Photosensitizing Medications and Skin Cancer: A Comprehensive Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Antihypertensives
3.1.1. Diuretics
Keratinocyte Carcinoma
Melanoma
3.1.2. CCBs
Keratinocyte Carcinoma
Melanoma
3.1.3. Beta-Blockers
Keratinocyte Carcinoma
Melanoma
3.1.4. Angiotensin-Converting Enzyme inhibitors (ACEi) and Angiotensin Receptor Blockers (ARB)
Keratinocyte Carcinoma
Melanoma
3.2. Antidiabetics
3.2.1. Keratinocyte Carcinoma
3.2.2. Melanoma
3.3. Amiodarone
Skin Cancer
3.4. NSAIDs
3.4.1. Keratinocyte Carcinoma
3.4.2. Melanoma
3.5. Statins
3.5.1. Keratinocyte Carcinoma
3.5.2. Melanoma
3.6. Antibacterial Agents
3.6.1. Keratinocyte Carcinoma
3.6.2. Melanoma
3.7. Voriconazole
3.7.1. Keratinocyte Carcinoma
3.7.2. Melanoma
3.8. Vemurafenib
Keratinocyte Carcinoma
3.9. PSMs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guy, G.P.; Thomas, C.C.; Thompson, T.; Watson, M.; Massetti, G.M.; Richardson, L.C. Vital signs: Melanoma incidence and mortality trends and projections—United States, 1982–2030. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 591–596. [Google Scholar] [PubMed]
- Ward, E.M.; Sherman, R.L.; Henley, S.J.; Jemal, A.; Siegel, D.A.; Feuer, E.J.; Firth, A.U.; Kohler, B.A.; Scott, S.; Ma, J.; et al. Annual report to the nation on the status of cancer, featuring cancer in men and women age 20–49 years. J. Natl. Cancer Inst. 2019, 111, 1279–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SEER*Explorer: An Interactive Website for SEER Cancer Statistics [Internet]. Surveillance Research Program, National Cancer Institute. Available online: https://seer.cancer.gov/explorer/ (accessed on 15 April 2021).
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Misitzis, A.; Beatson, M.; Weinstock, M.A. Keratinocyte carcinoma mortality in the United States as reported in death certificates, 2011–2017. Dermatol. Surg. 2020, 46, 1135–1140. [Google Scholar] [CrossRef]
- Luke, J.J.; Flaherty, K.T.; Ribas, A.; Long, G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat. Rev. Clin. Oncol. 2017, 14, 463. [Google Scholar] [CrossRef] [Green Version]
- Belbasis, L.; Stefanaki, I.; Stratigos, A.J.; Evangelou, E. Non-genetic risk factors for cutaneous melanoma and keratinocyte skin cancers: An umbrella review of meta-analyses. J. Dermatol. Sci. 2016, 84, 330–339. [Google Scholar] [CrossRef]
- Barr, R.D.; Ries, L.A.; Lewis, D.R.; Harlan, L.C.; Keegan, T.H.; Pollock, B.H.; Bleyer, W.A.; US National Cancer Institute Science of Adolescent; Young Adult Oncology Epidemiology Working Group. Incidence and incidence trends of the most frequent cancers in adolescent and young adult Americans, including “nonmalignant/noninvasive” tumors. Cancer 2016, 122, 1000–1008. [Google Scholar] [CrossRef]
- Schipani, G.; Del Duca, E.; Todaro, G.; Scali, E.; Dastoli, S.; Bennardo, L.; Bonacci, S.; Di Raimondo, C.; Pavel, A.B.; Colica, C.; et al. Arsenic and chromium levels in hair correlate with actinic keratosis/non melanoma skin cancer: Results of an observational controlled study. G Ital. Dermatol. Venereol. 2020. [Google Scholar] [CrossRef]
- Gerlini, G.; Romagnoli, P.; Pimpinelli, N. Skin cancer and immunosuppression. Crit. Rev. Oncol. Hematol. 2005, 56, 127–136. [Google Scholar] [CrossRef]
- Kaae, J.; Boyd, H.A.; Hansen, A.V.; Wulf, H.C.; Wohlfahrt, J.; Melbye, M. Photosensitizing medication use and risk of skin cancer. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2942–2949. [Google Scholar] [CrossRef] [Green Version]
- O’Gorman, S.M.; Murphy, G.M. Photosensitizing medications and photocarcinogenesis. Photoderm. Photoimmunol. Photomed. 2014, 30, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Kreutz, R.; Algharably, E.A.H.; Douros, A. Reviewing the effects of thiazide and thiazide-like diuretics as photosensitizing drugs on the risk of skin cancer. J. Hypertens. 2019, 37, 1950–1958. [Google Scholar] [CrossRef]
- Korzeniowska, K.; Cieślewicz, A.; Chmara, E.; Jabłecka, A.; Pawlaczyk, M. Photosensitivity reactions in the elderly population: Questionnaire-based survey and literature review. Ther. Clin. Risk Manag. 2019, 15, 1111–1119. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, G.A.; Gradl, G.; Schulz, M.; Haidinger, G.; Tanew, A.; Weber, B. The frequency of photosensitizing drug dispensings in Austria and Germany: A correlation with their photosensitizing potential based on published literature. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 589–600. [Google Scholar] [CrossRef]
- Siiskonen, S.J.; Koomen, E.R.; Visser, L.E.; Herings, R.M.; Guchelaar, H.J.; Stricker, B.H.; Nijsten, T.E. Exposure to phototoxic NSAIDs and quinolones is associated with an increased risk of melanoma. Eur. J. Clin. Pharmacol. 2013, 69, 1437–1444. [Google Scholar] [CrossRef]
- Blakely, K.M.; Drucker, A.M.; Rosen, C.F. Drug-induced photosensitivity-an update: Culprit drugs, prevention and management. Drug Saf. 2019, 42, 827–847. [Google Scholar] [CrossRef]
- Jensen, A.; Thomson, H.; Engebjerg, M.C.; Olesen, A.B.; Sørensen, H.T.; Karagas, M.R. Use of photosensitising diuretics and risk of skin cancer: A population-based case-control study. Br. J. Cancer 2008, 99, 1522–1528. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.E. Drug-induced cutaneous photosensitivity: Incidence, mechanism, prevention and management. Drug Saf. 2002, 25, 345–372. [Google Scholar] [CrossRef]
- Stein, K.R.; Scheinfeld, N.S. Drug-induced photoallergic and phototoxic reactions. Expert Opin. Drug Saf. 2007, 6, 431–443. [Google Scholar] [CrossRef]
- Ibbotson, S. Drug and chemical induced photosensitivity from a clinical perspective. Photochem. Photobiol. Sci. 2018, 17, 1885–1903. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.; Lee, E.S.; Kim, J.; Guerra, L.; Naik, D.; Prida, X. Association between the use of thiazide diuretics and the risk of skin cancers: A meta-analysis of observational studies. J. Clin. Med. Res. 2019, 11, 247–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandini, S.; Palli, D.; Spadola, G.; Bendinelli, B.; Cocorocchio, E.; Stanganelli, I.; Miligi, L.; Masala, G.; Caini, S. Anti-hypertensive drugs and skin cancer risk: A review of the literature and meta-analysis. Crit. Rev. Oncol. Hematol. 2018, 122, 1–9. [Google Scholar] [CrossRef]
- Tang, H.; Fu, S.; Zhai, S.; Song, Y.; Han, J. Use of antihypertensive drugs and risk of malignant melanoma: A meta-analysis of observational studies. Drug Saf. 2018, 41, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Fu, S.; Zhai, S.; Song, Y.; Asgari, M.M.; Han, J. Use of antihypertensive drugs and risk of keratinocyte carcinoma: A meta-analysis of observational studies. Pharmacoepidemiol. Drug Saf. 2018, 27, 279–288. [Google Scholar] [CrossRef]
- Bendinelli, B.; Masala, G.; Garamella, G.; Palli, D.; Caini, S. Do thiazide diuretics increase the risk of skin cancer? A critical review of the scientific evidence and updated meta-analysis. Curr. Cardiol. Rep. 2019, 21, 92. [Google Scholar] [CrossRef] [PubMed]
- Pottegard, A.; Pedersen, S.A.; Schmidt, S.A.J.; Lee, C.N.; Hsu, C.K.; Liao, T.C.; Shao, S.C.; Lai, E.C. Use of hydrochlorothiazide and risk of skin cancer: A nationwide Taiwanese case-control study. Br. J. Cancer 2019, 121, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Pushparaj, C.; Herreros, J.; Nager, M.; Vilella, R.; Portero, M.; Pamplona, R.; Matias-Guiu, X.; Marti, R.M.; Canti, C. T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell Melanoma Res. 2013, 26, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Manna, D.; Bhuyan, R.; Saikh, F.; Ghosh, S.; Basak, J.; Ghosh, R. Novel 1,4-dihydropyridine induces apoptosis in human cancer cells through overexpression of Sirtuin1. Apoptosis 2018, 23, 532–553. [Google Scholar] [CrossRef] [PubMed]
- Andersson, R.; Ake Hofer, P.; Riklund-Ahlstrom, K.; Henriksson, R. Effects of interferon-alpha, verapamil and dacarbazine in the treatment of advanced malignant melanoma. Melanoma. Res. 2003, 13, 87–91. [Google Scholar] [CrossRef]
- Aslan, A.N.; Güney, M.C.; Akçay, M.; Keleş, T.; Bozkurt, E. Lichenoid type cutaneous hyperpigmentation induced by nebivolol. Turk. Kardiyol. Dern. Ars. 2017, 45, 268–270. [Google Scholar] [CrossRef]
- Miyauchi, H. Clinical and experimental photosensitivity reaction to tilisolol hydrochloride. Photodermatol. Photoimmunol. Photomed. 1994, 10, 255–258. [Google Scholar]
- Cleveland, K.H.; Yeung, S.; Huang, K.M.; Liang, S.; Andresen, B.T.; Huang, Y. Phosphoproteome profiling provides insight into the mechanism of action for carvedilol-mediated cancer prevention. Mol. Carcinog. 2018, 57, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, L.J.; Gayet-Ageron, A.; Le Gal, F.A. Effects of beta-blockers on melanoma microenvironment and disease survival in human. Cancers 2020, 12, 1094. [Google Scholar] [CrossRef]
- Huang, K.M.; Liang, S.; Yeung, S.; Oiyemhonlan, E.; Cleveland, K.H.; Parsa, C.; Orlando, R.; Meyskens, F.L., Jr.; Andresen, B.T.; Huang, Y. Topically applied carvedilol attenuates solar ultraviolet radiation induced skin carcinogenesis. Cancer Prev. Res. 2017, 10, 598–606. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Yeung, S.; Thakkar, A.; Huang, K.M.; Liu, M.M.; Kanassatega, R.S.; Parsa, C.; Orlando, R.; Jackson, E.K.; Andresen, B.T.; et al. Prevention of skin carcinogenesis by the beta-blocker carvedilol. Cancer Prev. Res. 2015, 8, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, P.; Miyamoto, D.; Goyeneche, A.; de Alba Graue, P.G.; Jin, E.; Tsering, T.; Dias, A.B.; Burnier, M.N.; Burnier, J.V. Beta-blockers exert potent anti-tumor effects in cutaneous and uveal melanoma. Cancer Med. 2019, 8, 7265–7277. [Google Scholar] [CrossRef] [Green Version]
- De Giorgi, V.; Geppetti, P.; Lupi, C.; Benemei, S. The role of beta-blockers in melanoma. J. Neuroimmune. Pharmacol. 2020, 15, 17–26. [Google Scholar] [CrossRef]
- Livingstone, E.; Hollestein, L.M.; van Herk-Sukel, M.P.; van de Poll-Franse, L.; Nijsten, T.; Schadendorf, D.; de Vries, E. Beta-blocker use and all-cause mortality of melanoma patients: Results from a population-based Dutch cohort study. Eur. J. Cancer 2013, 49, 3863–3871. [Google Scholar] [CrossRef]
- McCourt, C.; Coleman, H.G.; Murray, L.J.; Cantwell, M.M.; Dolan, O.; Powe, D.G.; Cardwell, C.R. Beta-blocker usage after malignant melanoma diagnosis and survival: A population-based nested case-control study. Br. J. Dermatol. 2014, 170, 930–938. [Google Scholar] [CrossRef]
- De Giorgi, V.; Gandini, S.; Grazzini, M.; Benemei, S.; Marchionni, N.; Geppetti, P. Effect of beta-blockers and other antihypertensive drugs on the risk of melanoma recurrence and death. Mayo. Clin. Proc. 2013, 88, 1196–1203. [Google Scholar] [CrossRef]
- Lemeshow, S.; Sorensen, H.T.; Phillips, G.; Yang, E.V.; Antonsen, S.; Riis, A.H.; Lesinski, G.B.; Jackson, R.; Glaser, R. Beta-blockers and survival among Danish patients with malignant melanoma: A population-based cohort study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 2273–2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Giorgi, V.; Grazzini, M.; Benemei, S.; Marchionni, N.; Botteri, E.; Pennacchioli, E.; Geppetti, P.; Gandini, S. Propranolol for Off-label treatment of patients with melanoma: Results from a cohort study. JAMA Oncol. 2018, 4, e172908. [Google Scholar] [CrossRef] [PubMed]
- Palleria, C.; Bennardo, L.; Dastoli, S.; Iannone, L.F.; Silvestri, M.; Manti, A.; Nisticò, S.P.; Russo, E.; De Sarro, G. Angiotensin-converting-enzyme inhibitors and angiotensin II receptor blockers induced pemphigus: A case series and literature review. Dermatol. Ther. 2019, 32, e12748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, T.; Gavras, I. Renin-angiotensin inhibition in combating malignancy: A review. Anticancer Res. 2019, 39, 4597–4602. [Google Scholar] [CrossRef]
- Wegman-Ostrosky, T.; Soto-Reyes, E.; Vidal-Millan, S.; Sanchez-Corona, J. The renin-angiotensin system meets the hallmarks of cancer. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Paquet, J.L.; Baudouin-Legros, M.; Brunelle, G.; Meyer, P. Angiotensin II-induced proliferation of aortic myocytes in spontaneously hypertensive rats. J. Hypertens. 1990, 8, 565–572. [Google Scholar] [CrossRef]
- Renziehausen, A.; Wang, H.; Rao, B.; Weir, L.; Nigro, C.L.; Lattanzio, L.; Merlano, M.; Vega-Rioja, A.; Del Carmen Fernandez-Carranco, M.; Hajji, N.; et al. The renin angiotensin system (RAS) mediates bifunctional growth regulation in melanoma and is a novel target for therapeutic intervention. Oncogene 2019, 38, 2320–2336. [Google Scholar] [CrossRef]
- Viola, E.; Coggiola Pittoni, A.; Drahos, A.; Moretti, U.; Conforti, A. Photosensitivity with angiotensin II receptor blockers: A retrospective study using data from vigibase (R). Drug Saf. 2015, 38, 889–894. [Google Scholar] [CrossRef]
- Yoon, C.; Yang, H.S.; Jeon, I.; Chang, Y.; Park, S.M. Use of angiotensin-converting-enzyme inhibitors or angiotensin-receptor blockers and cancer risk: A meta-analysis of observational studies. CMAJ 2011, 183, E1073–E1084. [Google Scholar] [CrossRef] [Green Version]
- Tomic, T.; Botton, T.; Cerezo, M.; Robert, G.; Luciano, F.; Puissant, A.; Gounon, P.; Allegra, M.; Bertolotto, C.; Bereder, J.M.; et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis. 2011, 2, e199. [Google Scholar] [CrossRef] [Green Version]
- Checkley, L.A.; Rho, O.; Angel, J.M.; Cho, J.; Blando, J.; Beltran, L.; Hursting, S.D.; DiGiovanni, J. Metformin inhibits skin tumor promotion in overweight and obese mice. Cancer Prev. Res. 2014, 7, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zhou, W.; Wang, H.; Lu, S.; Jin, Y.; Fu, J. Transdermal metformin hydrochloride-loaded cubic phases: In silico formulation optimization, preparation, properties, and application for local treatment of melanoma. Drug Deliv. 2019, 26, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Nakatani, K.; Kurose, T.; Hyo, T.; Watanabe, K.; Yabe, D.; Kawamoto, T.; Seino, Y. Drug-induced generalized skin eruption in a diabetes mellitus patient receiving a dipeptidyl peptidase-4 inhibitor plus metformin. Diabetes Ther. 2012, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Montaudie, H.; Cerezo, M.; Bahadoran, P.; Roger, C.; Passeron, T.; Machet, L.; Arnault, J.P.; Verneuil, L.; Maubec, E.; Aubin, F.; et al. Metformin monotherapy in melanoma: A pilot, open-label, prospective, and multicentric study indicates no benefit. Pigment Cell Melanoma Res. 2017, 30, 378–380. [Google Scholar] [CrossRef]
- Wu, C.L.; Qiang, L.; Han, W.; Ming, M.; Viollet, B.; He, Y.Y. Role of AMPK in UVB-induced DNA damage repair and growth control. Oncogene 2013, 32, 2682–2689. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.S.; Hartman, R.I.; Xue, J.; Giovannucci, E.L.; Nan, H.; Yang, K. Risk of skin cancer associated with metformin use: A meta-analysis of randomized controlled trials and observational studies. Cancer Prev. Res. 2020. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, J.; Yuan, Y.; Zou, Z.; Lai, X.; Rahmani, D.M.; Wang, F.; Xi, Y.; Huang, Q.; Bu, S. Dipeptidyl peptidase-4 inhibitors and cancer risk in patients with type 2 diabetes: A meta-analysis of randomized clinical trials. Sci. Rep. 2017, 7, 8273. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.A.; Annas, A.; Nyman, K.; Talme, T.; Emtestam, L. Basalioma after amiodarone therapy-not only in Britain. Br. J. Dermatol. 2004, 151, 932–933, author reply 933. [Google Scholar] [CrossRef]
- Monk, B.E. Basal cell carcinoma following amiodarone therapy. Br. J. Dermatol. 1995, 133, 148–149. [Google Scholar] [CrossRef]
- Maoz, K.B.; Dvash, S.; Brenner, S.; Brenner, S. Amiodarone-induced skin pigmentation and multiple basal-cell carcinomas. Int. J. Dermatol. 2009, 48, 1398–1400. [Google Scholar] [CrossRef]
- Rappersberger, K.; Honigsmann, H.; Ortel, B.; Tanew, A.; Konrad, K.; Wolff, K. Photosensitivity and hyperpigmentation in amiodarone-treated patients: Incidence, time course, and recovery. J. Investig. Dermatol. 1989, 93, 201–209. [Google Scholar] [CrossRef] [Green Version]
- De Neve, W.; Fortan, L.; Storme, G. Increased acute mucosal and cutaneous radiation toxicity in two patients taking amiodarone. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 224. [Google Scholar] [CrossRef]
- Wilkinson, C.M.; Weidner, G.J.; Paulino, A.C. Amiodarone and radiation therapy sequelae. Am. J. Clin. Oncol. 2001, 24, 379–381. [Google Scholar] [CrossRef]
- Su, V.Y.; Hu, Y.W.; Chou, K.T.; Ou, S.M.; Lee, Y.C.; Lin, E.Y.; Chen, T.J.; Tzeng, C.H.; Liu, C.J. Amiodarone and the risk of cancer: A nationwide population-based study. Cancer 2013, 119, 1699–1705. [Google Scholar] [CrossRef]
- Saad, A.; Falciglia, M.; Steward, D.L.; Nikiforov, Y.E. Amiodarone-induced thyrotoxicosis and thyroid cancer: Clinical, immunohistochemical, and molecular genetic studies of a case and review of the literature. Arch. Pathol. Lab. Med. 2004, 128, 807–810. [Google Scholar] [CrossRef]
- Rasmussen, P.V.; Dalgaard, F.; Gislason, G.H.; Torp-Pedersen, C.; Piccini, J.; D’Souza, M.; Ruwald, M.H.; Pallisgaard, J.L.; Hansen, M.L. Amiodarone treatment in atrial fibrillation and the risk of incident cancers: A nationwide observational study. Heart Rhythm. 2019. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, L.L.; De Guidi, G.; Condorelli, G.; Cambria, A.; Famà, M. Molecular mechanism of naproxen photosensitization in red blood cells. J. Photochem. Photobiol. B 1989, 3, 223–235. [Google Scholar] [CrossRef]
- De Guidi, G.; Giuffrida, S.; Condorelli, G.; Costanzo, L.L.; Miano, P.; Sortino, S. Molecular mechanism of drug photosensitization. IX. Effect of inorganic ions on DNA cleavage photosensitized by naproxen. Photochem. Photobiol. 1996, 63, 455–462. [Google Scholar] [CrossRef]
- Becker, L.; Eberlein-König, B.; Przybilla, B. Phototoxicity of non-steroidal anti-inflammatory drugs: In vitro studies with visible light. Acta Derm. Venereol. 1996, 76, 337–340. [Google Scholar] [CrossRef]
- Bracchitta, G.; Catalfo, A.; Martineau, S.; Sage, E.; De Guidi, G.; Girard, P.M. Investigation of the phototoxicity and cytotoxicity of naproxen, a non-steroidal anti-inflammatory drug, in human fibroblasts. Photochem. Photobiol. Sci. 2013, 12, 911–922. [Google Scholar] [CrossRef]
- Musa, K.A.K.; Eriksson, L.A. Theoretical study of the phototoxicity of naproxen and the active form of nabumetone. J. Phys. Chem. A 2008, 112, 10921–10930. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.C.; Waseem, M.; Rana, M.; Xu, H.; Kopelovich, L.; Elmets, C.A.; Athar, M. Naproxen inhibits UVB-induced basal cell and squamous cell carcinoma development in Ptch1(+/−)/SKH-1 Hairless Mice. Photochem. Photobiol. 2017, 93, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Mikulec, C.D.; Rundhaug, J.E.; Simper, M.S.; Lubet, R.A.; Fischer, S.M. The chemopreventive efficacies of nonsteroidal anti-inflammatory drugs: The relationship of short-term biomarkers to long-term skin tumor outcome. Cancer Prev. Res. 2013, 6, 675–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez Maglio, D.H.; Paz, M.L.; Ferrari, A.; Weill, F.S.; Nieto, J.; Leoni, J. Alterations in skin immune response throughout chronic UVB irradiation-skin cancer development and prevention by naproxen. Photochem. Photobiol. 2010, 86, 146–152. [Google Scholar] [CrossRef]
- Kast, R.E. Melanoma inhibition by cyclooxygenase inhibitors: Role of interleukin-6 suppression, a putative mechanism of action, and clinical implications. Med. Oncol. 2007, 24, 1–6. [Google Scholar] [CrossRef]
- El-Yazbi, A.F.; Guirguis, K.M.; Belal, T.S.; Bedair, M.M. Sensitive spectrofluorimetric and mass spectroscopic methods for the determination of nucleic acid damage induced by photosensitized anti-inflammatory drugs: Comparative study. J. Pharm. Biomed. Anal. 2020, 187, 113326. [Google Scholar] [CrossRef]
- Campione, E.; Diluvio, L.; Paterno, E.J.; Chimenti, S. Topical treatment of actinic keratoses with piroxicam 1% gel: A preliminary open-label study utilizing a new clinical score. Am. J. Clin. Dermatol. 2010, 11, 45–50. [Google Scholar] [CrossRef]
- Campione, E.; Paterno, E.J.; Candi, E.; Falconi, M.; Costanza, G.; Diluvio, L.; Terrinoni, A.; Bianchi, L.; Orlandi, A. The relevance of piroxicam for the prevention and treatment of nonmelanoma skin cancer and its precursors. Drug Des. Devel. Ther. 2015, 9, 5843–5850. [Google Scholar] [CrossRef] [Green Version]
- Agozzino, M.; Russo, T.; Franceschini, C.; Mazzilli, S.; Garofalo, V.; Campione, E.; Bianchi, L.; Milani, M.; Argenziano, G. Effects of topical piroxicam and sun filters in actinic keratosis evolution and field cancerization: A two-center, assessor-blinded, clinical, confocal microscopy and dermoscopy evaluation trial. Curr. Med. Res. Opin. 2019, 35, 1785–1792. [Google Scholar] [CrossRef]
- Puviani, M.; Galloni, C.; Marchetti, S.; Sergio Pavone, P.; Lovati, S.; Pistone, G.; Caputo, V.; Tilotta, G.; Scarcella, G.; Campione, E.; et al. Efficacy of a film-forming medical device containing sunscreen (50+) and piroxicam 0.8% in actinic keratosis and field cancerization: A multicenter, assessor-blinded, 3 month trial. Curr. Med. Res. Opin. 2017, 33, 1255–1259. [Google Scholar] [CrossRef]
- Scotti, E.; Deledda, S.; Milani, M. Efficacy of a film-forming medical device containing piroxicam and sun filters in the treatment of multiple actinic keratosis lesions in a subject with a history of kaposi sarcoma. Case Rep. Dermatol. 2016, 8, 254–261. [Google Scholar] [CrossRef]
- Garofalo, V.; Ventura, A.; Mazzilli, S.; Diluvio, L.; Bianchi, L.; Toti, L.; Tisone, G.; Milani, M.; Campione, E. Treatment of multiple actinic keratosis and field of cancerization with topical piroxicam 0.8% and sunscreen 50+ in organ transplant recipients: A series of 10 cases. Case Rep. Dermatol. 2017, 9, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Mazzilli, S.; Garofalo, V.; Ventura, A.; Diluvio, L.; Milani, M.; Bianchi, L.; Campione, E. Effects of topical 0.8% piroxicam and 50+ sunscreen filters on actinic keratosis in hypertensive patients treated with or without photosensitizing diuretic drugs: An observational cohort study. Clin. Cosmet. Investig. Dermatol. 2018, 11, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Yu, P.; Lin, S.; Li, Q.; Fang, Z.; Huang, Z. The association between nonsteroidal anti-inflammatory drugs and skin cancer: Different responses in American and European populations. Pharmacol. Res. 2019, 152, 104499. [Google Scholar] [CrossRef]
- Endo, A. A historical perspective on the discovery of statins. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 484–493. [Google Scholar] [CrossRef] [Green Version]
- Marguery, M.C.; Chouini-Lalanne, N.; Drugeon, C.; Gadroy, A.; Bayle, P.; Journe, F.; Bazex, J.; D’Incan, M. UV-B phototoxic effects induced by atorvastatin. Arch. Dermatol. 2006, 142, 1082–1084. [Google Scholar] [CrossRef]
- Morimoto, K.; Kawada, A.; Hiruma, M.; Ishibashi, A.; Banba, H. Photosensitivity to simvastatin with an unusual response to photopatch and photo tests. Contact Dermat. 1995, 33, 274. [Google Scholar] [CrossRef]
- Viola, G.; Grobelny, P.; Linardi, M.A.; Salvador, A.; Basso, G.; Mielcarek, J.; Dall’Acqua, S.; Vedaldi, D.; Dall’Acqua, F. The phototoxicity of fluvastatin, an HMG-CoA reductase inhibitor, is mediated by the formation of a benzocarbazole-like photoproduct. Toxicol. Sci. 2010, 118, 236–250. [Google Scholar] [CrossRef] [Green Version]
- Viola, G.; Grobelny, P.; Linardi, M.A.; Salvador, A.; Dall’Acqua, S.; Sobotta, L.; Mielcarek, J.; Dall’Acqua, F.; Vedaldi, D.; Basso, G. Pitavastatin, a new HMG-CoA reductase inhibitor, induces phototoxicity in human keratinocytes NCTC-2544 through the formation of benzophenanthridine-like photoproducts. Arch. Toxicol. 2012, 86, 483–496. [Google Scholar] [CrossRef]
- Goldstein, M.R.; Mascitelli, L.; Pezzetta, F. The double-edged sword of statin immunomodulation. Int. J. Cardiol. 2009, 135, 128–130. [Google Scholar] [CrossRef]
- Coimbra, M.; Banciu, M.; Fens, M.H.; de Smet, L.; Cabaj, M.; Metselaar, J.M.; Storm, G.; Schiffelers, R.M. Liposomal pravastatin inhibits tumor growth by targeting cancer-related inflammation. J. Control. Release 2010, 148, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Sarrabayrouse, G.; Synaeve, C.; Leveque, K.; Favre, G.; Tilkin-Mariame, A.F. Statins stimulate in vitro membrane FasL expression and lymphocyte apoptosis through RhoA/ROCK pathway in murine melanoma cells. Neoplasia 2007, 9, 1078–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, V.N.; Hei, T.K. Regulation of apoptosis in human melanoma and neuroblastoma cells by statins, sodium arsenite and TRAIL: A role of combined treatment versus monotherapy. Apoptosis 2011, 16, 1268–1284. [Google Scholar] [CrossRef] [PubMed]
- Kuoppala, J.; Lamminpaa, A.; Pukkala, E. Statins and cancer: A systematic review and meta-analysis. Eur. J. Cancer 2008, 44, 2122–2132. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, X.B.; Chen, Q. Statin use is not associated with reduced risk of skin cancer: A meta-analysis. Br. J. Cancer 2014, 110, 802–807. [Google Scholar] [CrossRef] [Green Version]
- Stein, E.A.; Corsini, A.; Gimpelewicz, C.R.; Bortolini, M.; Gil, M. Fluvastatin treatment is not associated with an increased incidence of cancer. Int. J. Clin. Pract. 2006, 60, 1028–1034. [Google Scholar] [CrossRef]
- Yang, K.; Marley, A.; Tang, H.; Song, Y.; Tang, J.Y.; Han, J. Statin use and non-melanoma skin cancer risk: A meta-analysis of randomized controlled trials and observational studies. Oncotarget 2017, 8, 75411–75417. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.M.; Li, W.Q.; Cho, E.; Curhan, G.C.; Qureshi, A.A. Statin use and risk of skin cancer. J. Am. Acad. Dermatol. 2018, 78, 682–693. [Google Scholar] [CrossRef]
- Freeman, S.R.; Drake, A.L.; Heilig, L.F.; Graber, M.; McNealy, K.; Schilling, L.M.; Dellavalle, R.P. Statins, fibrates, and melanoma risk: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2006, 98, 1538–1546. [Google Scholar] [CrossRef]
- Bonovas, S.; Nikolopoulos, G.; Filioussi, K.; Peponi, E.; Bagos, P.; Sitaras, N.M. Can statin therapy reduce the risk of melanoma? A meta-analysis of randomized controlled trials. Eur. J. Epidemiol. 2010, 25, 29–35. [Google Scholar] [CrossRef]
- Dellavalle, R.P.; Drake, A.; Graber, M.; Heilig, L.F.; Hester, E.J.; Johnson, K.R.; McNealy, K.; Schilling, L. Statins and fibrates for preventing melanoma. Cochrane Database Syst. Rev. 2005, CD003697. [Google Scholar] [CrossRef]
- Shutter, M.C.; Akhondi, H. Tetracycline; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Rok, J.; Buszman, E.; Delijewski, M.; Otreba, M.; Beberok, A.; Wrzesniok, D. Effect of tetracycline and UV radiation on melanization and antioxidant status of melanocytes. J. Photochem. Photobiol. B 2015, 148, 168–173. [Google Scholar] [CrossRef]
- Rok, J.; Rzepka, Z.; Respondek, M.; Beberok, A.; Wrzesniok, D. Chlortetracycline and melanin biopolymer—The risk of accumulation and implications for phototoxicity: An in vitro study on normal human melanocytes. Chem. Biol. Interact. 2019, 303, 27–34. [Google Scholar] [CrossRef]
- Ferguson, J.; Johnson, B.E. Ciprofloxacin-induced photosensitivity: In vitro and in vivo studies. Br. J. Dermatol. 1990, 123, 9–20. [Google Scholar] [CrossRef]
- Arata, J.; Horio, T.; Soejima, R.; Ohara, K. Photosensitivity reactions caused by lomefloxacin hydrochloride: A multicenter survey. Antimicrob. Agents Chemother. 1998, 42, 3141–3145. [Google Scholar] [CrossRef] [Green Version]
- Domagala, J.M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J. Antimicrob. Chemother. 1994, 33, 685–706. [Google Scholar] [CrossRef]
- Oliveira, H.S.; Goncalo, M.; Figueiredo, A.C. Photosensitivity to lomefloxacin. A clinical and photobiological study. Photodermatol. Photoimmunol. Photomed. 2000, 16, 116–120. [Google Scholar] [CrossRef]
- Marutani, K.; Matsumoto, M.; Otabe, Y.; Nagamuta, M.; Tanaka, K.; Miyoshi, A.; Hasegawa, T.; Nagano, H.; Matsubara, S.; Kamide, R.; et al. Reduced phototoxicity of a fluoroquinolone antibacterial agent with a methoxy group at the 8 position in mice irradiated with long-wavelength UV light. Antimicrob. Agents Chemother. 1993, 37, 2217–2223. [Google Scholar] [CrossRef] [Green Version]
- Li, W.Q.; Drucker, A.M.; Cho, E.; Laden, F.; VoPham, T.; Li, S.; Weinstock, M.A.; Qureshi, A.A. Tetracycline use and risk of incident skin cancer: A prospective study. Br. J. Cancer 2018, 118, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.N.; Zens, M.S.; Perry, A.E.; Spencer, S.K.; Duell, E.J.; Karagas, M.R. Photosensitizing agents and the risk of non-melanoma skin cancer: A population-based case-control study. J. Investig. Dermatol. 2013, 133, 1950–1955. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.T.; Chandrasekar, P.H. Adverse effects of voriconazole: Over a decade of use. Clin. Transpl. 2016, 30, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Ona, K.; Oh, D.H. Voriconazole N-oxide and its ultraviolet B photoproduct sensitize keratinocytes to ultraviolet A. Br. J. Dermatol. 2015, 173, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.; Mansh, M.; Chin-Hong, P.; Singer, J.; Arron, S.T. Voriconazole-associated cutaneous malignancy: A literature review on photocarcinogenesis in organ transplant recipients. Clin. Infect Dis. 2014, 58, 997–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, V.; Gober, M.D.; Bashir, H.; O’Day, C.; Blair, I.A.; Mesaros, C.; Weng, L.; Huang, A.; Chen, A.; Tang, R.; et al. Voriconazole enhances UV-induced DNA damage by inhibiting catalase and promoting oxidative stress. Exp. Dermatol. 2020, 29, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Mansh, M.; Ing, L.; Dimon, M.; Celli, A.; Mauro, T.M.; Arron, S.T. Voriconazole exposure regulates distinct cell-cycle and terminal differentiation pathways in primary human keratinocytes. Br. J. Dermatol. 2017, 176, 816–820. [Google Scholar] [CrossRef] [Green Version]
- Ikeya, S.; Sakabe, J.I.; Yamada, T.; Naito, T.; Tokura, Y. Voriconazole-induced photocarcinogenesis is promoted by aryl hydrocarbon receptor-dependent COX-2 upregulation. Sci. Rep. 2018, 8, 5050. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Shi, W.; Song, Y.; Han, J. Voriconazole exposure and risk of cutaneous squamous cell carcinoma among lung or hematopoietic cell transplant patients: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2019, 80, 500–507. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.T.; Coughlin, C.C.; Hawryluk, E.B.; Hook, K.; Humphrey, S.R.; Kruse, L.; Lawley, L.; Al-Sayegh, H.; London, W.B.; Marghoob, A.; et al. Risk factors and outcomes of nonmelanoma skin cancer in children and young adults. J. Pediatr. 2019, 211, 152–158. [Google Scholar] [CrossRef]
- Elnahas, S.; Olson, M.T.; Kang, P.; Panchanathan, R.; Masuda, T.; Walia, R.; Zeitouni, N.C.; Smith, M.A.; Bremner, R.M. Factors associated with skin cancer in lung transplant recipients: A single-center experience. Clin. Transpl. 2019, 33, e13718. [Google Scholar] [CrossRef]
- Grager, N.; Leffler, M.; Gottlieb, J.; Fuge, J.; Warnecke, G.; Gutzmer, R.; Satzger, I. Risk factors for developing nonmelanoma skin cancer after lung transplantation. J. Skin Cancer 2019, 2019, 7089482. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.D.; Cowen, E.W.; Nguyen, J.C.; McCalmont, T.H.; Fox, L.P. Melanoma associated with long-term voriconazole therapy: A new manifestation of chronic photosensitivity. Arch. Dermatol. 2010, 146, 300–304. [Google Scholar] [CrossRef] [Green Version]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef]
- Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larkin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio, M.; et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011, 364, 2507–2516. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.; Cohen, M.S. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin. Drug Discov. 2016, 11, 907–916. [Google Scholar] [CrossRef] [Green Version]
- Larkin, J.; Del Vecchio, M.; Ascierto, P.A.; Krajsova, I.; Schachter, J.; Neyns, B.; Espinosa, E.; Garbe, C.; Sileni, V.C.; Gogas, H.; et al. Vemurafenib in patients with BRAF(V600) mutated metastatic melanoma: An open-label, multicentre, safety study. Lancet Oncol. 2014, 15, 436–444. [Google Scholar] [CrossRef]
- Chen, P.; Chen, F.; Zhou, B. Systematic review and meta-analysis of prevalence of dermatological toxicities associated with vemurafenib treatment in patients with melanoma. Clin. Exp. Dermatol. 2019, 44, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Su, K.A.; Achacoso, N.S.; Friedman, G.D.; Asgari, M.M. Photosensitizing antihypertensive drug use and risk of cutaneous squamous cell carcinoma. Br. J. Dermatol. 2018, 179, 1088–1094. [Google Scholar] [CrossRef]
- Mortazavi, S.S.; Shati, M.; Keshtkar, A.; Malakouti, S.K.; Bazargan, M.; Assari, S. Defining polypharmacy in the elderly: A systematic review protocol. BMJ Open 2016, 6, e010989. [Google Scholar] [CrossRef]
- Maher, R.L.; Hanlon, J.; Hajjar, E.R. Clinical consequences of polypharmacy in elderly. Expert Opin. Drug Saf. 2014, 13, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Drucker, A.M.; Li, W.Q.; Savitz, D.A.; Weinstock, M.A.; Han, J.; Li, T.; Qureshi, A.A.; Cho, E. Association between health maintenance practices and skin cancer risk as a possible source of detection bias. JAMA Dermatol. 2019, 155, 353–357. [Google Scholar] [CrossRef]
- Schwartz, L.M.; Woloshin, S.; Dvorin, E.L.; Welch, H.G. Ratio measures in leading medical journals: Structured review of accessibility of underlying absolute risks. BMJ 2006, 333, 1248. [Google Scholar] [CrossRef] [Green Version]
Class | Medications |
---|---|
Antihypertensives | Diuretics |
CCBs | |
Beta-blockers | |
ACEi | |
ARB | |
Antidiabetics | Metformin |
Sitagliptin | |
Glyburide | |
NSAIDs | Naproxen |
Piroxicam | |
Antibacterial agents | Tetracycline |
Doxycycline | |
Ciprofloxacin | |
Levofloxacin | |
Others | Amiodarone |
Statins | |
Vemurafenib | |
Voriconazole |
Drug Class/Medications | BCC | SCC | Melanoma |
---|---|---|---|
Diuretics | + (4) | + (7) | + (5) |
CCBs | + (3) | Null (3) | + (5) |
Beta-Blockers | + (3) | Null (3) | Null (3) |
ACEi | Null (2) | Null (2) | Null (5) |
ARB | Null (2) | Null (2) | Null (3) |
Metformin | Null (3) | Null (2) | Null (9) |
Amiodarone | Null (2) | ||
Statins | Null (20) | Null (26) | |
Voriconazole | Null (2) | + (6) | 0 |
Vemurafenib | 0 | + (11) | 0 |
Antibacterial agents | + (3) | + (3) | + (3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, E.A.; Baranwal, N.; Kang, J.H.; Qureshi, A.A.; Drucker, A.M.; Cho, E. Photosensitizing Medications and Skin Cancer: A Comprehensive Review. Cancers 2021, 13, 2344. https://doi.org/10.3390/cancers13102344
George EA, Baranwal N, Kang JH, Qureshi AA, Drucker AM, Cho E. Photosensitizing Medications and Skin Cancer: A Comprehensive Review. Cancers. 2021; 13(10):2344. https://doi.org/10.3390/cancers13102344
Chicago/Turabian StyleGeorge, Elisabeth A., Navya Baranwal, Jae H. Kang, Abrar A. Qureshi, Aaron M. Drucker, and Eunyoung Cho. 2021. "Photosensitizing Medications and Skin Cancer: A Comprehensive Review" Cancers 13, no. 10: 2344. https://doi.org/10.3390/cancers13102344
APA StyleGeorge, E. A., Baranwal, N., Kang, J. H., Qureshi, A. A., Drucker, A. M., & Cho, E. (2021). Photosensitizing Medications and Skin Cancer: A Comprehensive Review. Cancers, 13(10), 2344. https://doi.org/10.3390/cancers13102344