Voxelwise Principal Component Analysis of Dynamic [S-Methyl-11C]Methionine PET Data in Glioma Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Image Acquisition and Reconstruction
2.2. Motion Correction
2.3. Image-Derived Input Function Extraction
2.4. Time-Activity Curves Extraction and Registration
2.5. Biological Tumor Volume Delineation
2.6. Pharmacokinetic Modeling
2.7. Numerical Simulations
2.8. Principal Component Analysis
3. Results
3.1. Principal Components
3.1.1. Synthetic Data
3.1.2. Real Data
3.2. Parametric Maps
3.3. Parametric Map Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
[11C]MET | [S-methyl-11C]methionine |
[18F]FET | O-(2-[18F]fluoroethyl)-L-tyrosine |
1TCM | One-tissue compartment model |
2TCM | Two-tissue compartment model |
AIF | Arterial input function |
BTV | Biological tumor volume |
CT | Computed tomography |
CTAC | Computed tomography-based attenuation correction |
FADS | Factor analysis of dynamic structures |
FLAIR | Fluid-attenuated inversion recovery |
FWHM | Full-width at half-maximum |
HGG | High-grade glioma |
IDIF | Image-derived input function |
IPCA | Incremental principal component analysis |
LGG | Low-grade glioma |
MRI | Magnetic resonance imaging |
NMF | Non-negative matrix factorization |
p.i. | Post-injection |
PCA | Principal component analysis |
PET | Positron emission tomography |
PK | Pharmacokinetic |
PVE | Partial volume effect |
ROI | Region of interest |
SNR | Signal-to-noise ratio |
SUV | Standardized uptake value |
TAC | Time-activity curve |
TBR | Tumor-to-background ratio |
TOF-OSEM | Time-of-flight ordered subset expectation maximization |
TTP | Time-to-peak |
VOI | Volume of interest |
WHO | World Health Organization |
Appendix A. Supplementary Methods
Appendix A.1. Patient Characteristics
Clinical | 2016 WHO Classification | Treatments | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Patient | Age | Sex | Location | Histology | Grade | IDH1 | 1p/19q | Surgery | Chemotherapy | Radiotherapy |
1 | 67 | M | Right post-rolandic | Astrocytoma | III | MT | N/A | Yes | TMZ | RT |
2 | 53 | F | Right fronto-callosum | Glioblastoma | IV | MT | N/A | Yes | TMZ | RT |
3 | 33 | M | Left frontal | Oligodendroglioma | III | MT | CD | Yes | TMZ | RT |
4 | 56 | F | Right fronto-parietal | Astrocytoma | III | WT | NC | Yes | TMZ | RT, GK |
5 | 47 | F | Left frontal | Oligodendroglioma | III | MT | CD | Yes | TMZ | RT |
6 | 23 | M | Left parietal | Oligodendroglioma | III | MT | CD | Yes | TMZ | RT |
7 | 48 | M | Right pre-rolandic | Oligodendroglioma | II | MT | CD | Yes | TMZ | No |
8 | 56 | M | Right frontal | Glioblastoma | IV | MT | NC | Yes | No | No |
9 | 63 | M | Left temporal | Glioblastoma | IV | WT | NC | Yes | TMZ | RT |
10 | 34 | F | Thalamo-mesencephalic | Rosette-forming glioneural tumor | I | N/A | N/A | No | No | RT |
11 | 36 | F | Right frontal | N/A | N/A | N/A | N/A | No | No | No |
12 | 52 | F | Left frontal | Glioblastoma | IV | WT | NC | Yes | TMZ | RT, GK |
13 | 51 | F | Left parietal | Oligodendroglioma | III | N/A | CD | Yes | TMZ | RT |
14 | 58 | M | Right fronto-parietal | Glioblastoma | IV | WT | NC | Yes | TMZ | RT |
15 | 56 | F | Left frontal | Astrocytoma | III | MT | NC | Yes | TMZ | RT |
16 | 50 | M | Left frontal | Oligodendroglioma | III | MT | CD | Yes | TMZ | RT |
17 | 61 | M | Right fronto-temporal | Oligodendroglioma | II | MT | CD | Yes | TMZ | No |
18 | 55 | M | Right frontal | Astrocytoma | III | MT | NC | Yes | TMZ | GK |
19 | 83 | M | Brainstem Left fronto-insular | N/A N/A | N/A N/A | N/A N/A | N/A N/A | No No | TMZ | RT No |
20 | 58 | M | Right frontal | Glioblastoma | IV | WT | NC | Yes | TMZ | RT, GK |
21 | 52 | F | Right parieto-occipital | Glioblastoma | IV | WT | N/A | Yes | TMZ, CCNU | RT |
22 | 50 | M | Left temporal | Glioblastoma | IV | WT | NC | Yes | TMZ | RT |
23 | 70 | F | Left frontal | Glioblastoma | IV | WT | NC | No | No | No |
24 | 35 | F | Right frontal Left insular | Oligodendroglioma N/A | III N/A | MT N/A | CD N/A | Yes No | TMZ | RT No |
25 | 55 | F | Left temporal | Glioblastoma | IV | WT | NC | No | TMZ | RT |
26 | 61 | M | Right fronto-temporo-insular | Oligodendroglioma | II | MT | CD | Yes | TMZ | No |
27 | 53 | M | Left fronto-insular | Oligodendroglioma | III | MT | CD | Yes | TMZ | RT |
28 | 53 | M | Right parietal | Glioblastoma | IV | WT | NC | Yes | TMZ, CCNU | RT |
29 | 60 | M | Right frontal | Glioblastoma | IV | WT | NC | Yes | TMZ | RT |
30 | 76 | F | Left fronto-parietal | Glioblastoma | IV | WT | NC | Yes | TMZ | RT |
31 | 42 | M | Left frontal | Glioblastoma | IV | WT | NC | Yes | TMZ | RT |
32 | 63 | M | Right parieto-occipital Right frontal Left frontal | Glioblastoma Glioblastoma N/A | IV IV N/A | WT WT N/A | NC NC N/A | Yes Yes No | TMZ, CCNU | RT RT No |
33 | 56 | M | Right temporo-insular | Astrocytoma | III | MT | NC | Yes | TMZ | RT |
Appendix A.2. Spill-Out Estimation
Appendix A.3. Numerical Simulations
Appendix A.4. Overlapping Frames
Appendix B. Supplementary Results
Appendix B.1. Spill-Out Estimation
Appendix B.2. Overlapping Frames
Noise Level | |||||
---|---|---|---|---|---|
0.0 | 0.5 | 1.0 | 1.5 | 2.0 | |
0.12 | 0.72 | 0.70 | 0.70 | 0.70 | |
0.87 | 0.77 | 0.72 | 0.72 | 0.72 | |
0.87 | 0.74 | 0.71 | 0.71 | 0.70 | |
0.87 | 0.70 | −0.10 | −0.67 | −0.59 |
Appendix B.3. PET Data Analysis
Patient | BTV [mm3] | TBRmax | TBRmean | Cstatic | CPC1 |
---|---|---|---|---|---|
1 | 0 | - | - | - | - |
2 | 32 | 1.67 | 1.60 | 0.23 | 1.25 |
3 | 664 | 2.46 | 1.90 | 0.31 | 2.99 |
4 | 2872 | 2.74 | 1.95 | 0.32 | 1.11 |
5 | 40 | 1.69 | 1.62 | 0.24 | 1.53 |
6 | 24 | 1.72 | 1.68 | 0.25 | 3.77 |
7 | 2920 | 2.21 | 1.79 | 0.28 | 0.74 |
8 | 120,808 | 4.80 | 2.35 | 0.40 | 0.79 |
9 | 1688 | 2.54 | 1.85 | 0.30 | 0.49 |
10 | 6992 | 2.46 | 1.90 | 0.31 | 0.91 |
11 | 928 | 1.99 | 1.73 | 0.27 | 3.40 |
12 | 95,744 | 4.82 | 2.22 | 0.38 | 0.64 |
13 | 0 | - | - | - | - |
14 | 2224 | 2.12 | 1.71 | 0.26 | 1.00 |
15 | 0 | - | - | - | - |
16 | 2880 | 2.17 | 1.74 | 0.27 | 1.54 |
17 | 4480 | 3.59 | 2.31 | 0.40 | 0.94 |
18 | 0 | - | - | - | - |
19 | 7080 9312 | 2.44 4.01 | 1.86 2.41 | 0.30 0.41 | 1.01 1.19 |
20 | 14,800 | 3.26 | 1.94 | 0.32 | 2.95 |
21 | 113,648 | 4.06 | 2.01 | 0.34 | 0.68 |
22 | 7000 | 2.79 | 1.97 | 0.33 | 1.30 |
23 | 21,976 | 6.84 | 3.12 | 0.51 | 1.15 |
24 | 65,104 648 | 3.77 2.03 | 2.09 1.75 | 0.35 0.27 | 0.83 0.67 |
25 | 8728 | 2.84 | 1.90 | 0.31 | 0.67 |
26 | 4896 | 3.83 | 2.37 | 0.41 | 1.11 |
27 | 18,440 | 3.50 | 2.17 | 0.37 | 0.84 |
28 | 6528 | 4.42 | 2.35 | 0.40 | 1.08 |
29 | 3240 | 2.18 | 1.75 | 0.27 | 2.43 |
30 | 4520 | 2.26 | 1.80 | 0.28 | 0.73 |
31 | 7288 | 3.08 | 1.91 | 0.31 | 1.01 |
32 | 10,880 21,416 5248 | 2.56 4.06 3.70 | 1.89 2.27 2.44 | 0.31 0.39 0.42 | 0.62 0.78 0.80 |
33 | 18,680 | 4.00 | 2.11 | 0.36 | 1.31 |
[103 s] | d [s] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Patient | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean |
1 | - | - | - | - | - | - | - | - | - | - | - | - |
2 | 0.62 | 0.67 | 0.64 | 0.04 | 0.05 | 0.05 | 1.48 | 1.64 | 1.56 | 2.45 | 6.37 | 3.52 |
3 | 0.31 | 0.48 | 0.39 | 0.04 | 0.09 | 0.05 | 0.58 | 1.12 | 0.86 | 0.34 | 14.40 | 8.89 |
4 | 0.57 | 0.94 | 0.70 | 0.04 | 0.07 | 0.05 | 1.01 | 1.97 | 1.31 | 1.30 | 14.67 | 6.22 |
5 | 0.61 | 0.74 | 0.65 | 0.06 | 0.08 | 0.07 | 1.10 | 1.53 | 1.20 | 3.06 | 8.63 | 4.76 |
6 | 0.53 | 1.62 | 0.87 | 0.06 | 0.53 | 0.12 | 0.55 | 2.84 | 1.27 | 0.09 | 17.69 | 7.53 |
7 | 0.46 | 0.71 | 0.55 | 0.02 | 0.07 | 0.04 | 1.04 | 2.05 | 1.40 | 0.70 | 16.87 | 8.11 |
8 | 0.65 | 2.30 | 1.12 | 0.06 | 0.22 | 0.12 | 0.77 | 2.17 | 1.16 | 0.69 | 15.94 | 10.60 |
9 | 0.79 | 1.20 | 0.95 | 0.06 | 0.12 | 0.08 | 1.16 | 1.79 | 1.45 | 2.69 | 14.56 | 10.74 |
10 | 0.54 | 0.89 | 0.70 | 0.06 | 0.28 | 0.09 | 0.76 | 1.29 | 0.96 | 4.09 | 14.60 | 8.97 |
11 | 0.47 | 0.58 | 0.52 | 0.02 | 0.09 | 0.04 | 0.82 | 1.71 | 1.17 | 2.54 | 14.81 | 6.45 |
12 | 0.68 | 2.77 | 1.17 | 0.05 | 0.29 | 0.11 | 0.66 | 1.72 | 1.14 | 0.57 | 16.83 | 9.12 |
13 | - | - | - | - | - | - | - | - | - | - | - | - |
14 | 0.41 | 0.70 | 0.50 | 0.03 | 0.08 | 0.05 | 1.16 | 2.97 | 1.60 | 1.55 | 14.35 | 7.39 |
15 | - | - | - | - | - | - | - | - | - | - | - | - |
16 | 0.46 | 0.66 | 0.55 | 0.04 | 0.08 | 0.06 | 0.83 | 1.92 | 1.13 | 2.27 | 17.53 | 9.00 |
17 | 0.45 | 1.18 | 0.71 | 0.02 | 0.13 | 0.06 | 0.89 | 1.90 | 1.23 | 0.67 | 14.60 | 7.23 |
18 | - | - | - | - | - | - | - | - | - | - | - | - |
19 | 0.49 0.51 | 0.83 1.15 | 0.63 0.78 | 0.03 0.03 | 0.15 0.09 | 0.06 0.06 | 0.98 0.96 | 1.91 2.66 | 1.27 1.30 | 2.58 2.36 | 14.59 12.14 | 7.93 6.99 |
20 | 0.49 | 1.13 | 0.71 | 0.03 | 0.11 | 0.06 | 0.81 | 2.47 | 1.61 | 1.16 | 14.77 | 7.44 |
21 | 0.43 | 0.45 | 0.44 | 0.04 | 0.05 | 0.05 | 1.04 | 1.14 | 1.08 | 6.25 | 8.11 | 6.92 |
22 | 0.72 | 1.45 | 1.06 | 0.06 | 0.18 | 0.12 | 0.80 | 1.94 | 1.35 | 0.50 | 15.16 | 8.68 |
23 | 0.51 | 3.03 | 1.19 | 0.06 | 0.28 | 0.16 | 0.46 | 0.96 | 0.79 | 2.20 | 12.19 | 6.74 |
24 | 0.42 0.49 | 1.22 0.61 | 0.63 0.55 | 0.63 0.04 | 0.26 0.08 | 0.12 0.06 | 0.47 0.95 | 1.21 1.16 | 0.70 1.04 | 0.64 2.31 | 16.84 16.42 | 9.64 7.70 |
25 | 0.68 | 1.29 | 0.88 | 0.05 | 0.11 | 0.08 | 0.88 | 1.81 | 1.29 | 4.08 | 15.09 | 11.71 |
26 | 0.40 | 1.13 | 0.69 | 0.02 | 0.13 | 0.05 | 0.98 | 1.89 | 1.32 | 0.10 | 14.28 | 5.78 |
27 | 0.47 | 1.21 | 0.73 | 0.02 | 0.07 | 0.04 | 1.08 | 2.62 | 1.51 | 0.60 | 14.61 | 6.93 |
28 | 0.60 | 1.55 | 0.95 | 0.04 | 0.23 | 0.09 | 0.80 | 2.35 | 1.32 | 2.02 | 14.43 | 7.62 |
29 | 0.41 | 0.55 | 0.48 | 0.02 | 0.05 | 0.04 | 0.94 | 1.78 | 1.21 | 0.57 | 14.71 | 6.40 |
30 | 0.44 | 0.63 | 0.53 | 0.05 | 0.09 | 0.07 | 0.65 | 1.22 | 0.88 | 2.38 | 14.44 | 7.64 |
31 | 0.44 | 0.80 | 0.59 | 0.04 | 0.14 | 0.08 | 0.67 | 2.16 | 1.07 | 2.12 | 15.77 | 13.43 |
32 | 0.59 0.53 0.55 | 1.08 1.76 1.46 | 0.78 0.86 0.90 | 0.04 0.03 0.05 | 0.10 0.20 0.16 | 0.07 0.10 0.11 | 1.08 0.97 0.93 | 1.84 2.31 1.59 | 1.37 1.30 1.20 | 6.25 4.43 4.10 | 17.75 17.38 17.06 | 13.94 12.60 11.45 |
33 | 0.40 | 1.17 | 0.71 | 0.04 | 0.22 | 0.08 | 0.64 | 2.80 | 1.50 | 0.56 | 15.01 | 8.11 |
PC1 | PC2 | PC3 | PC5 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Patient | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean |
1 | - | - | - | - | - | - | - | - | - | - | - | - |
2 | 14.28 | 16.96 | 15.71 | −5.36 | −3.91 | −4.69 | 0.33 | 1.39 | 0.81 | −0.32 | 0.16 | −0.11 |
3 | 4.27 | 28.78 | 16.24 | −5.27 | 1.37 | −3.17 | −3.88 | 1.23 | −1.00 | −1.44 | 1.25 | 0.04 |
4 | 14.33 | 43.25 | 27.29 | −7.01 | −1.70 | −4.39 | −1.27 | 3.13 | 1.10 | −1.97 | 1.24 | −0.25 |
5 | 14.11 | 16.66 | 15.33 | −4.75 | −2.13 | −3.04 | −0.55 | 1.16 | −0.07 | −0.59 | 0.79 | 0.37 |
6 | 31.29 | 158.52 | 60.37 | −9.53 | 40.13 | −3.42 | −13.74 | 7.23 | 0.79 | −2.05 | 6.34 | 0.42 |
7 | 20.15 | 47.51 | 35.25 | −6.44 | 2.69 | −3.22 | −4.21 | 1.66 | −1.02 | −1.67 | 1.58 | 0.24 |
8 | 28.37 | 170.40 | 71.41 | −10.45 | 11.80 | −3.25 | −11.69 | 5.26 | −1.16 | −3.85 | 3.76 | −0.72 |
9 | 41.57 | 83.09 | 58.68 | −11.16 | −5.85 | −7.83 | −1.02 | 4.11 | 2.11 | −2.29 | 1.08 | −0.48 |
10 | 22.72 | 55.64 | 36.90 | −6.26 | 17.13 | −2.05 | −4.63 | 2.04 | −1.09 | −0.83 | 1.62 | 0.24 |
11 | 0.52 | 9.10 | 5.84 | −4.09 | 2.80 | −1.58 | −2.46 | 3.27 | 0.30 | −2.12 | 0.70 | −0.79 |
12 | 42.19 | 212.93 | 88.56 | −14.81 | 9.22 | −4.26 | −16.05 | 5.26 | −2.21 | −2.72 | 3.54 | 0.34 |
13 | - | - | - | - | - | - | - | - | - | - | - | - |
14 | 14.28 | 16.96 | 15.71 | −5.36 | −3.91 | −4.69 | 0.33 | 1.39 | 0.81 | −0.32 | 0.16 | −0.11 |
15 | - | - | - | - | - | - | - | - | - | - | - | - |
16 | 14.28 | 16.96 | 15.71 | −5.36 | −3.91 | −4.69 | 0.33 | 1.39 | 0.81 | −0.32 | 0.16 | −0.11 |
17 | 16.43 | 99.84 | 48.61 | −10.55 | 8.43 | −3.36 | −5.43 | 5.80 | −0.87 | −2.25 | 1.92 | −0.52 |
18 | - | - | - | - | - | - | - | - | - | - | - | - |
19 | 16.15 12.91 | 45.37 81.32 | 29.38 43.66 | −4.35 −5.98 | 10.82 2.70 | −1.09 −1.86 | −3.89 −5.30 | 4.96 3.29 | −1.37 −1.32 | −1.55 −1.55 | 3.26 2.08 | −0.30 −0.10 |
20 | 2.93 | 47.21 | 17.24 | −5.62 | 3.56 | −2.18 | −5.51 | 2.85 | 0.25 | −1.74 | 1.98 | −0.22 |
21 | 4.87 | 5.68 | 5.31 | −2.11 | −1.67 | −1.90 | −1.54 | −0.98 | −1.34 | −0.15 | 0.17 | 0.05 |
22 | 10.63 | 43.98 | 27.54 | −4.97 | 5.63 | −1.48 | −5.64 | 3.19 | −0.60 | −1.25 | 3.54 | 0.08 |
23 | 11.16 | 176.62 | 64.48 | −12.61 | 5.95 | −4.10 | −9.51 | −0.18 | −3.18 | −6.36 | −0.13 | −2.37 |
24 | 24.51 23.93 | 126.14 35.83 | 53.75 29.72 | −6.08 −7.02 | 13.17 −2.86 | 1.03 −5.03 | −18.79 −1.16 | 1.11 1.05 | −6.77 −0.03 | −1.02 −0.72 | 4.55 0.62 | 1.12 −0.23 |
25 | 29.09 | 84.23 | 51.18 | −6.44 | 0.59 | −3.91 | −6.31 | 2.70 | −1.23 | −1.49 | 1.58 | −0.06 |
26 | 10.54 | 78.94 | 38.84 | −9.88 | 9.33 | −3.91 | −2.66 | 4.21 | 1.12 | −2.06 | 5.20 | −0.05 |
27 | 22.11 | 101.12 | 51.98 | −9.91 | 0.55 | −4.96 | −6.23 | 3.31 | −1.43 | −1.45 | 1.94 | 0.14 |
28 | 12.85 | 99.81 | 46.08 | −4.82 | 22.30 | 0.41 | −7.44 | 1.85 | −2.99 | −1.38 | 2.59 | 0.38 |
29 | 7.03 | 25.60 | 16.39 | −4.05 | 0.21 | −2.06 | −4.56 | 0.76 | −2.08 | −0.97 | 1.51 | 0.19 |
30 | 25.53 | 57.29 | 39.09 | −5.05 | 0.10 | −2.52 | −6.53 | 1.57 | −1.99 | −0.36 | 1.93 | 0.56 |
31 | 12.26 | 58.58 | 33.05 | −4.99 | 6.12 | −0.62 | −12.30 | 2.52 | −3.92 | −1.01 | 4.51 | 0.64 |
32 | 29.90 25.09 26.66 | 75.90 137.01 119.75 | 51.22 63.97 71.06 | −10.82 −10.30 −8.28 | −2.89 2.77 3.39 | −6.93 −4.88 −3.50 | −3.31 −7.45 −5.64 | 2.67 3.76 1.21 | 0.02 −1.21 −1.90 | −1.77 −2.20 −1.12 | 0.63 1.74 3.34 | −0.55 12.60 0.67 |
33 | 9.00 | 75.38 | 30.90 | −6.02 | 16.17 | −1.39 | −10.91 | 4.30 | 0.00 | −2.54 | 4.81 | −0.08 |
Appendix C. Supplementary Discussion
References
- Lilja, A.; Bergström, K.; Hartvig, P.; Spännare, B.; Halldin, C.; Lundqvist, H.; Långstrom, B. Dynamic Study of Supratentorial Gliomas with L-Methyl-11C-Methionine and Positron Emission Tomography. AJNR Am. J. Neuroradiol. 1985, 6, 505–514. [Google Scholar]
- De Witte, O.; Goldberg, I.; Wikler, D.; Rorive, S.; Damhaut, P.; Monclus, M.; Salmon, I.; Brotchi, J.; Goldman, S. Positron Emission Tomography with Injection of Methionine as a Prognostic Factor in Glioma. J. Neurosurg. 2001, 95, 746–750. [Google Scholar] [CrossRef]
- Sadeghi, N.; Salmon, I.; Decaestecker, C.; Levivier, M.; Metens, T.; Wikler, D.; Denolin, V.; Rorive, S.; Massager, N.; Baleriaux, D.; et al. Stereotactic Comparison among Cerebral Blood Volume, Methionine Uptake, and Histopathology in Brain Glioma. AJNR Am. J. Neuroradiol. 2007, 28, 455–461. [Google Scholar] [PubMed]
- Goldman, S.; Levivier, M.; Brucher, J.M.; Wikler, D.; Damhaut, P.; Dethy, S.; Brotchi, J.; Hildebrand, J. Regional Methionine and Glucose Uptake in High-Grade Gliomas: A Comparative Study on PET-Guided Stereotactic Biopsy. J. Nucl. Med. 1997, 38, 1459–1462. [Google Scholar] [PubMed]
- Pirotte, B.; Goldman, S.; David, P.; Wikler, D.; Damhaut, P.; Vandesteene, A.; Salmon, I.; Brotchi, J.; Levivier, M. Stereotactic Brain Biopsy Guided by Positron Emission Tomography (PET) with [F-18]Fluorodeoxyglucose and [C-11]Methionine. Acta Neurochir. Suppl. 1997, 68, 133–138. [Google Scholar] [PubMed]
- Pirotte, B.; Goldman, S.; Massager, N.; David, P.; Wikler, D.; Vandesteene, A.; Salmon, I.; Brotchi, J.; Levivier, M. Comparison of 18F-FDG and 11C-Methionine for PET-Guided Stereotactic Brain Biopsy of Gliomas. J. Nucl. Med. 2004, 45, 1293–1298. [Google Scholar] [PubMed]
- Pirotte, B.; Levivier, M.; Goldman, S.; Massager, N.; Wikler, D.; De Witte, O.; Bruneau, M.; Rorive, S.; David, P.; Brotchi, J. Positron Emission Tomography-Guided Volumetric Resection of Supratentorial High-Grade Gliomas: A Survival Analysis in 66 Consecutive Patients. Neurosurgery 2009, 64, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Pöpperl, G.; Kreth, F.W.; Mehrkens, J.H.; Herms, J.; Seelos, K.; Koch, W.; Gildehaus, F.J.; Kretzschmar, H.A.; Tonn, J.C.; Tatsch, K. FET PET for the evaluation of untreated gliomas: Correlation of FET uptake and uptake kinetics with tumour grading. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1933–1942. [Google Scholar] [CrossRef]
- Thon, N.; Kunz, M.; Lemke, L.; Jansen, N.L.; Eigenbrod, S.; Kreth, S.; Lutz, J.; Egensperger, R.; Giese, A.; Herms, J.; et al. Dynamic 18F-FET PET in Suspected WHO Grade II Gliomas Defines Distinct Biological Subgroups with Different Clinical Courses. Int. J. Cancer 2014, 136, 2132–2145. [Google Scholar] [CrossRef]
- Jansen, N.L.; Suchorska, B.; Wenter, V.; Schmid-Tannwald, C.; Todica, A.; Eigenbrod, S.; Niyazi, M.; Tonn, J.C.; Bartenstein, P.; Kreth, F.W.; et al. Prognostic Significance of Dynamic 18F-FET PET in Newly Diagnosed Astrocytic High-Grade Glioma. J. Nucl. Med. 2015, 56, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Röhrich, M.; Huang, K.; Schrimpf, D.; Albert, N.L.; Hielscher, T.; von Deimling, A.; Schüller, U.; Dimitrakopoulou-Strauss, A.; Haberkorn, U. Integrated Analysis of Dynamic FET PET/CT Parameters, Histology, and Methylation Profiling of 44 Gliomas. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1573–1584. [Google Scholar] [CrossRef]
- Kunz, M.; Albert, N.L.; Unterrainer, M.; la Fougère, C.; Egensperger, R.; Schüller, U.; Lutz, J.; Kreth, S.; Tonn, J.C.; Kreth, F.W.; et al. Dynamic 18F-FET PET is a Powerful Imaging Biomarker in Gadolinium-Negative Gliomas. Neuro Oncol. 2019, 21, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Vettermann, F.; Suchorska, B.; Unterrainer, M.; Nelwan, D.; Forbrig, R.; Ruf, V.; Wenter, V.; Kreth, F.W.; Herms, J.; Bartenstein, P.; et al. Non-Invasive Prediction of IDH-Wildtype Genotype in Gliomas Using Dynamic 18F-FET PET. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2581–2589. [Google Scholar] [CrossRef]
- Pyka, T.; Hiob, D.; Preibisch, C.; Gempt, J.; Wiestler, B.; Schlegel, J.; Straube, C.; Zimmer, C. Diagnosis of Glioma Recurrence Using Multiparametric Dynamic 18F-Fluoroethyl-Tyrosine PET-MRI. Eur. J. Radiol. 2018, 103, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Grosu, A.L.; Astner, S.T.; Riedel, E.; Nieder, C.; Wiedenmann, N.; Heinemann, F.; Schwaiger, M.; Molls, M.; Wester, H.J.; Weber, W.A. An Interindividual Comparison of O-(2-[18F]Fluoroethyl)-L-Tyrosine (FET)– and L-[Methyl-11C]Methionine (MET)–PET in Patients With Brain Gliomas and Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1049–1058. [Google Scholar] [CrossRef]
- Vomacka, L.; Unterrainer, M.; Holzgreve, A.; Mille, E.; Gosewisch, A.; Brosch, J.; Ziegler, S.; Suchorska, B.; Kreth, F.W.; Tonn, J.C.; et al. Voxel-Wise Analysis of Dynamic 18F-FET PET: A Novel Approach for Non-Invasive Glioma Characterisation. EJNMMI Res. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Spence, A.M.; Muzi, M.; Mankoff, D.A.; O’Sullivan, S.F.; Link, J.M.; Lewellen, T.K.; Lewellen, B.; Pham, P.; Minoshima, S.; Swanson, K.; et al. 18F-FDG PET of Gliomas at Delayed Intervals: Improved Distinction Between Tumor and Normal Gray Matter. J. Nucl. Med. 2004, 45, 1653–1659. [Google Scholar]
- Debus, C.; Afshar-Oromieh, A.; Floca, R.; Ingrisch, M.; Knoll, M.; Debus, J.; Haberkorn, U.; Abdollahi, A. Feasibility and Robustness of Dynamic 18F-FET PET Based Tracer Kinetic Models Applied to Patients With Recurrent High-Grade Glioma Prior to Carbon Ion Irradiation. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Koopman, T.; Verburg, N.; Pouwels, P.J.W.; Wesseling, P.; Hoekstra, O.S.; de Witt Hamer, P.C.; Lammertsma, A.A.; Yaqub, M.; Boellaard, R. Quantitative Parametric Maps of O-(2-[18F]Fluoroethyl)-L-Tyrosine Kinetics in Diffuse Glioma. J. Cereb. Blood Flow Metab. 2020, 40, 895–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, F.; Bergströme, M.; Bengtsson, E.; Långström, B. Principal Component Analysis of Dynamic Positron Emission Tomography Images. Eur. J. Nucl. Med. Mol. Imaging 1994, 21, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Šámal, M.; Kárný, M.; Benali, H.; Backfrieder, W.; Todd-Pokropek, A.; Bergmann, H. Experimental Comparison of Data Transformation Procedures for Analysis of Principal Components. Phys. Med. Biol. 1999, 44, 2821–2834. [Google Scholar] [CrossRef] [PubMed]
- Territo, P.R.; Riley, A.A.; McCarthy, B.P.; Hutchins, G.D. Measurement of Cardiovascular Function Using a Novel View-Sharing PET Reconstruction Method and Tracer Kinetic Analysis. EJNMMI Phys. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Maes, F.; Collignon, A.; Vandermeulen, D.; Marchal, G.; Suetens, P. Multimodality Image Registration by Maximization of Mutual Information. IEEE Trans. Med. Imaging 1997, 16, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Lowekamp, B.C.; Chen, D.T.; Ibáñez, L.; Blezek, D. The Design of SimpleITK. Front. Neuroinform. 2013, 7. [Google Scholar] [CrossRef] [Green Version]
- Parker, B.J.; Feng, D. Graph-Based Mumford-Shah Segmentation of Dynamic PET with Application to Input Function Estimation. IEEE Trans. Nucl. Sci. 2005, 52, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Su, K.H.; Wu, L.C.; Liu, R.S.; Wang, S.J.; Chen, J.C. Quantification Method in [18F]Fluorodeoxyglucose Brain Positron Emission Tomography Using Independent Component Analysis. Nucl. Med. Commun. 2005, 26, 995–1004. [Google Scholar] [CrossRef]
- Schroeder, W.; Martin, K.; Lorensen, B. The Visualization Toolkit, 4th ed.; Kitware: Clifton Park, NY, USA, 2010. [Google Scholar]
- Yoo, T.S.; Ackerman, M.J.; Lorensen, W.E.; Schroeder, W.; Chalana, V.; Aylward, S.; Metaxas, D.; Ross, W. Engineering and algorithm design for an image processing API: A technical report on ITK—the Insight Toolkit. Stud. Health Technol. Inform. 2002, 85, 586–592. [Google Scholar] [PubMed]
- Pauleit, D.; Floeth, F.; Hamacher, K.; Riemenschneider, M.J.; Reifenberger, G.; Müller, H.W.; Zilles, K.; Coenen, H.H.; Langen, K.J. O-(2-[18F]Fluoroethyl)-L-Tyrosine PET Combined with MRI Improves the Diagnostic Assessment of Cerebral Gliomas. Brain 2005, 128, 678–687. [Google Scholar] [CrossRef] [Green Version]
- Ishiwata, K.; Kubota, K.; Murakami, M.; Kubota, R.; Sasaki, T.; Ishil, S. Re-Evaluation of Amino Acid PET Studies: Can the Protein Synthesis Rates in Brain and Tumor Tissues Be Measured In Vivo? J. Nucl. Med. 1993, 34, 1936–1943. [Google Scholar]
- Sato, K.; Kameyama, M.; Ishiwata, K.; Hatazawa, J.; Katakura, R.; Yoshimoto, T. Dynamic Study of Methionine Uptake in Glioma Using Positron Emission Tomography. Eur. J. Nucl. Med. Mol. Imaging 1992, 19, 426–430. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, D.; Wong, K.P.; Wu, C.M.; Siu, W.C. A Technique for Extracting Physiological Parameters and the Required Input Function Simultaneously from PET Image Measurements: Theory and Simulation Study. IEEE Trans. Inf. Technol. Biomed. 1997, 1, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Logan, J.; Fowler, J.S.; Volkow, N.D.; Ding, Y.S.; Wang, G.J.; Alexoff, D.L. A Strategy for Removing the Bias in the Graphical Analysis Method. J. Cereb. Blood Flow Metab. 2001, 21, 307–320. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hardee, M.E.; Zagzag, D. Mechanisms of Glioma-Associated Neovascularization. Am. J. Pathol. 2012, 181, 1126–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, R.N.; Lammertsma, A.A.; Hume, S.P.; Cunningham, V.J. Parametric Imaging of Ligand-Receptor Binding in PET Using a Simplified Reference Region Model. NeuroImage 1997, 6, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Panitchob, N.; Widdows, K.L.; Crocker, I.P.; Johnstone, E.D.; Please, C.P.; Sibley, C.P.; Glazier, J.D.; Lewis, R.M.; Sengers, B.G. Computational Modelling of Placental Amino Acid Transfer as an Integrated System. Biochim. Biophys. Acta Biomembr. 2016, 1858, 1451–1461. [Google Scholar] [CrossRef]
- Okubo, S.; Zhen, H.N.; Kawai, N.; Nishiyama, Y.; Haba, R.; Tamiya, T. Correlation of L-Methyl-11C-Methionine (MET) Uptake with L-Type Amino Acid Transporter 1 in Human Gliomas. J. Neurooncol. 2010, 99, 217–225. [Google Scholar] [CrossRef]
- Haining, Z.; Kawai, N.; Miyake, K.; Okada, M.; Okubo, S.; Zhang, X.; Fei, Z.; Tamiya, T. Relation of LAT1/4F2hc Expression with Pathological Grade, Proliferation and Angiogenesis in Human Gliomas. BMC Clin. Pathol. 2012, 12. [Google Scholar] [CrossRef] [Green Version]
- Moulin-Romsée, G.; D’Hondt, E.; de Groot, T.; Goffin, J.; Sciot, R.; Mortelmans, L.; Menten, J.; Bormans, G.; Van Laere, K. Non-Invasive Grading of Brain Tumours Using Dynamic Amino Acid PET Imaging: Does It Work for 11C-Methionine? Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 2082–2087. [Google Scholar] [CrossRef]
- Habermeier, A.; Graf, J.; Sandhöfer, B.F.; Boissel, J.P.; Roesch, F.; Closs, E.I. System L Amino Acid Transporter LAT1 Accumulates O-(2-Fluoroethyl)-L-Tyrosine (FET). Amino Acids 2015, 47, 335–344. [Google Scholar] [CrossRef]
- Akerele, M.I.; Karakatsanis, N.A.; Deidda, D.; Cal-Gonzalez, J.; Forsythe, R.O.; Dweck, M.R.; Syed, M.; Newby, D.E.; Aykroyd, R.G.; Sourbron, S.; et al. Comparison of Correction Techniques for the Spill in Effect in Emission Tomography. IEEE Trans. Radiat. Plasma Med. Sci. 2020, 4, 422–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koopman, T.; Verburg, N.; Schuit, R.C.; Pouwels, P.J.W.; Wesseling, P.; Windhorst, A.D.; Hoekstra, O.S.; de Witt Hamer, P.C.; Lammertsma, A.A.; Boellaard, R.; et al. Quantification of O-(2-[18F]Fluoroethyl)-L-Tyrosine Kinetics in Glioma. EJNMMI Res. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Veronese, M.; Bertoldo, A.; Tomasi, G.; Smith, C.B.; Schmidt, K.C. Impact of Tissue Kinetic Heterogeneity on PET Quantification: Case Study with the L-[1-11C]Leucine PET Method for Cerebral Protein Synthesis Rates. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, Y.C.; Oberlin, T.; Dobigeon, N.; Fevotte, C.; Stute, S.; Ribeiro, M.J.; Tauber, C. Factor Analysis of Dynamic PET Images: Beyond Gaussian Noise. IEEE Trans. Med. Imaging 2019, 38, 2231–2241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamenskiy, A.V.; Pipinos, I.I.; Carson, J.S.; MacTaggart, J.N.; Baxter, B.T. Age and Disease-Related Geometric and Structural Remodeling of the Carotid Artery. J. Vasc. Surg. 2015, 62, 1521–1528. [Google Scholar] [CrossRef] [Green Version]
d | ||||
---|---|---|---|---|
PC1 | ||||
PC2 | ||||
PC3 | ||||
PC5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martens, C.; Debeir, O.; Decaestecker, C.; Metens, T.; Lebrun, L.; Leurquin-Sterk, G.; Trotta, N.; Goldman, S.; Van Simaeys, G. Voxelwise Principal Component Analysis of Dynamic [S-Methyl-11C]Methionine PET Data in Glioma Patients. Cancers 2021, 13, 2342. https://doi.org/10.3390/cancers13102342
Martens C, Debeir O, Decaestecker C, Metens T, Lebrun L, Leurquin-Sterk G, Trotta N, Goldman S, Van Simaeys G. Voxelwise Principal Component Analysis of Dynamic [S-Methyl-11C]Methionine PET Data in Glioma Patients. Cancers. 2021; 13(10):2342. https://doi.org/10.3390/cancers13102342
Chicago/Turabian StyleMartens, Corentin, Olivier Debeir, Christine Decaestecker, Thierry Metens, Laetitia Lebrun, Gil Leurquin-Sterk, Nicola Trotta, Serge Goldman, and Gaetan Van Simaeys. 2021. "Voxelwise Principal Component Analysis of Dynamic [S-Methyl-11C]Methionine PET Data in Glioma Patients" Cancers 13, no. 10: 2342. https://doi.org/10.3390/cancers13102342
APA StyleMartens, C., Debeir, O., Decaestecker, C., Metens, T., Lebrun, L., Leurquin-Sterk, G., Trotta, N., Goldman, S., & Van Simaeys, G. (2021). Voxelwise Principal Component Analysis of Dynamic [S-Methyl-11C]Methionine PET Data in Glioma Patients. Cancers, 13(10), 2342. https://doi.org/10.3390/cancers13102342