Alterations in Gastric Microbial Communities Are Associated with Risk of Gastric Cancer in a Korean Population: A Case-Control Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. General Characteristics
2.2. Microbial Taxa Distribution and Microbial Diversity
2.3. Bacterial Community Structure
2.4. Differentially Abundant Taxa
2.5. Association between Candidate Taxa and GC Risk
2.6. Phylogenetic Relationships
2.7. MDI
2.8. Microbial Prediction Functions
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Data Collection
4.3. DNA Extraction
4.4. Metagenomics 16S rRNA Gene Sequencing
- 16S rRNA gene Amplicon PCR Forward Primer.
- 5′ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG.
- 16S rRNA gene Amplicon PCR Reverse Primer.
- 5′ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC.
4.5. Statistical Analysis
4.5.1. Descriptive Statistics
4.5.2. Nonmetric Multidimensional Scaling (NMDS)
4.5.3. Linear Discriminant Analysis of Effect Size (LEfSe) and Cladogram
4.5.4. Deriving the MDI
4.5.5. Association between Gastric Microbiome and GC Risk
4.5.6. Metagenomics Functional Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlay, J.S.; Bray, F.; Forman, D.; Mather, C.; Parkin, D. GLOBOCAN, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10; International Agency for Research on Cancer: Lyon, France, 2013; Available online: http://globocan.iarc.fr (accessed on 10 June 2020).
- Hong, S.; Won, Y.J.; Park, Y.R.; Jung, K.W.; Kong, H.J.; Lee, E.S. Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2017. Cancer Res. Treat. 2020, 52, 335–350. [Google Scholar] [CrossRef] [PubMed]
- World Cancer Research Fund International CUPD, Nutrition Physical Activity. Available online: http://www.Wcrf.Org/int/continuous-updateproject/cup-findings-reports/stomach-cancer (accessed on 10 June 2020).
- Poorolajal, J.; Moradi, L.; Mohammadi, Y.; Cheraghi, Z.; Gohari-Ensaf, F. Risk factors for stomach cancer: A systematic review and meta-analysis. Epidemiol. Health 2020, 42, e2020004. [Google Scholar] [CrossRef] [PubMed]
- Ladeiras-Lopes, R.; Pereira, A.K.; Nogueira, A.; Pinheiro-Torres, T.; Pinto, I.; Santos-Pereira, R.; Lunet, N. Smoking and gastric cancer: Systematic review and meta-analysis of cohort studies. Cancer Causes Control 2008, 19, 689–701. [Google Scholar] [CrossRef]
- Ramos, M.F.K.P.; Ribeiro Júnior, U.; Viscondi, J.K.Y.; Zilberstein, B.; Cecconello, I.; Eluf-Neto, J. Risk factors associated with the development of gastric cancer—Case-control study. AMB Rev. Assoc. Med. Bras. 2018, 64, 611–619. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, S.A.; Park, C.H.; Eun, C.S.; Han, D.S.; Kim, Y.S.; Song, K.S.; Choi, B.Y.; Kim, H.J. Alcohol consumption and gastric cancer risk in Korea: A case-control study. Nutr. Res. Prac. 2019, 13, 425–433. [Google Scholar] [CrossRef]
- Gunathilake, M.; Lee, J.; Jang, A.; Choi, I.; Kim, Y.-I.; Kim, J. Physical activity and gastric cancer risk in patients with and without Helicobacter pylori infection in a Korean population: A hospital-based case-control study. Cancers 2018, 10, 369. [Google Scholar] [CrossRef] [Green Version]
- Yaghoobi, M.; Bijarchi, R.; Narod, S. Family history and the risk of gastric cancer. Br. J. Cancer 2010, 102, 237–242. [Google Scholar] [CrossRef]
- Oliveira, C.; Pinheiro, H.; Figueiredo, J.; Seruca, R.; Carneiro, F. Familial gastric cancer: Genetic susceptibility, pathology, and implications for management. Lancet Oncol. 2015, 16, e60–e70. [Google Scholar] [CrossRef]
- Lee, H.J.; Yang, H.K.; Ahn, Y.O. Gastric cancer in Korea. Gastric Cancer 2002, 5, 177. [Google Scholar] [CrossRef] [Green Version]
- McLean, M.H.; El-Omar, E.M. Genetics of gastric cancer. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Kim, N. Gastric cancer and family history. Korean J. Intern. Med. 2016, 31, 1042. [Google Scholar] [CrossRef] [PubMed]
- Hoang, B.V.; Lee, J.; Choi, I.J.; Kim, Y.-W.; Ryu, K.W.; Kim, J. Effect of dietary vitamin C on gastric cancer risk in the Korean population. World J. Gastroenterol. 2016, 22, 6257. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, J.; Choi, I.J.; Kim, Y.I.; Kwon, O.; Kim, H.; Kim, J. Dietary carotenoids intake and the risk of gastric cancer: A case-control study in Korea. Nutrients 2018, 10, 1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Shao, L.; Liu, X.; Ji, F.; Mei, Y.; Cheng, Y.; Liu, F.; Yan, C.; Li, L.; Ling, Z. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EbioMedicine 2019, 40, 336–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Chen, B.; Pan, H.; Wang, D.; Liu, M.; Yang, Y.; Zou, M.; Yang, J.; Xiao, K.; Zhao, R.; et al. Detection of microbial 16S rRNA gene in the serum of patients with gastric cancer. Front. Oncol. 2019, 9, 608. [Google Scholar] [CrossRef]
- Shao, D.; Vogtmann, E.; Liu, A.; Qin, J.; Chen, W.; Abnet, C.C.; Wei, W. Microbial characterization of esophageal squamous cell carcinoma and gastric cardia adenocarcinoma from a high-risk region of China. Cancer 2019, 125, 3993–4002. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, J.G.; Lee, A.-R.; Eun, C.S.; Han, D.S. Network construction of gastric microbiome and organization of microbial modules associated with gastric carcinogenesis. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-H.; Wang, A.; Chu, A.-N.; Gong, Y.-H.; Yuan, Y. Mucosa-associated microbiome in gastric cancer compared with non-cancer tissues. Front. Microbiol. 2019, 10, 1261. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.M.; Pereira-Marques, J.; Pinto-Ribeiro, I.; Costa, J.L.; Carneiro, F.; Machado, J.C.; Figueiredo, C. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 2018, 67, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Gunathilake, M.N.; Lee, J.; Choi, I.J.; Kim, Y.I.; Ahn, Y.; Park, C.; Kim, J. Association between the relative abundance of gastric microbiota and the risk of gastric cancer: A case-control study. Sci. Rep. 2019, 9, 13589. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.; Schütte, K.; Mayerle, J.; Malfertheiner, P. The role of the gastric bacterial microbiome in gastric cancer: Helicobacter pylori and beyond. Therap. Adv. Gastroenterol. 2019, 12, 1756284819894062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, I.; Yilmaz, Ö. Possible role of Porphyromonas gingivalis in orodigestive cancers. J. Oral. Microbiol. 2019, 11, 1563410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpiński, T.M. Role of oral microbiota in cancer development. Microorganisms 2019, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Weng, M.-T.; Chiu, Y.-T.; Wei, P.-Y.; Chiang, C.-W.; Fang, H.-L.; Wei, S.-C. Microbiota and gastrointestinal cancer. J. Formos. Med. Assoc. 2019, 118, S32–S41. [Google Scholar] [CrossRef]
- Vinasco, K.; Mitchell, H.M.; Kaakoush, N.O.; Castaño-Rodríguez, N. Microbial carcinogenesis: Lactic acid bacteria in gastric cancer. Biochim. Biophys. Acta-Rev. Cancer 2019, 1872, 188309. [Google Scholar] [CrossRef]
- Mortha, A.; Chudnovskiy, A.; Hashimoto, D.; Bogunovic, M.; Spencer, S.P.; Belkaid, Y.; Merad, M. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014, 343, 1249288. [Google Scholar] [CrossRef] [Green Version]
- Noto, J.M.; Peek, R.M., Jr. The gastric microbiome, its interaction with Helicobacter pylori, and its potential role in the progression to stomach cancer. PLoS Pathog. 2017, 13, e1006573. [Google Scholar] [CrossRef] [Green Version]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Espinoza, J.L.; Matsumoto, A.; Tanaka, H.; Matsumura, I. Gastric microbiota: An emerging player in Helicobacter pylori-induced gastric malignancies. Cancer Lett. 2018, 414, 147–152. [Google Scholar] [CrossRef]
- Tao, J.; Li, S.; Gan, R.-Y.; Zhao, C.-N.; Meng, X.; Li, H.-B. Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Crit. Rev. Food Sci. Nutr. 2020, 60, 1025–1037. [Google Scholar] [CrossRef]
- Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut microbiota and cancer: From pathogenesis to therapy. Cancers 2019, 11, 38. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Guryn, K.; Leone, V.; Chang, E.B. Regional Diversity of the Gastrointestinal Microbiome. Cell Host Microbe 2019, 26, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Dias-Jácome, E.; Libânio, D.; Borges-Canha, M.; Galaghar, A.; Pimentel-Nunes, P. Gastric microbiota and carcinogenesis: The role of non-Helicobacter pylori bacteria: A systematic review. Rev. Esp. Enferm. Dig. 2016, 108, 530–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, J.; Kim, N.; Kim, J.; Jo, H.J.; Park, J.H.; Nam, R.H.; Seok, Y.J.; Kim, Y.R.; Lee, D.H.; Jung, H.C. Comparison of gastric microbiota between gastric juice and mucosa by next generation sequencing method. J. Cancer Preve. 2016, 21, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Li, T.H.; Qin, Y.; Sham, P.C.; Lau, K.S.; Chu, K.M.; Leung, W.K. Alterations in gastric microbiota after H. pylori eradication and in different histological stages of gastric carcinogenesis. Sci. Rep. 2017, 7, 44935. [Google Scholar] [CrossRef] [PubMed]
- Nardone, G.; Compare, D. The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United Eur. Gastroenterol. J. 2015, 3, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Torres, J.; Hu, N.; Medrano-Guzman, R.; Herrera-Goepfert, R.; Humphrys, M.S.; Wang, L.; Wang, C.; Ding, T.; Ravel, J.; et al. Molecular characterization of the human stomach microbiota in gastric cancer patients. Front. Cell. Infect. Microbiol. 2017, 7, 302. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, K.D.; Jung, H.Y.; Baik, G.H.; Park, J.K.; Kim, S.S.; Kim, B.W.; Hong, S.J.; Lim, H.; Shin, C.M.; et al. Seroprevalence of Helicobacter pylori in Korea: A multicenter, nationwide study conducted in 2015 and 2016. Helicobacter 2018, 23, e12463. [Google Scholar] [CrossRef] [Green Version]
- Aviles-Jimenez, F.; Vazquez-Jimenez, F.; Medrano-Guzman, R.; Mantilla, A.; Torres, J. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci. Rep. 2014, 4, 4202. [Google Scholar] [CrossRef] [Green Version]
- Eun, C.S.; Kim, B.K.; Han, D.S.; Kim, S.Y.; Kim, K.M.; Choi, B.Y.; Song, K.S.; Kim, Y.S.; Kim, J.F. Differences in gastric mucosal microbiota profiling in patients with chronic gastritis, intestinal metaplasia, and gastric cancer using pyrosequencing methods. Helicobacter 2014, 19, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Caguazango, J.C. Ecological models of gastric microbiota dysbiosis: Helicobacter pylori and gastric carcinogenesis. Med. Microecol. 2020, 3, 100010. [Google Scholar] [CrossRef]
- Castaño-Rodríguez, N.; Goh, K.-L.; Fock, K.M.; Mitchell, H.M.; Kaakoush, N.O. Dysbiosis of the microbiome in gastric carcinogenesis. Sci. Rep. 2017, 7, 15957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, T.; Feng, Q.; Liu, F.; Chang, L.K.; Zhou, X.; Han, M.; Tian, X.; Zhong, N.; Liu, S. Alteration of stomach microbiota compositions in the progression of gastritis induces nitric oxide in gastric cell. Exp. Ther. Med. 2017, 13, 2793–2800. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.-L.; Pang, W.; Huang, Y.; Zhang, Y.; Zhang, C.-J. The gastric microbiome is perturbed in advanced gastric adenocarcinoma identified through shotgun metagenomics. Front. Cell. Infect. Microbiol. 2018, 8, 433. [Google Scholar] [CrossRef] [Green Version]
- Stewart, O.A.; Wu, F.; Chen, Y. The role of gastric microbiota in gastric cancer. Gut Microbes 2020, 11, 1220–1230. [Google Scholar] [CrossRef]
- Coker, O.O.; Dai, Z.; Nie, Y.; Zhao, G.; Cao, L.; Nakatsu, G.; Wu, W.K.; Wong, S.H.; Chen, Z.; Sung, J.J.; et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 2018, 67, 1024–1032. [Google Scholar] [CrossRef]
- Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen–gut microbiome axis: Physiological and clinical implications. Maturitas 2017, 103, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 2014, 149185. [Google Scholar] [CrossRef] [Green Version]
- Piao, J.Y.; Lee, H.G.; Kim, S.J.; Kim, D.H.; Han, H.J.; Ngo, H.K.; Park, S.A.; Woo, J.H.; Lee, J.S.; Na, H.K.; et al. Helicobacter pylori activates IL-6-STAT3 signaling in human gastric cancer cells: Potential roles for reactive oxygen species. Helicobacter 2016, 21, 405–416. [Google Scholar] [CrossRef]
- Staudt, L.M. Oncogenic activation of NF-κB. CSH Perspect Biol. 2010, 2, a000109. [Google Scholar]
- Carmi, Y.; Dotan, S.; Rider, P.; Kaplanov, I.; White, M.R.; Baron, R.; Abutbul, S.; Huszar, M.; Dinarello, C.A.; Apte, R.N.; et al. The role of IL-1β in the early tumor cell–induced angiogenic response. J. Immunol. 2013, 190, 3500–3509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ScinceDiect. Available online: https://www.sciencedirect.com/topics/chemistry/ansamycin (accessed on 22 July 2020).
- Ducker, G.S.; Rabinowitz, J.D. One-carbon metabolism in health and disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannucci, E. Epidemiologic studies of folate and colorectal neoplasia: A review. J. Nutr. 2002, 132, 2350S–2355S. [Google Scholar] [CrossRef] [PubMed]
- Ericson, U.; Sonestedt, E.; Gullberg, B.; Olsson, H.; Wirfält, E. High folate intake is associated with lower breast cancer incidence in postmenopausal women in the Malmö Diet and Cancer cohort. Am. J. Clin. Nutr. 2007, 86, 434–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, S.C.; Håkansson, N.; Giovannucci, E.; Wolk, A. Folate intake and pancreatic cancer incidence: A prospective study of Swedish women and men. J. Natl. Cancer Inst. 2006, 98, 407–413. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ung, T.T.; Kim, N.H.; Jung, Y.D. Role of bile acids in colon carcinogenesis. World J. Clin. Cases 2018, 6, 577–588. [Google Scholar] [CrossRef]
- Hayes, R.B.; Ahn, J.; Fan, X.; Peters, B.A.; Ma, Y.; Yang, L.; Agalliu, I.; Burk, R.D.; Ganly, I.; Purdue, M.P.; et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol. 2018, 4, 358–365. [Google Scholar] [CrossRef]
- Woo, H.D.; Fernandez-Jimenez, N.; Ghantous, A.; Degli Esposti, D.; Cuenin, C.; Cahais, V.; Choi, I.J.; Kim, Y.I.; Kim, J.; Herceg, Z. Genome-wide profiling of normal gastric mucosa identifies Helicobacter pylori-and cancer-associated DNA methylome changes. Int. J. Cancer 2018, 143, 597–609. [Google Scholar] [CrossRef] [Green Version]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435. [Google Scholar] [CrossRef]
- QIIME. Available online: http://qiime.org/ (accessed on 3 June 2020).
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galaxy. Available online: http://huttenhower.org/galaxy (accessed on 3 June 2020).
- Gevers, D.; Kugathasan, S.; Denson, L.A.; Vázquez-Baeza, Y.; Van Treuren, W.; Ren, B.; Schwager, E.; Knights, D.; Song, S.J.; Yassour, M.; et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014, 15, 382–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PICRUSt: Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. Available online: http://picrust.github.io/picrust/ (accessed on 3 June 2020).
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814. [Google Scholar] [CrossRef]
- KEGG: Kyoto Encyclopedia of Genes and Genomes. Available online: https://www.genome.jp/kegg/ (accessed on 3 June 2020).
Alpha Diversity Indices | All (n = 556) | p-Value | |
---|---|---|---|
Controls (n = 288) | Cases (n = 268) | ||
Shannon index | 2.06 ± 2.59 | 1.66 ± 1.06 | 0.030 |
Richness | 32.25 ± 16.93 | 35.89 ± 16.00 | 0.009 |
Evenness | 0.14 ± 0.06 | 0.15 ± 0.03 | 0.440 |
Pilou evenness | 0.58 ± 0.61 | 0.46 ± 0.37 | 0.004 |
Male (n = 353) | |||
Controls (n = 181) | Cases (n = 172) | ||
Shannon index | 1.93 ± 2.37 | 1.79 ± 1.77 | 0.519 |
Richness | 31.55 ± 16.44 | 38.26 ± 16.25 | <0.001 |
Evenness | 0.14 ± 0.07 | 0.15 ± 0.03 | 0.560 |
Pilou evenness | 0.55 ± 0.55 | 0.48 ± 0.40 | 0.190 |
Female (n = 203) | |||
Controls (n = 107) | Cases (n = 96) | ||
Shannon index | 2.27 ± 2.93 | 1.43 ± 1.21 | 0.007 |
Richness | 33.44 ± 17.76 | 31.66 ± 14.72 | 0.440 |
Evenness | 0.14 ± 0.03 | 0.14 ± 0.03 | 0.578 |
Pilou evenness | 0.63 ± 0.69 | 0.42 ± 0.28 | 0.004 |
Candidate Species | No. of Controls (%) | No. of Cases (%) | Model I OR (95% CI) | Model II OR (95% CI) |
---|---|---|---|---|
Campylobacter jejuni | ||||
0 (Non-carriers) | 288(100.0) | 264(98.5) | 1.00 | 1.00 |
>0 (Carriers) | 0(0.0) | 4(1.5) | >999.99(<0.001–>999.99) | >999.99(<0.001–>999.99) |
Streptococcus_CP003667 | ||||
0 (Non-carriers) | 187(64.9) | 203(75.8) | 1.00 | 1.00 |
> 0 (Carriers) | 101(35.1) | 65(24.3) | 0.59(0.41–0.86) | 0.58(0.38–0.88) |
Gemella taiwanensis | ||||
0 (Non-carriers) | 155(53.8) | 118(44.0) | 1.00 | 1.00 |
>0 (Carriers) | 133(46.2) | 150(55.9) | 1.48(1.06–2.07) | 1.10(0.75–1.62) |
Streptococcus_NCVM | ||||
<0.000458 | 95(33.0) | 62(23.1) | 1.00 | 1.00 |
0.000458–0.00204 | 96(33.3) | 92(34.3) | 1.47(0.96–2.26) | 1.26(0.78–2.03) |
≥0.00204 | 97(33.7) | 114(42.5) | 1.80(1.18–2.74) | 1.37(0.85–2.21) |
p-trend | 0.022 | 0.308 | ||
Prevotella intermedia | ||||
0 (Non-carriers) | 133(46.2) | 144(53.7) | 1.00 | 1.00 |
>0 (Carriers) | 155(53.8) | 124(46.3) | 0.74(0.53–1.03) | 0.69(0.47–1.00) |
Prevotella melaninogenica | ||||
<0.000356 | 95(33.0) | 113(42.2) | 1.00 | 1.00 |
0.000356–0.00178 | 96(33.3) | 77(28.7) | 0.67(0.45–1.01) | 0.68(0.43–1.07) |
≥0.00178 | 97(33.7) | 78(29.1) | 0.68(0.45–1.01) | 0.91(0.38–0.96) |
p-trend | 0.141 | 0.071 | ||
Prevotella nigrescens | ||||
0 (Non-carriers) | 157(54.50 | 179(66.8) | 1.00 | 1.00 |
>0 (Carriers) | 1319(45.5) | 89(33.2) | 0.60(0.42–0.84) | 0.64(0.43–0.94) |
Streptococcus vestibularis | ||||
0 (Non-carriers) | 153(53.1) | 81(30.2) | 1.00 | 1.00 |
>0 (Carriers) | 135(46.9) | 187(69.8) | 2.62(1.85–3.71) | 2.41(1.63–3.56) |
Microbial dysbiosis index (MDI) | Cases | Controls | p-Value |
---|---|---|---|
Total (N) | 268 | 288 | |
MDI | 3.77 ± 1.94 | 3.45 ± 2.59 | 0.097 |
Male (N) | 172 | 181 | |
MDI | 3.52 ± 2.04 | 3.58 ± 2.43 | 0.773 |
Female (N) | 96 | 107 | |
MDI | 4.23 ± 1.65 | 3.22 ± 2.84 | 0.002 |
Microbial dysbiosis index (MDI) | No. of Controls (%) | No. of Cases (%) | Model I | Model II |
---|---|---|---|---|
Total | ||||
T1(<3.18) | 96(33.3) | 91(33.9) | 1.00 | 1.00 |
T2(3.18–4.52) | 97(33.7) | 75(27.9) | 0.82(0.54–1.24) | 0.97(0.60–1.57) |
T3(≥4.52) | 95(33.0) | 102(38.1) | 1.13(0.76–1.69) | 1.37(0.86–2.17) |
p for trend | 0.561 | 0.179 | ||
Male | ||||
T1(<3.25) | 60(33.2) | 74(43.0) | 1.00 | 1.00 |
T2(3.25–4.48) | 60(33.2) | 42(24.4) | 0.57(0.34–0.96) | 0.80(0.43–1.52) |
T3(≥4.48) | 61(33.7) | 56(32.6) | 0.74(0.45–1.22) | 1.15(0.63–2.11) |
p for trend | 0.225 | 0.657 | ||
Female | ||||
T1(<3.04) | 36(33.6) | 18(18.8) | 1.00 | 1.00 |
T2(3.04–4.52) | 36(33.6) | 31(32.3) | 1.72(0.82–3.62) | 1.69(0.71–4.02) |
T3(≥4.52) | 35(32.7) | 47(48.9) | 2.69(1.31–5.49) | 2.66(1.19–5.99) |
p for trend | 0.006 | 0.017 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunathilake, M.; Lee, J.; Choi, I.J.; Kim, Y.-I.; Yoon, J.; Sul, W.J.; Kim, J.F.; Kim, J. Alterations in Gastric Microbial Communities Are Associated with Risk of Gastric Cancer in a Korean Population: A Case-Control Study. Cancers 2020, 12, 2619. https://doi.org/10.3390/cancers12092619
Gunathilake M, Lee J, Choi IJ, Kim Y-I, Yoon J, Sul WJ, Kim JF, Kim J. Alterations in Gastric Microbial Communities Are Associated with Risk of Gastric Cancer in a Korean Population: A Case-Control Study. Cancers. 2020; 12(9):2619. https://doi.org/10.3390/cancers12092619
Chicago/Turabian StyleGunathilake, Madhawa, Jeonghee Lee, Il Ju Choi, Young-Il Kim, Jaekyung Yoon, Woo Jun Sul, Jihyun F. Kim, and Jeongseon Kim. 2020. "Alterations in Gastric Microbial Communities Are Associated with Risk of Gastric Cancer in a Korean Population: A Case-Control Study" Cancers 12, no. 9: 2619. https://doi.org/10.3390/cancers12092619
APA StyleGunathilake, M., Lee, J., Choi, I. J., Kim, Y. -I., Yoon, J., Sul, W. J., Kim, J. F., & Kim, J. (2020). Alterations in Gastric Microbial Communities Are Associated with Risk of Gastric Cancer in a Korean Population: A Case-Control Study. Cancers, 12(9), 2619. https://doi.org/10.3390/cancers12092619