [Google Scholar]
- Pang, K.; Dong, M.; Wu, Y.; Hospedales, T. Meta-learning transferable active learning policies by deep reinforcement learning. arXiv 2018, arXiv:1806.04798v1 cs. [Google Scholar]
- Romero, A.; Carrier, P.L.; Erraqabi, A.; Sylvain, T.; Auvolat, A.; Dejoie, E.; Legault, M.-A.; Dubé, M.-P.; Hussin, J.G.; Bengio, Y. Diet networks: Thin parameters for fat genomics. arXiv 2017, arXiv:1611.09340v3. cs. [Google Scholar]
- Sharma, D.; Shanis, Z.; Reddy, C.K.; Gerber, S.; Enquobahrie, A. Active learning technique for multimodal brain tumor segmentation using limited labeled images. In Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data; Springer International Publishing: Cham, Switzerland, 2019; pp. 148–156. [Google Scholar]
- Zhou, Z.; Shin, J.Y.; Gurudu, S.R.; Gotway, M.B.; Liang, J. AFT*: Integrating Active Learning and Transfer Learning to Reduce Annotation Efforts. arXiv 2018, arXiv:1802.00912v2 cs. [Google Scholar]
- Liu, Y.; Logan, B.; Liu, N.; Xu, Z.; Tang, J.; Wang, Y. Deep reinforcement learning for dynamic treatment regimes on medical registry data. In Proceedings of the 2017 IEEE International Conference on Healthcare Informatics, Park City, UT, USA, 23–26 August 2017; pp. 380–385. [Google Scholar] [CrossRef]
- Liu, S.; Ngiam, K.Y.; Feng, M. Deep reinforcement learning for clinical decision support: A brief survey. arXiv 2019, arXiv:1907.09475v1. [Google Scholar]
- Upadhyay, U.; De, A.; Gomez-Rodriguez, M. Deep Reinforcement Learning of Marked Temporal Point Processes. arXiv 2018, arXiv:1805.09360v2. [Google Scholar]
- Shi, Z.; Zhovannik, I.; Traverso, A.; Dankers, F.; Deist, T.M.; Kalendralis, P.; Monshouwer, R.; Bussink, J.; Fijten, R.; Aerts, H.; et al. Distributed radiomics as a signature validation study using the Personal Health Train infrastructure. Sci. Data 2019, 6, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Orlando, J.I.; Gerendas, B.S.; Riedl, S.; Grechenig, C.; Breger, A.; Ehler, M.; Waldstein, S.M.; Bogunović, H.; Schmidt-Erfurth, U. Automated quantification of photoreceptor alteration in macular disease using optical coherence tomography and deep learning. Sci. Rep. 2020, 10, 5619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurcan, M.N.; Boucheron, L.E.; Can, A.; Madabhushi, A.; Rajpoot, N.M.; Yener, B. Histopathological image analysis: A review. IEEE Rev. Biomed. Eng. 2009, 2, 147–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komura, D.; Ishikawa, S. Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 2018, 16, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Djuric, U.; Zadeh, G.; Aldape, K.; Diamandis, P. Precision histology: How deep learning is poised to revitalize histomorphology for personalized cancer care. NPJ Precis. Oncol. 2017, 1, 22. [Google Scholar] [CrossRef]
- Men, K.; Chen, X.; Zhang, Y.; Zhang, T.; Dai, J.; Yi, J.; Li, Y. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front. Oncol. 2017, 7, 315. [Google Scholar] [CrossRef] [Green Version]
- Jethanandani, A.; Lin, T.A.; Volpe, S.; Elhalawani, H.; Mohamed, A.S.R.; Yang, P.; Fuller, C.D. Exploring applications of radiomics in magnetic resonance imaging of head and neck cancer: A systematic review. Front. Oncol. 2018, 8, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerhet, A.; Small, C.; Quon, H.; Riauka, T.; Schrader, L.; Greiner, R.; Yee, D.; McEwan, A. Application of machine learning methodology for PET-based definition of lung cancer. Curr. Oncol. 2010, 17, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Chilamkurthy, S.; Ghosh, R.; Tanamala, S.; Biviji, M.; Campeau, N.G.; Venugopal, V.K.; Mahajan, V.; Rao, P.; Warier, P. Deep learning algorithms for detection of critical findings in head CT scans: A retrospective study. Lancet 2018, 392, 2388–2396. [Google Scholar] [CrossRef]
- Akkus, Z.; Galimzianova, A.; Hoogi, A.; Rubin, D.L.; Erickson, B.J. Deep learning for brain MRI segmentation: State of the art and future directions. J. Digit. Imaging. 2017, 30, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.; Ha, S.; Kang, H.; Lee, H.; Lee, D.S. Deep learning only by normal brain PET identify unheralded brain anomalies. EBioMedicine 2019, 43, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G.; et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 2019, 25, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Zeitschrift Medizin. Phys. 2019, 29, 102–127. [Google Scholar] [CrossRef]
- Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 2019, 9, 12495. [Google Scholar] [CrossRef]
- Urban, G.; Tripathi, P.; Alkayali, T.; Mittal, M.; Jalali, F.; Karnes, W.; Baldi, P. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology 2018, 155, 1069–1078.e8. [Google Scholar] [CrossRef]
- Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.W.L.; Dekker, A.; Fenstermacher, D.; et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [Google Scholar] [CrossRef] [Green Version]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, M.; Li, H.; Wang, S.; Zheng, B.; Zhang, J.; Li, L. Radiomic analysis reveals DCEMRI features for prediction of molecular subtypes of breast cancer. PLoS ONE 2017, 12, e0171683. [Google Scholar] [CrossRef]
- Skogen, K.; Schulz, A.; Dormagen, J.B.; Ganeshan, B.; Helseth, E.; Server, A. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur. J. Radiol 2016, 85, 824–829. [Google Scholar] [CrossRef]
- Hunter, L.A.; Chen, Y.P.; Zhang, L.; Matney, J.E.; Choi, H.; Kry, S.F.; Martel, M.K.; Stingo, F.; Liao, Z.; Gomez, D.; et al. NSCLC tumor shrinkage prediction using quantitative image features. Comput. Med. Imaging Graph. 2016, 49, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Rao, G.; Gutman, D.A.; Flanders, A.E.; Hwang, S.N.; Rubin, D.L.; Colen, R.R.; Zinn, P.O.; Jain, R.; Wintermark, M.; et al. A combinatorial radiographic phenotype may stratify patient survival and be associated with invasion and proliferation characteristics in glioblastoma. J. Neurosurg. 2016, 124, 1008–1017. [Google Scholar] [CrossRef] [Green Version]
- Mattonen, S.A.; Palma, D.A.; Haasbeek, C.J.; Senan, S.; Ward, A.D. Distinguishing radiation fibrosis from tumour recurrence after stereotactic ablative radiotherapy (SABR) for lung cancer: A quantitative analysis of CT density changes. Acta Oncol. 2013, 52, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Scalco, E.; Fiorino, C.; Cattaneo, G.M.; Sanguineti, G.; Rizzo, G. Texture analysis for the assessment of structural changes in parotid glands induced by radiotherapy. Radiother. Oncol. 2013, 109, 384–387. [Google Scholar] [CrossRef]
- Basler, L.; Gabryś, H.S.; Hogan, S.A.; Pavic, M.; Bogowicz, M.; Vuong, D.; Tanadini-Lang, S.; Foerster, R.; Kudura, K.; Huellner, M.W.; et al. Radiomics, tumor volume, and blood biomarkers for early prediction of pseudoprogression in patients with metastatic melanoma treated with immune checkpoint inhibition [published online ahead of print. Clin. Cancer Res. 2020. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, M.J.; Wong, A. Discovery Radiomics via Deep Multi-Column Radiomic Sequencers for Skin Cancer Detection. J. Comput. Vis. Im. Syst. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Vanhouke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 2015, arXiv:1512.00567v3 cs. [Google Scholar]
- Tian, Y.; Liu, Z.; Tang, Z.; Li, M.; Lou, X.; Dong, E.; Liu, G.; Wang, Y.; Wang, Y.; Bian, X.; et al. Radiomics analysis of dti data to assess vision outcome after intravenous methylprednisolone therapy in neuromyelitis optic neuritis. JMRI 2019, 49, 5. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, Z.; Shen, C.; Li, Z.; Yan, F.; Tian, J.; Xian, J. MR-based radiomics signature in differentiating ocular adnexal lymphoma from idiopathic orbital inflammation. Eur. Radiol. 2018, 28, 3872–3881. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; El Naqa, I.; Xing, L. Editorial: Machine learning with radiation oncology big data. Front. Oncol. 2018, 8, 416. [Google Scholar] [CrossRef] [PubMed]
- Capobianco, E.; Dominietto, M. From medical imaging to radiomics: Role of data science for advancing precision health. J. Pers. Med. 2020, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Cui, Y.; Sun, X.; Cao, G.; Li, B.; Ikeda, D.M.; Kurian, A.W.; Li, R. unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways. Clin. Cancer Res. 2017, 23, 3334–3342. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Tha, K.K.; Xing, L.; Li, R. Radiomics and radiogenomics for precision radiotherapy. J. Radiat. Res. 2018, 59, i25–i31. [Google Scholar] [CrossRef] [Green Version]
- Azodi, C.B.; Tang, J.; Shiu, S.H. Opening the black box: Interpretable machine learning for geneticists. Trends Genet. 2020, 36, 442–455. [Google Scholar] [CrossRef]
- Hu, L.S.; Yoon, H.; Eschbacher, J.M.; Baxter, L.C.; Dueck, A.C.; Nespodzany, A.; Smith, K.A.; Nakaji, P.; Xu, Y.; Wang, L.; et al. Accurate patient-specific machine learning models of glioblastoma invasion using transfer learning. AJNR Am. J. Neuroradiol. 2019, 40, 418–425. [Google Scholar] [CrossRef]
- Parekh, V.S.; Jacobs, M.A. Deep learning and radiomics in precision medicine. Expert Rev. Precis Med. Drug Dev. 2019, 4, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Dominietto, M.; Pica, A.; Safai, S.; Lomax, A.J.; Weber, D.C.; Capobianco, E. Role Of Complex Networks For Integrating Medical Images And Radiomic Features Of Intracranial Ependymoma Patients In Response To Proton Radiotherapy. Front. Med. 2020, 6, 333. [Google Scholar] [CrossRef]
- Hu, L.S.; Hawkins-Daarud, A.; Wang, L.; Li, J.; Swanson, K.R. Imaging of intratumoral heterogeneity in high-grade glioma. Cancer Lett. 2020, 477, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.; Iftikhar, M.A.; Gurcan, M.N.; Mourelatos, Z. Radiopathomics: Integration of radiographic and histologic characteristics for prognostication in glioblastoma. arXiv 2019, arXiv:1909.07581v2. [Google Scholar] [CrossRef]
- Rathore, S.; Niazi, T.; Iftikhar, M.A.; Chaddad, A. Glioma grading via analysis of digital pathology images using machine learning. Cancers 2020, 12, 578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.; Fan, X.; Xu, R.; Sun, Y.S.; Yang, G. ASO Author Reflections: Radiopathomics Strategy of Combing Multi-scale Tumor Information on Pretreatment to Predict the Pathologic Response to Neoadjuvant Therapy. Ann. Surg. Oncol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Sun, H.; Chan, H.-P.; Chughtai, A.; Wei, J.; Hadjiiski, L.; Kazerooni, E. Differentiating invasive and pre-invasive lung cancer by quantitative analysis of histopathologic images. In Proceedings of the Medical Imaging 2018: Computer-Aided Diagnosis. International Society for Optics and Photonics, Houston, TX, USA, 10–15 February 2018. [Google Scholar] [CrossRef]
- Kaczmarowski, A.; Iczkowski, K.A.; Hurrell, S.L.; McGarry, S.D.; Jacobsohn, K.; Hall, W.A.; Hohenwalter, M.; See, W.; LaViolette, P.S. Predictive cytological topography (PiCT): A radiopathomics approach to mapping prostate cancer cellularity. In Proceedings of the ISMRM 25th Annual Meeting & Exhibition, Honolulu, HI, USA, 31 July 2017. [Google Scholar]
- ClinicalTrials.gov NCT04271657, RadioPathomics Artificial Intelligence Model to Predict nCRT Response in Locally Advanced Rectal Cancer (RPAI-pCR). Available online: https://clinicaltrials.gov/ct2/show/NCT04271657 (accessed on 10 August 2020).
- Github Radiopathomics-TRG-nCRT-LARC. Radiopathomics: A Framework of Fusing Multi-Scale Images Information to Enrich Description of Tumor Heterogeneity for LARC Patients Prior to nCRT. Available online: https://github.com/StandWisdom/Radiopathomics-TRG-nCRT-LARC (accessed on 10 August 2020).
- Chaddad, A.; Daniel, P.; Sabri, S.; Desrosiers, C.; Abdulkarim, B. Integration of radiomic and multi-omic analyses predicts survival of newly diagnosed idh1 wild-type glioblastoma. Cancers 2019, 11, 1148. [Google Scholar] [CrossRef] [Green Version]
Clinical Domains | Modalities | Computational Approaches and Methods | Top Performance Achieved | Ref. |
---|---|---|---|---|
Dermatology | Skin lesion images | DL—CNN | AUC 0.94–0.96 | [60] |
Ophthalmology | Fundus photography | DL—CNN | Sensitivity 0.97 Specificity 0.93 | [61] |
Optical coherence tomography | DL—CNN | AUC 0.97 Sensitivity 0.90 | [62] | |
Pathology | Histopathologic images | Random Forest, SVM, CNN | PPV 0.94, NPV 0.92, F1 0.91 | [63,64,65] |
Radiation Oncology | CT/CBCT | CNN, Distributed DNN | DSC 0.81 | [66] |
MRI | CNN, ANN | AUC 0.86 | [67] | |
PET | SVM, KNN | AUC 0.95 Sensitivity 0.95 Specificity 0.95 | [68] | |
Brain Imaging | CT | CNN | AUC 0.90–0.96 | [69] |
MRI/fMRI | Stacked auto-encoders, deep Boltzmann machines, DNN, CNN | Sensitivity 0.93 Specificity 0.82 | [70] | |
PET | Autoencoder, CNN | AUC 0.74–0.90 | [71] | |
Thoracic Imaging | CT | CNN | AUC 0.94 | [72] |
MRI | CNN, RNN | Dice coefficient 0.80 | [73] | |
Breast Imaging | Mammography | CNN | AUC 0.98 Sensitivity 0.86 Specificity 0.96 | [74] |
Abdominal Imaging | Colonoscopy | CNN | AUC 0.99 Accuracy 0.96 | [75] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capobianco, E.; Deng, J. Radiomics at a Glance: A Few Lessons Learned from Learning Approaches. Cancers 2020, 12, 2453. https://doi.org/10.3390/cancers12092453
Capobianco E, Deng J. Radiomics at a Glance: A Few Lessons Learned from Learning Approaches. Cancers. 2020; 12(9):2453. https://doi.org/10.3390/cancers12092453
Chicago/Turabian StyleCapobianco, Enrico, and Jun Deng. 2020. "Radiomics at a Glance: A Few Lessons Learned from Learning Approaches" Cancers 12, no. 9: 2453. https://doi.org/10.3390/cancers12092453
APA StyleCapobianco, E., & Deng, J. (2020). Radiomics at a Glance: A Few Lessons Learned from Learning Approaches. Cancers, 12(9), 2453. https://doi.org/10.3390/cancers12092453