Diagnostic Value of VEGF-A, VEGFR-1 and VEGFR-2 in Feline Mammary Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Serum VEGF-A, VEGFR-1 and VEGFR-2 Levels Are Significantly Elevated in Cats with HER2-Positive and TN Normal-Like Mammary Carcinoma
2.2. Higher Serum VEGFR-1 and VEGFR-2 Levels are Correlated with the Administration of Contraceptives and Low-Grade Feline Mammary Carcinomas
2.3. Serum VEGF-A, VEGFR-1 and VEGFR-2 Levels Are Positively Associated with Their Expression in Tumor Infiltrating Lymphocytes
3. Discussion
4. Materials and Methods
4.1. Animal Population and Sample Collection
4.2. Quantification of Serum VEGF-A, VEGFR-1 and VEGFR-2 Levels
4.3. Immunohistochemistry Staining and Evaluation
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliyatkin, N.; Yalcin, E.; Zengel, B.; Aktaş, S.; Vardar, E. Molecular classification of breast carcinoma: From traditional, old-fashioned way to a new age, and a new way. J. Breast Health 2015, 11, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 2015, 5, 2929–2943. [Google Scholar] [PubMed]
- Chen, B.; Lin, S.J.H.; Li, W.T.; Chang, H.W.; Pang, V.F.; Chu, P.Y.; Lee, C.C.; Nakayama, H.; Wu, C.H.; Jeng, C.R. Expression of HIF-1α and VEGF in feline mammary gland carcinomas: Association with pathological characteristics and clinical outcomes. BMC Vet. Res. 2020, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.; Ribeiro, R.; Carvalho, S.; Peleteiro, M.; Correia, J.; Ferreira, F. Ki-67 as a prognostic factor in feline mammary carcinoma: What is the optimal cutoff value? Vet. Pathol. 2016, 53, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, C.; Urbano, A.C.; Gameiro, A.; Correia, J.; Ferreira, F. Serum PD-1/PD-L1 levels, tumor expression and PD-L1 somatic mutations in HER2-positive and triple negative normal-like feline mammary carcinoma subtypes. Cancers 2020, 12, 1386. [Google Scholar] [CrossRef]
- Urbano, A.C.; Nascimento, C.; Soares, M.; Correia, J.; Ferreira, F. Clinical relevance of the serum CTLA-4 in cats with mammary carcinoma. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Soares, M.; Madeira, S.; Correia, J.; Peleteiro, M.; Cardoso, F.; Ferreira, F. Molecular based subtyping of feline mammary carcinomas and clinicopathological characterization. Breast 2016, 27, 44–51. [Google Scholar] [CrossRef]
- Soares, M.; Correia, J.; Peleteiro, M.C.; Ferreira, F. St Gallen molecular subtypes in feline mammary carcinoma and paired metastases—Disease progression and clinical implications from a 3-year follow-up study. Tumor Biol. 2016, 37, 4053–4064. [Google Scholar] [CrossRef]
- Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev. 2020, 86, 102017. [Google Scholar] [CrossRef]
- Gullo, G.; Eustace, A.J.; Canonici, A.; Collins, D.M.; Kennedy, M.J.; Grogan, L.; Breathhnach, O.; McCaffrey, J.; Keane, M.; Martin, M.J.; et al. Pilot study of bevacizumab in combination with docetaxel and cyclophosphamide as adjuvant treatment for patients with early stage HER-2 negative breast cancer, including analysis of candidate circulating markers of cardiac toxicity: ICORG 08–10 trial. Ther. Adv. Med. Oncol. 2019, 11, 1–9. [Google Scholar]
- Arai, R.J.; Petry, V.; Hoff, P.M.; Mano, M.S. Serum levels of VEGF and MCSF in HER2+ / HER2- breast cancer patients with metronomic neoadjuvant chemotherapy. Biomark. Res. 2018, 6, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceci, C.; Atzori, M.G.; Lacal, P.M.; Graziani, G. Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: Experimental evidence in different metastatic cancer models. Int. J. Mol. Sci. 2020, 21, 1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cîmpean, A.M.; Raica, M.; Suciu, C.; Tǎtucu, D.; Sârb, S.; Mureşan, A.M. Vascular endothelial growth factor A (VEGF A) as individual prognostic factor in invasive breast carcinoma. Rom. J. Morphol. Embryol. 2008, 49, 303–308. [Google Scholar] [PubMed]
- Sahana, K.R.; Akila, P.; Prashant, V.; Chandra, B.S.; Suma, M.N. Quantitation of vascular endothelial growth factor and interleukin-6 in different stages of breast cancer. Rep. Biochem. Mol. Biol. 2017, 6, 32–38. [Google Scholar]
- Salven, P.; Perhoniemi, V.; Tykkä, H.; Mäenpää, H.; Joensuu, H. Serum VEGF levels in women with a benign breast tumor or breast cancer. Breast Cancer Res. Treat. 1999, 53, 161–166. [Google Scholar] [CrossRef]
- Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef]
- Koukourakis, M.I.; Limberis, V.; Tentes, I.; Kontomanolis, E.; Kortsaris, A.; Sivridis, E.; Giatromanolaki, A. Serum VEGF levels and tissue activation of VEGFR2/KDR receptors in patients with breast and gynecologic cancer. Cytokine 2011, 53, 370–375. [Google Scholar] [CrossRef]
- Foekens, J.A.; Peters, H.A.; Grebenchtchikov, N.; Look, M.P.; Meijer-van Gelder, M.E.; Geurts-Moespot, A.; Van der Kwast, T.H.; Sweep, C.G.J.; Klijn, J.G.M. High tumor levels of vascular endothelial growth factor predict poor response to systemic therapy in advanced breast cancer. Cancer Res. 2001, 61, 5407–5414. [Google Scholar]
- Ragab, H.M.; Shaaban, H.M.; El Maksoud, N.A.; Radwan, S.M.; Elaziz, W.A.; Hafez, N.H. Expression of vascular endothelial growth factor protein in both serum samples and excised tumor tissues of breast carcinoma patients. Int. J. Cancer Res. 2016, 12, 152–161. [Google Scholar] [CrossRef]
- Dent, S.F. The role of VEGF in triple-negative breast cancer: Where do we go from here? Ann. Oncol. 2009, 20, 1615–1617. [Google Scholar] [CrossRef] [PubMed]
- Thielemann, A.; Baszczuk, A.; Kopczyński, Z.; Kopczyński, P.; Grodecka-Gazdecka, S. Clinical usefulness of assessing VEGF and soluble receptors sVEGFR-1 and sVEGFR-2 in women with breast cancer. Ann. Agric. Environ. Med. 2013, 20, 293–297. [Google Scholar] [PubMed]
- Simons, M.; Gordon, E.; Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 2016, 17, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.Z.; Zhang, Y.; Li, J.P.; Hu, J.; Li, W.W.; Li, P.; Wei, L.C.; Shi, M. High VEGFR1/2 expression levels are predictors of poor survival in patients with cervical cancer. Medicine 2017, 96, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Ueno, H.; Shibuya, M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 1999, 18, 2221–2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Chen, S.; Huang, L.; Zhou, Y.; Shao, Z. Monitoring serum VEGF in neoadjuvant chemotherapy for patients with triple-negative breast cancer: A new strategy for early prediction of treatment response and patient survival. Oncologist 2019, 24, 753–761. [Google Scholar] [CrossRef] [Green Version]
- Kut, C.; Mac Gabhann, F.; Popel, A.S. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br. J. Cancer 2007, 97, 978–985. [Google Scholar] [CrossRef] [Green Version]
- Golfmann, K.; Meder, L.; Koker, M.; Volz, C.; Borchmann, S.; Tharun, L.; Dietlein, F.; Malchers, F.; Florin, A.; Büttner, R.; et al. Synergistic anti-angiogenic treatment effects by dual FGFR1 and VEGFR1 inhibition in FGFR1-amplified breast cancer. Oncogene 2018, 37, 5682–5693. [Google Scholar] [CrossRef]
- Michishita, M.; Ohtsuka, A.; Nakahira, R.; Tajima, T.; Nakagawa, T.; Sasaki, N.; Arai, T.; Takahashi, K. Anti-tumor effect of bevacizumab on a xenograft model of feline mammary carcinoma. J. Vet. Med. Sci. 2016, 78, 685–689. [Google Scholar] [CrossRef] [Green Version]
- Cannon, C. Cats, cancer and comparative oncology. Vet. Sci. 2015, 2, 111–126. [Google Scholar] [CrossRef]
- Dumond, A.; Pagès, G. Neuropilins, as relevant oncology target: Their role in the tumoral microenvironment. Front. Cell Dev. Biol. 2020, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Hirakata, T.; Kurozumi, S.; Tokuda, S.; Nakazawa, Y.; Obayashi, S.; Yajima, R.; Oyama, T.; Shirabe, K. VEGF-A is associated with the degree of TILs and PD-L1 expression in primary breast cancer. In Vivo 2020, 34, 2641–2646. [Google Scholar] [CrossRef] [PubMed]
- Linderholm, B.K.; Hellborg, H.; Johansson, U.; Elmberger, G.; Skoog, L.; Lehtiö, J.; Lewensohn, R. Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer. Ann. Oncol. 2009, 20, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Konecny, G.E.; Meng, Y.G.; Untch, M.; Wang, H.J.; Bauerfeind, I.; Epstein, M.; Stieber, P.; Vernes, J.M.; Gutierrez, J.; Hong, K.; et al. Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin. Cancer Res. 2004, 10, 1706–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, E.M.; Sheta, M.; El Mohsen, M.A. Elevated serum and tissue VEGF associated with poor outcome in breast cancer patients. Alexandria J. Med. 2011, 47, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Toi, M.; Bando, H.; Ogawa, T.; Muta, M.; Hornig, C.; Weich, H.A. Significance of vascular endothelial growth factor (VEGF)/soluble VEGF receptor-1 relationship in breast cancer. Int. J. Cancer 2002, 98, 14–18. [Google Scholar] [CrossRef]
- Zajkowska, M.; Lubowicka, E.; Malinowski, P.; Szmitkowski, M.; Ławicki, S. Plasma levels of VEGF-A, VEGF B, and VEGFR-1 and applicability of these parameters as tumor markers in diagnosis of breast cancer. Acta Biochim. Pol. 2018, 65, 621–628. [Google Scholar] [CrossRef]
- Zarychta, E.; Rhone, P.; Bielawski, K.; Rosc, D.; Szot, K.; Zdunska, M.; Ruszkowska-Ciastek, B. Elevated plasma levels of tissue factor as a valuable diagnostic biomarker with relevant efficacy for prediction of breast cancer morbidity. J. Physiol. Pharmacol. 2018, 69, 921–931. [Google Scholar]
- Garvin, S.; Nilsson, U.W.; Dabrosin, C. Effects of oestradiol and tamoxifen on VEGF, soluble VEGFR-1, and VEGFR-2 in breast cancer and endothelial cells. Br. J. Cancer 2005, 93, 1005–1010. [Google Scholar] [CrossRef] [Green Version]
- Botelho, M.; Soares, R.; Alves, H. Progesterone in breast cancer angiogenesis. SM J. Reprod. Health Infertil. 2015, 1, 1–3. [Google Scholar]
- Aguilar-Cazares, D.; Chavez-Dominguez, R.; Carlos-Reyes, A.; Lopez-Camarillo, C.; Hernadez de la Cruz, O.N.; Lopez-Gonzalez, J.S. Contribution of angiogenesis to inflammation and cancer. Front. Oncol. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelo, L.S.; Kurzrock, R. Vascular endothelial growth factor and its relationship to inflammatory mediators. Clin. Cancer Res. 2007, 13, 2825–2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orecchia, A.; Lacal, P.M.; Schietroma, C.; Morea, V.; Zambruno, G.; Failla, C.M. Vascular endothelial growth factor receptor-1 is deposited in the extracellular matrix by endothelial cells and is a ligand for the α5β1 integrin. J. Cell Sci. 2003, 116, 3479–3489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; et al. The evaluation of tumor-infiltrating lymphocytes (TILS) in breast cancer: Recommendations by an International TILS working group 2014. Ann. Oncol. 2015, 26, 259–271. [Google Scholar] [CrossRef]
Clinicopathological Feature | Number of Animals (%) | VEGF-A (pg/mL) | p | VEGFR-1 (pg/mL) | p | VEGFR-2 (pg/mL) | p |
---|---|---|---|---|---|---|---|
Age | 0.483 | 0.425 | 0.58 | ||||
<8 years old | 4 (8.0%) | 2643.5 ± 5287.0 | 2442.6 ± 4885.2 | 337.0 ± 674.1 | |||
8–12 years old | 26 (52.0%) | 159.5 ± 628.1 | 3771.3 ± 9414.6 | 754.1 ± 1838.2 | |||
>12 years old | 20 (40.0%) | 738.4 ± 2042.5 | 5565.3 ± 11,514.6 | 963.3 ± 2288.2 | |||
Spayed | 0.075 | 0.39 | 0.537 | ||||
No | 24 (48.0%) | 1470.3 ± 2914.7 | 3996.3 ± 8062.8 | 644.0 ± 1443.7 | |||
Yes | 25 (50.0%) | 0 | 5757.9 ± 11,325.2 | 1117.1 ± 2271.9 | |||
Unknown | 1 (2.0%) | ||||||
Contraceptive administration | 0.188 | 0.026 | 0.042 | ||||
No | 21 (42.0%) | 660.9 ± 2364.0 | 1077.3 ± 2740.1 | 140.4 ± 352.6 | |||
Yes | 23 (46.0%) | 882.9 ± 1900.5 | 8156.8 ± 12,291.0 | 1512.1 ± 2413.4 | |||
Unknown | 6 (12.0%) | ||||||
Multiple tumors | 0.188 | 0.846 | 0.701 | ||||
Negative | 19 (38.0%) | 476.5 ± 1667.7 | 6572.4 ± 11,690.2 | 1217.0 ± 2286.1 | |||
Positive | 31 (62.0%) | 989.7 ± 2377.6 | 3602.3 ± 8396.6 | 621.3 ± 1617.4 | |||
Lymph node status | 0.155 | 0.345 | 0.432 | ||||
Negative | 31 (62.0%) | 1102.7 ± 2557.0 | 4817.9 ± 9291.5 | 840.3 ± 1742.9 | |||
Positive | 16 (32.0%) | 0 | 4842.9 ± 10,931.0 | 929.7 ± 2235.5 | |||
Unknown | 3 (6.0%) | ||||||
Stage | 0.502 | 0.606 | 0.688 | ||||
I | 11 (22.0%) | 1753.6 ± 3736.3 | 4766.1 ± 8059.3 | 882.4 ± 1572.0 | |||
II | 7 (14.0%) | 138.5 ± 339.3 | 5632.5 ± 11,354.2 | 993.5 ± 2198.0 | |||
III | 27 (54.0%) | 387.6 ± 1312.0 | 3609.1 ± 10,349.2 | 663.2 ± 2051.1 | |||
IV | 5 (10.0%) | 0 | 6914.8 ± 10,335.0 | 1213.0 ± 1774.6 | |||
Tumor size | 0.67 | 0.374 | 0.5 | ||||
≤2 cm | 26 (52.0%) | 835.0 ± 2604.1 | 6024.2 ± 11,286.1 | 1140.8 ± 2239.7 | |||
>2 cm | 24 (48.0%) | 467.9 ± 1405.1 | 2754.6 ± 7646.5 | 452.9 ± 1386.5 | |||
Tumor malignancy grade | 0.198 | 0.037 | 0.046 | ||||
I | 2 (4.0%) | 5286.9 ± 7476.9 | 20,094.3 ± 14,600.2 | 3591.6 ± 3172.7 | |||
II | 6 (12.0%) | 0 | 1899.8 ± 4653.5 | 278.8 ± 683.0 | |||
III | 42 (84.0%) | 480.0 ± 1526.4 | 3278.2 ± 9626.1 | 776.5 ± 1888.2 | |||
Tumor necrosis | 0.587 | 0.227 | 0.182 | ||||
Negative | 11 (22.0%) | 1358.2 ± 3725.1 | 8079.7 ± 14,010.3 | 1640.2 ± 2907.7 | |||
Positive | 39 (78.0%) | 415.3 ± 1549.8 | 2801.0 ± 8408.6 | 461.7 ± 1551.2 | |||
Tumor lymphatic invasion | |||||||
Negative | 43 (86.0%) | 544.3 ± 2112.3 | 0.956 | 4537.3 ± 10,320.0 | 0.098 | 820.5 ± 2011.0 | 0.117 |
Positive | 7 (14.0%) | 941.9 ± 2307.1 | 0 | 0 | |||
Lymphocytic infiltration | 0.466 | 0.316 | 0.523 | ||||
Negative | 16 (32.0%) | 881.2 ± 2932.7 | 5173.4 ± 9837.5 | 901.9 ± 1818.4 | |||
Positive | 33 (66.0%) | 485.1 ± 1669.0 | 3292.4 ± 9802.5 | 609.8 ± 1949.4 | |||
Unknown | 1 (2.0%) | ||||||
Tumor ulceration | 0.073 | 0.116 | 0.094 | ||||
Negative | 43 (86.0%) | 682.0 ± 2286.4 | 3720.8 ± 9483.9 | 704.6 ± 1861.9 | |||
Positive | 7 (14.0%) | 161.5 ± 1020.3 | 4626.6 ± 11,316.9 | 656.7 ± 2151.0 | |||
Metastasis | |||||||
No | 22 (44%) | 535.5 ± 198.8 | 0.89 | 5740.6 ± 11,041.4 | 0.165 | 1093.1 ± 2233.9 | 0.269 |
Yes | 28 (56%) | 747.6 ± 2810.5 | 3412.8 ± 8447.5 | 595.1 ± 1526.0 |
Monoclonal Antibody | Reference | Dilution | Incubation Time and Temperature |
---|---|---|---|
Anti-VEGF | Clone VG1 (Novus Biologicals) | 1:50 | 60’ at RT |
Anti-VEGFR1/Flt-1 | Clone CL0345 (Novus Biologicals) | 1:200 | 60’at RT |
Anti-VEGFR2/KDR/Flk-1 | Clone EIC (Novus Biologicals) | 1:10 | 120’ at RT plus 4 °C overnight |
Percentage of Positive Staining Cells | Staining Intensity | ||
---|---|---|---|
Score | Interpretation | Score | Interpretation |
0 | <10% | 0 | No staining |
1 | 10–25% | 1 | Weak |
2 | 26–50% | 2 | Moderate |
3 | >50% | 3 | Strong |
Total score (0–6): Score of positive staining cells + intensity score | |||
0–3: Negative | |||
4–5: Weak Positive | |||
6: Strong Positive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, C.; Gameiro, A.; Ferreira, J.; Correia, J.; Ferreira, F. Diagnostic Value of VEGF-A, VEGFR-1 and VEGFR-2 in Feline Mammary Carcinoma. Cancers 2021, 13, 117. https://doi.org/10.3390/cancers13010117
Nascimento C, Gameiro A, Ferreira J, Correia J, Ferreira F. Diagnostic Value of VEGF-A, VEGFR-1 and VEGFR-2 in Feline Mammary Carcinoma. Cancers. 2021; 13(1):117. https://doi.org/10.3390/cancers13010117
Chicago/Turabian StyleNascimento, Catarina, Andreia Gameiro, João Ferreira, Jorge Correia, and Fernando Ferreira. 2021. "Diagnostic Value of VEGF-A, VEGFR-1 and VEGFR-2 in Feline Mammary Carcinoma" Cancers 13, no. 1: 117. https://doi.org/10.3390/cancers13010117
APA StyleNascimento, C., Gameiro, A., Ferreira, J., Correia, J., & Ferreira, F. (2021). Diagnostic Value of VEGF-A, VEGFR-1 and VEGFR-2 in Feline Mammary Carcinoma. Cancers, 13(1), 117. https://doi.org/10.3390/cancers13010117