Analysis of Bone Scans in Various Tumor Entities Using a Deep-Learning-Based Artificial Neural Network Algorithm—Evaluation of Diagnostic Performance
Abstract
:Simple Summary
Abstract
1. Background
2. Methods
2.1. Patients
2.2. Imaging Protocol
2.3. BSI Evaluation
2.4. Statistics
3. Results
3.1. Estimation of BSI
3.2. Effect of Gamma Camera Type on ROC Curve
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANN | artificial neural network |
AUC | area under the curve |
BSI | bone scan index |
CRC | colorectal cancer |
CT | computed tomography |
DPD | 2,3-dicarboxypropane-1,1-diphosphonate |
HCC | hepatocellular carcinoma |
keV | kiloelectron volts |
MBq | Megabecquerel |
MDP | methylene diphosphonate, medronic acid |
NPV | negative predictive value |
PET | positron emission tomography |
PPV | positive predictive value |
RCC | renal cell carcinoma |
ROC | receiver operating characteristic |
SN | sensitivity |
SP | specificity |
SPECT | single photon emission computed tomography |
UCC | urothelial cell carcinoma |
References
- Even Sapir, E.; Metser, U.; Mishani, E.; Lievshitz, G.; Lerman, H.; Leibovitch, I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J. Nucl. Med. 2006, 47, 287–297. [Google Scholar] [PubMed]
- Hamaoka, T.; Madewell, J.E.; Podoloff, D.A.; Hortobagyi, G.N.; Ueno, N.T. Bone imaging in metastatic breast cancer. J. Clin. Oncol. 2004, 22, 2942–2953. [Google Scholar] [CrossRef] [PubMed]
- Savelli, G.; Maffioli, L.; Maccauro, M.; de Deckere, E.; Bombardieri, E. Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q. J. Nucl. Med. Mol. Imaging 2001, 45, 27–37. [Google Scholar]
- Krasnow, A.Z.; Hellman, R.S.; Timins, M.E.; Collier, B.D.; Anderson, T.; Isitman, A.T. Diagnostic bone scanning in oncology. Semin. Nucl. Med. 1997, 27, 107–141. [Google Scholar] [CrossRef]
- Soloway, M.S.; Hardeman, S.W.; Hickey, D.; Todd, B.; Soloway, S.; Raymond, J.; Moinuddin, M. Stratification of patients with metastatic prostate cancer based on extent of disease on initial bone scan. Cancer 1988, 61, 195–202. [Google Scholar] [CrossRef]
- McNeil, B.J. Value of bone scanning in neoplastic disease. Semin. Nucl. Med. 1984, 14, 277–286. [Google Scholar] [CrossRef]
- Yang, H.-L.; Liu, T.; Wang, X.-M.; Xu, Y.; Deng, S.-M. Diagnosis of bone metastases: A meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur. Radiol. 2011, 21, 2604–2617. [Google Scholar] [CrossRef]
- Wu, L.-M.; Gu, H.-Y.; Zheng, J.; Xu, X.; Lin, L.-H.; Deng, X.; Zhang, W.; Xu, J.R. Diagnostic value of whole-body magnetic resonance imaging for bone metastases: A systematic review and meta-analysis. J. Magn. Reason. Imaging 2011, 34, 128–135. [Google Scholar] [CrossRef]
- Strobel, K.; Burger, C.; Seifert, B.; Husarik, D.B.; Soyka, J.D.; Hany, T.F. Characterization of focal bone lesions in the axial skeleton: Performance of planar bone scintigraphy compared with SPECT and SPECT fused with CT. Am. J. Roentgenol. 2007, 188, 467–474. [Google Scholar] [CrossRef]
- Sadik, M.; Suurkula, M.; Höglund, P.; Järund, A.; Edenbrandt, L. Quality of planar whole-body bone scan interpretations—A nationwide survey. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1464–1472. [Google Scholar] [CrossRef]
- Imbriaco, M.; Larson, S.M.; Yeung, H.W.; Mawlawi, O.R.; Erdi, Y.; Venkatraman, E.S.; Scher, H.I. A new parameter for measuring metastatic bone involvement by prostate cancer: The bone scan index. Clin. Cancer Res. 1998, 4, 1765–1772. [Google Scholar] [PubMed]
- Erdi, Y.E.; Humm, J.L.; Imbriaco, M.; Yeung, H.; Larson, S.M. Quantitative bone metastases analysis based on image segmentation. J. Nucl. Med. 1997, 38, 1401–1406. [Google Scholar]
- Eadie, L.H.; Taylor, P.; Gibson, A.P. A systematic review of computer-assisted diagnosis in diagnostic cancer imaging. Eur. J. Radiol. 2012, 81, e70–e76. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Sadik, M.; Hamadeh, I.; Nordblom, P.; Suurkula, M.; Hoglund, P.; Ohlsson, M.; Edenbrandt, L. Computer-assisted interpretation of planar whole-body bone scans. J. Nucl. Med. 2008, 49, 1958–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillies, R.; Kinahan, P.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Chartrand, G.; Cheng, P.; Vorontsov, E.; Drozdzal, M.; Turcotte, S.; Pal, C.J.; Kadoury, S.; Tang, A. Deep Learning: A primer for radiologists. Radiographics 2017, 37, 2113–2131. [Google Scholar] [CrossRef] [Green Version]
- Kaboteh, R.; Damber, J.-E.; Gjertsson, P.; Hoglund, P.; Lomsky, M.; Ohlsson, M.; Edenbrandt, L. Bone Scan Index: A prognostic imaging biomarker for high-risk prostate cancer patients receiving primary hormonal therapy. EJNMMI Res. 2013, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Petersen, L.J.; Mortensen, J.C.; Bertelsen, H.; Zacho, H.D. Computer-assisted interpretation of planar whole-body bone scintigraphy in patients with newly diagnosed prostate cancer. Nucl. Med. Commun. 2015, 36, 679–685. [Google Scholar] [CrossRef]
- Tokuda, O.; Harada, Y.; Ohishi, Y.; Matsunaga, N.; Edenbrandt, L. Investigation of computer-aided diagnosis system for bone scans: A retrospective analysis in 406 patients. Ann. Nucl. Med. 2014, 28, 329–339. [Google Scholar] [CrossRef]
- Isoda, T.; BaBa, S.; Maruoka, Y.; Kitamura, Y.; Tahara, K.; Sasaki, M.; Hatakenaka, M.; Honda, H. Influence of the different primary cancers and different types of bone metastasis on the lesion-based artificial neural network value calculated by a computer-aided diagnostic system, BONENAVI, on bone scintigraphy images. Asia Ocean. J. Nucl. Med. Biol. 2016, 5, 49–55. [Google Scholar] [CrossRef]
- Ito, I.; Ito, K.; Takahashi, S.; Horibe, M.; Karita, R.; Nishizaka, C.; Nagai, T.; Hamada, K.; Sato, H.; Shindo, N. Association between bone scan index and activities of daily living in patients with advanced non-small cell lung cancer. Support. Care Cancer 2017, 25, 1779–1785. [Google Scholar] [CrossRef] [PubMed]
- Shintawati, R.; Achmad, A.; Higuchi, T.; Shimada, H.; Hirasawa, H.; Arisaka, Y.; Takahashi, A.; Nakajima, T.; Tsushima, Y. Evaluation of bone scan index change over time on automated calculation in bone scintigraphy. Ann. Nucl. Med. 2015, 29, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, M.; Wagatsuma, K.; Miyaji, N.; Murata, T.; Miwa, K.; Takiguchi, T.; Makino, T.; Koyama, M. Evaluation of a computer-assisted diagnosis system, BONENAVI version 2, for bone scintigraphy in cancer patients in a routine clinical setting. Ann. Nucl. Med. 2015, 29, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Sadik, M.; Suurkula, M.; Hoglund, P.; Jarund, A.; Edenbrandt, L. Improved classifications of planar whole-body bone scans using a computer-assisted diagnosis system: A multicenter, multiple-reader, multiple-case study. J. Nucl. Med. 2009, 50, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Anand, A.; Morris, M.J.; Kaboteh, R.; Reza, M.; Trägårdh, E.; Matsunaga, N.; Edenbrandt, L.; Bjartell, A.; Larson, S.M.; Minarik, D. A preanalytic validation study of automated bone scan index: Effect on accuracy and reproducibility due to the procedural variabilities in bone scan image acquisition. J. Nucl. Med. 2016, 57, 1865–1871. [Google Scholar] [CrossRef] [Green Version]
- van den Wyngaert, T.; Strobel, K.; Kampen, W.U.; Kuwert, T.; van der Bruggen, W.; Mohan, H.K.; Gnanasegaran, G.; Delgado-Bolton, R.; Weber, W.A.; Beheshti, M.; et al. The EANM practice guidelines for bone scintigraphy. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1723–1738. [Google Scholar] [CrossRef] [Green Version]
- Snyder, W.S.; Cook, M.; Nasset, E.; Karhausen, L.; Howells, G.P.; Tipton, I. ICRP Publication 23: Report of the Task Group on Reference Man; Pergamon: Oxford, UK, 1975. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014; Available online: http://www.R-project.org/ (accessed on 11 July 2020).
- Metz, C.E. Basic principles of ROC analysis. Semin. Nucl. Med. 1978, 8, 283–298. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR: Visualizing classifier performance in R. Bioinformatics 2005, 21, 3940–3941. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.J.; Mortensen, J.C.; Bertelsen, H.; Zacho, H.D. Prospective evaluation of computer-assisted analysis of skeletal lesions for thestaging of prostate cancer. BMC Med. Imaging 2017, 17, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, K.; Nakajima, Y.; Horikoshi, H.; Ueno, M.; Wakabayashi, H.; Shiga, T.; Yoshimura, M.; Ohtake, E.; Sugawara, Y.; Matsuyama, H.; et al. Enhanced diagnostic accuracy of quantitative bone scan using an artificial neural network system: A Japanese multi-center database project. Eur. J. Nucl. Med. Mol. Imaging Res. 2013, 3, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frühling, J.; Verbist, A.; Balikdjian, D. Which diphosphonate for routine bone scintigraphy (MDP, HDP or DPD)? Nucl. Med. Commun. 1986, 7, 415–426. [Google Scholar] [CrossRef]
- Bergqvist, L.; Brismar, J.; Cederquist, E.; Darte, L.; Naversten, Y.; Palmer, J. Clinical comparison of bone scintigraphy with 99Tcm-DPD, 99Tcm-HDP and 99Tcm-MDP. Acta Radiol. Diagn. 1984, 25, 217–223. [Google Scholar] [CrossRef]
- Pauwels, E.K.J.; Blom, J.; Camps, J.A.J.; Hermans, J.; Rijke, A.M. A comparison between the diagnostic efficacy of 99mTc-MDP, 99mTc-DPD and 99mTc-HDP for the detection of bone metastases. Eur. J. Nucl. Med. Mol. Imaging 1983, 8, 118–122. [Google Scholar] [CrossRef]
- Kaboteh, R.; Minarik, D.; Reza, M.; Sadik, M.; Trägårdh, E. Evaluation of changes in Bone Scan Index at different acquisition time-points in bone scintigraphy. Clin. Physiol. Funct. Imaging 2018, 38, 1015–1020. [Google Scholar] [CrossRef]
- Anand, A.; Morris, M.J.; Larson, S.M.; Minarik, D.; Josefsson, A.; Helgstrand, J.T.; Oturai, P.S.; Edenbrandt, L.; Røder, M.A.; Bjartell, A. Automated bone scan index as a quantitative imaging biomarker in metastatic castration-resistant prostate cancer patients being treated with enzalutamide. EJNMMI Res. 2016, 6, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, A.; Morris, M.J.; Kaboteh, R.; Bath, L.; Sadik, M.; Gjertsson, P.; Lomsky, M.; Edenbrandt, L.; Minarik, D.; Bjartell, A. Analytical validation of the automated bone scan index as an imaging biomarker to standardize the quantitative changes in bone scans of patients with metastatic prostate cancer. J. Nucl. Med. 2016, 57, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, A.J.; Kaboteh, R.; Carducci, M.A.; Damber, J.-E.; Stadler, W.M.; Hansen, M.; Edenbrandt, L.; Forsberg, G.; Nordle, Ö.; Pili, R.; et al. Assessment of the bone scan index in a randomized placebo-controlled trial of tasquinimod in men with metastatic castration-resistant prostate cancer (mCRPC). Urol. Oncol. 2014, 32, 1308–1316. [Google Scholar] [CrossRef]
- Armstrong, A.J.; Eisenberger, M.A.; Halabi, S.; Oudard, S.; Nanus, D.M.; Petrylak, D.P.; Sartor, A.O.; Scher, H.I. Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur. Urol. 2012, 61, 549–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tumor | n | Age (Years) | Diagnosis M0 | Diagnosis M1 | p-Value † | ||
---|---|---|---|---|---|---|---|
n | BSI (%) | n | BSI (%) | ||||
Overall (m/f) | Mean ± SD | Mean (Median; Range) | Mean (Median; Range) | ||||
Breast | 406 (12/394) | 59.5 ± 13.6 | 348 | 0.15 (0.0; 0.0–12.24) | 58 | 4.99 (3.57; 0.0–25.18) | <0.0001 |
Prostate | 149 (149/0) | 69.9 ± 7.7 | 72 | 0.09 (0.0; 0.0–3.48) | 77 | 8.43 (3.68; 0.0–42.35) | <0.0001 |
Lung | 104 (72/32) | 66.5 ± 10.5 | 88 | 0.34 (0.0; 0.0–5.56) | 16 | 1.35 (0.08; 0.0–17.35) | <0.0001 |
HCC | 54 (47/7) | 67.3 ± 6.6 | 44 | 0.17 (0.0; 0.0–5.67) | 10 | 1.40 (0.71; 0.0–6.04) | 0.0002 # |
RCC | 37 (24/13) | 64.0 ± 10.5 | 25 | 0.37 (0.0; 0.0–6.17) | 12 | 3.24 (0.83; 0.0–6.04) | <0.0001 # |
UCC | 26 (24/2) | 72.3 ± 10.6 | 17 | 0.48 (0.0; 0.0–3.93) | 9 | 2.83 (2.04; 0.0–13.90) | <0.0001 # |
CRC | 16 (13/3) | 63.1 ± 12.7 | 10 | 0.04 (0.0; 0.0–2.00) | 6 | 2.19 (0.86; 0.10–7.60) | <0.0001 # |
Melanoma | 15 (11/4) | 65.4 ± 9.5 | 10 | 0.07 (0.0; 0.0–8.49) | 5 | 2.86 (0.15; 0.0–11.90) | 0.13 |
Other * | 143 (81/62) | not analyzed |
Tumor | SN | SP | PPV | NPV |
---|---|---|---|---|
Breast | 86.2% | 75.3% | 36.8% | 97.0% |
Prostate | 92.2% | 68.1% | 75.5% | 89.1% |
Lung | 62.5% | 68.2% | 26.3% | 90.9% |
HCC | 80.0% | 72.7% | 40.0% | 94.1% |
RCC | 83.3% | 64.0% | 52.6% | 88.9% |
UCC | 88.9% | 58.8% | 53.3% | 90.9% |
CRC | 100% | 70.0% | 66.7% | 100% |
Melanoma | 60.0% | 80.0% | 60.0% | 80.0% |
Tumor | n | AUC | BSI Cut-Off | SN | SP | PPV | NPV |
---|---|---|---|---|---|---|---|
Breast | 406 | 0.890 | 0.18% | 82.8% | 87.4% | 52.2% | 96.8% |
Prostate | 149 | 0.937 | 0.27% | 87.0% | 98.6% | 98.5% | 87.7% |
Lung | 104 | 0.663 | 0.06% | 62.5% | 70.5% | 27.8% | 91.2% |
HCC | 54 | 0.834 | 0.13% | 80.0% | 84.1% | 53.3% | 94.9% |
RCC | 37 | 0.813 | 0.30% | 75.0% | 84.0% | 69.2% | 87.5% |
UCC | 26 | 0.797 | 0.39% | 88.9% | 76.5% | 66.7% | 92.9% |
CRC | 16 | 0.983 | 0.10% | 100% | 90.0% | 85.7% | 100% |
Melanoma | 15 | 0.720 | 0.15% | 60.0% | 80.0% | 60.0% | 80.0% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wuestemann, J.; Hupfeld, S.; Kupitz, D.; Genseke, P.; Schenke, S.; Pech, M.; Kreissl, M.C.; Grosser, O.S. Analysis of Bone Scans in Various Tumor Entities Using a Deep-Learning-Based Artificial Neural Network Algorithm—Evaluation of Diagnostic Performance. Cancers 2020, 12, 2654. https://doi.org/10.3390/cancers12092654
Wuestemann J, Hupfeld S, Kupitz D, Genseke P, Schenke S, Pech M, Kreissl MC, Grosser OS. Analysis of Bone Scans in Various Tumor Entities Using a Deep-Learning-Based Artificial Neural Network Algorithm—Evaluation of Diagnostic Performance. Cancers. 2020; 12(9):2654. https://doi.org/10.3390/cancers12092654
Chicago/Turabian StyleWuestemann, Jan, Sebastian Hupfeld, Dennis Kupitz, Philipp Genseke, Simone Schenke, Maciej Pech, Michael C. Kreissl, and Oliver S. Grosser. 2020. "Analysis of Bone Scans in Various Tumor Entities Using a Deep-Learning-Based Artificial Neural Network Algorithm—Evaluation of Diagnostic Performance" Cancers 12, no. 9: 2654. https://doi.org/10.3390/cancers12092654
APA StyleWuestemann, J., Hupfeld, S., Kupitz, D., Genseke, P., Schenke, S., Pech, M., Kreissl, M. C., & Grosser, O. S. (2020). Analysis of Bone Scans in Various Tumor Entities Using a Deep-Learning-Based Artificial Neural Network Algorithm—Evaluation of Diagnostic Performance. Cancers, 12(9), 2654. https://doi.org/10.3390/cancers12092654