High Monocyte Count and Expression of S100A9 and S100A12 in Peripheral Blood Mononuclear Cells Are Associated with Poor Outcome in Patients with Metastatic Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Sample Preparation
2.3. RNA Preparation
2.4. qRT-PCR Analyses
2.5. Flow Cytometry Analysis
2.6. Plasma Analyses
2.7. Statistical Analyses
3. Results
3.1. Prostate Cancer Patients with Metastases Show High Levels of S100A9 and S100A12
3.2. High Expression of S100A9 and S100A12 and a High Monocyte Count Are Associated with Poor Outcome in Patients with Metastases
3.3. Expression of S100A9 Decreases after Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Damber, J.E.; Aus, G. Prostate cancer. Lancet 2008, 371, 1710–1721. [Google Scholar] [CrossRef]
- Gleason, D.F.; Mellinger, G.T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 1974, 111, 58–64. [Google Scholar] [CrossRef]
- Lundholm, M.; Hagglof, C.; Wikberg, M.L.; Stattin, P.; Egevad, L.; Bergh, A.; Wikstrom, P.; Palmqvist, R.; Edin, S. Secreted Factors from Colorectal and Prostate Cancer Cells Skew the Immune Response in Opposite Directions. Sci. Rep. 2015, 5, 15651. [Google Scholar] [CrossRef] [PubMed]
- Strasner, A.; Karin, M. Immune Infiltration and Prostate Cancer. Front. Oncol. 2015, 5, 128. [Google Scholar] [CrossRef] [PubMed]
- De Velasco, M.A.; Uemura, H. Prostate cancer immunotherapy: Where are we and where are we going? Curr. Opin. Urol. 2018, 28, 15–24. [Google Scholar] [CrossRef]
- Lissbrant, I.F.; Stattin, P.; Wikstrom, P.; Damber, J.E.; Egevad, L.; Bergh, A. Tumor associated macrophages in human prostate cancer: Relation to clinicopathological variables and survival. Int. J. Oncol. 2000, 17, 445–451. [Google Scholar] [CrossRef]
- Nonomura, N.; Takayama, H.; Nakayama, M.; Nakai, Y.; Kawashima, A.; Mukai, M.; Nagahara, A.; Aozasa, K.; Tsujimura, A. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int. 2011, 107, 1918–1922. [Google Scholar] [CrossRef] [PubMed]
- Shafique, K.; Proctor, M.J.; McMillan, D.C.; Qureshi, K.; Leung, H.; Morrison, D.S. Systemic inflammation and survival of patients with prostate cancer: Evidence from the Glasgow Inflammation Outcome Study. Prostate Cancer Prostatic Dis. 2012, 15, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L. Functions of S100 proteins. Curr. Mol. Med. 2013, 13, 24–57. [Google Scholar] [CrossRef] [Green Version]
- Marenholz, I.; Heizmann, C.W.; Fritz, G. S100 proteins in mouse and man: From evolution to function and pathology (including an update of the nomenclature). Biochem. Biophys. Res. Commun. 2004, 322, 1111–1122. [Google Scholar] [CrossRef]
- Gebhardt, C.; Nemeth, J.; Angel, P.; Hess, J. S100A8 and S100A9 in inflammation and cancer. Biochem. Pharm. 2006, 72, 1622–1631. [Google Scholar] [CrossRef]
- Goyette, J.; Geczy, C.L. Inflammation-associated S100 proteins: New mechanisms that regulate function. Amino. Acids. 2011, 41, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Perera, C.; McNeil, H.P.; Geczy, C.L. S100 Calgranulins in inflammatory arthritis. Immunol. Cell Biol. 2010, 88, 41–49. [Google Scholar] [CrossRef]
- Bjork, P.; Bjork, A.; Vogl, T.; Stenstrom, M.; Liberg, D.; Olsson, A.; Roth, J.; Ivars, F.; Leanderson, T. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol. 2009, 7, e97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogl, T.; Tenbrock, K.; Ludwig, S.; Leukert, N.; Ehrhardt, C.; van Zoelen, M.A.; Nacken, W.; Foell, D.; van der Poll, T.; Sorg, C.; et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 2007, 13, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.A.; Drury, S.; Fu, C.; Qu, W.; Taguchi, A.; Lu, Y.; Avila, C.; Kambham, N.; Bierhaus, A.; Nawroth, P.; et al. RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides. Cell 1999, 97, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Salama, I.; Malone, P.S.; Mihaimeed, F.; Jones, J.L. A review of the S100 proteins in cancer. Eur J. Surg. Oncol. 2008, 34, 357–364. [Google Scholar] [CrossRef]
- Cai, H.; Ye, B.G.; Ao, J.Y.; Zhu, X.D.; Zhang, Y.Y.; Chai, Z.T.; Wang, C.H.; Sun, H.C. High expression of S100A12 on intratumoral stroma cells indicates poor prognosis following surgical resection of hepatocellular carcinoma. Oncol. Lett. 2018, 16, 5398–5404. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Liu, J.; Yao, M.; Li, L.; Li, G. Downregulation of S100 calcium binding protein A12 inhibits the growth of glioma cells. BMC Cancer 2020, 20, 261. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, M.; Williams, R.; Wang, L.; Vogl, T.; Srikrishna, G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol. Cancer Res. 2011, 9, 133–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tidehag, V.; Hammarsten, P.; Egevad, L.; Granfors, T.; Stattin, P.; Leanderson, T.; Wikstrom, P.; Josefsson, A.; Hagglof, C.; Bergh, A. High density of S100A9 positive inflammatory cells in prostate cancer stroma is associated with poor outcome. Eur. J. Cancer 2014, 50, 1829–1835. [Google Scholar] [CrossRef]
- Grebhardt, S.; Veltkamp, C.; Strobel, P.; Mayer, D. Hypoxia and HIF-1 increase S100A8 and S100A9 expression in prostate cancer. Int. J. Cancer 2012, 131, 2785–2794. [Google Scholar] [CrossRef] [PubMed]
- Hermani, A.; Hess, J.; De Servi, B.; Medunjanin, S.; Grobholz, R.; Trojan, L.; Angel, P.; Mayer, D. Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin. Cancer Res. 2005, 11, 5146–5152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, S.; Stephan, C.; Lein, M.; Loening, S.A.; Jung, K. S100A8, S100A9, and the S100A8/A9 complex in circulating blood are not associated with prostate cancer risk-A re-evaluation study. Prostate 2007, 67, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Olmos, D.; Brewer, D.; Clark, J.; Danila, D.C.; Parker, C.; Attard, G.; Fleisher, M.; Reid, A.H.; Castro, E.; Sandhu, S.K.; et al. Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: A prospective, two-stage study. Lancet Oncol. 2012, 13, 1114–1124. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.W.; Galsky, M.D.; Scher, H.I.; Magidson, J.; Wassmann, K.; Lee, G.S.; Katz, L.; Subudhi, S.K.; Anand, A.; Fleisher, M.; et al. A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: A prospective study. Lancet Oncol. 2012, 13, 1105–1113. [Google Scholar] [CrossRef]
- Wang, L.; Gong, Y.; Chippada-Venkata, U.; Heck, M.M.; Retz, M.; Nawroth, R.; Galsky, M.; Tsao, C.K.; Schadt, E.; de Bono, J.; et al. A robust blood gene expression-based prognostic model for castration-resistant prostate cancer. BMC Med. 2015, 13, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glimelius, B.; Melin, B.; Enblad, G.; Alafuzoff, I.; Beskow, A.; Ahlstrom, H.; Bill-Axelson, A.; Birgisson, H.; Bjor, O.; Edqvist, P.H.; et al. U-CAN: A prospective longitudinal collection of biomaterials and clinical information from adult cancer patients in Sweden. Acta Oncol. 2018, 57, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Van Hemelrijck, M.; Wigertz, A.; Sandin, F.; Garmo, H.; Hellstrom, K.; Fransson, P.; Widmark, A.; Lambe, M.; Adolfsson, J.; Varenhorst, E.; et al. Cohort Profile: The National Prostate Cancer Register of Sweden and Prostate Cancer data Base Sweden 2.0. Int. J. Epidemiol. 2013, 42, 956–967. [Google Scholar] [CrossRef] [Green Version]
- Scher, H.I.; Halabi, S.; Tannock, I.; Morris, M.; Sternberg, C.N.; Carducci, M.A.; Eisenberger, M.A.; Higano, C.; Bubley, G.J.; Dreicer, R.; et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: Recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 2008, 26, 1148–1159. [Google Scholar] [CrossRef]
- Nilsson, R.J.; Balaj, L.; Hulleman, E.; van Rijn, S.; Pegtel, D.M.; Walraven, M.; Widmark, A.; Gerritsen, W.R.; Verheul, H.M.; Vandertop, W.P.; et al. Blood platelets contain tumor-derived RNA biomarkers. Blood 2011, 118, 3680–3683. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30, e36. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Zhu, Y.J.; Pan, J.H.; Xu, F.; Shao, X.G.; Sha, J.J.; Liu, Q.; Huang, Y.R.; Dong, B.J.; Xue, W. Peripheral monocyte count: An independent diagnostic and prognostic biomarker for prostate cancer—A large Chinese cohort study. Asian J. Androl. 2017, 19, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, R.A.; Ristow, K.; Habermann, T.M.; Inwards, D.J.; Micallef, I.N.; Johnston, P.B.; Colgan, J.P.; Nowakowski, G.S.; Ansell, S.M.; Witzig, T.E.; et al. The absolute monocyte and lymphocyte prognostic score predicts survival and identifies high-risk patients in diffuse large-B-cell lymphoma. Leukemia 2011, 25, 1502–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.Y.; Choi, C.H.; Sung, C.O.; Do, I.G.; Huh, S.; Song, T.; Kim, M.K.; Kim, H.J.; Kim, T.J.; Lee, J.W.; et al. Prognostic value of pre-treatment circulating monocyte count in patients with cervical cancer: Comparison with SCC-Ag level. Gynecol. Oncol. 2012, 124, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Cassetta, L.; Fragkogianni, S.; Sims, A.H.; Swierczak, A.; Forrester, L.M.; Zhang, H.; Soong, D.Y.H.; Cotechini, T.; Anur, P.; Lin, E.Y.; et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell 2019, 35, 588–602.e10. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, A.J.; Haggman, M.; Stadler, W.M.; Gingrich, J.R.; Assikis, V.; Polikoff, J.; Damber, J.E.; Belkoff, L.; Nordle, O.; Forsberg, G.; et al. Long-term survival and biomarker correlates of tasquinimod efficacy in a multicenter randomized study of men with minimally symptomatic metastatic castration-resistant prostate cancer. Clin. Cancer Res. 2013, 19, 6891–6901. [Google Scholar] [CrossRef] [Green Version]
- Sternberg, C.; Armstrong, A.; Pili, R.; Ng, S.; Huddart, R.; Agarwal, N.; Khvorostenko, D.; Lyulko, O.; Brize, A.; Vogelzang, N.; et al. Randomized, Double-Blind, Placebo-Controlled Phase III Study of Tasquinimod in Men with Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2016, 34, 2636–2643. [Google Scholar] [CrossRef]
- Romano, E.; Kusio-Kobialka, M.; Foukas, P.G.; Baumgaertner, P.; Meyer, C.; Ballabeni, P.; Michielin, O.; Weide, B.; Romero, P.; Speiser, D.E. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl. Acad. Sci. USA 2015, 112, 6140–6145. [Google Scholar] [CrossRef] [Green Version]
- Krieg, C.; Nowicka, M.; Guglietta, S.; Schindler, S.; Hartmann, F.J.; Weber, L.M.; Dummer, R.; Robinson, M.D.; Levesque, M.P.; Becher, B. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 2018, 24, 144–153. [Google Scholar] [CrossRef]
- Hayashi, T.; Fujita, K.; Nojima, S.; Hayashi, Y.; Nakano, K.; Ishizuya, Y.; Wang, C.; Yamamoto, Y.; Kinouchi, T.; Matsuzaki, K.; et al. Peripheral blood monocyte count reflecting tumor-infiltrating macrophages is a predictive factor of adverse pathology in radical prostatectomy specimens. Prostate 2017, 77, 1383–1388. [Google Scholar] [CrossRef] [PubMed]
- Foell, D.; Wittkowski, H.; Vogl, T.; Roth, J. S100 proteins expressed in phagocytes: A novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol. 2007, 81, 28–37. [Google Scholar] [CrossRef]
- McCormick, M.M.; Rahimi, F.; Bobryshev, Y.V.; Gaus, K.; Zreiqat, H.; Cai, H.; Lord, R.S.; Geczy, C.L. S100A8 and S100A9 in human arterial wall. Implications for atherogenesis. J. Biol. Chem. 2005, 280, 41521–41529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halin, S.; Rudolfsson, S.H.; Van Rooijen, N.; Bergh, A. Extratumoral macrophages promote tumor and vascular growth in an orthotopic rat prostate tumor model. Neoplasia 2009, 11, 177–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennbacken, K.; Welen, K.; Olsson, A.; Axelsson, B.; Torngren, M.; Damber, J.E.; Leanderson, T. Inhibition of metastasis in a castration resistant prostate cancer model by the quinoline-3-carboxamide tasquinimod (ABR-215050). Prostate 2012, 72, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Kallberg, E.; Vogl, T.; Liberg, D.; Olsson, A.; Bjork, P.; Wikstrom, P.; Bergh, A.; Roth, J.; Ivars, F.; Leanderson, T. S100A9 interaction with TLR4 promotes tumor growth. PLoS ONE 2012, 7, e34207. [Google Scholar] [CrossRef]
- Halin Bergstrom, S.; Nilsson, M.; Adamo, H.; Thysell, E.; Jernberg, E.; Stattin, P.; Widmark, A.; Wikstrom, P.; Bergh, A. Extratumoral Heme Oxygenase-1 (HO-1) Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth. PLoS ONE 2016, 11, e0157280. [Google Scholar] [CrossRef]
- Ylitalo, E.B.; Thysell, E.; Jernberg, E.; Lundholm, M.; Crnalic, S.; Egevad, L.; Stattin, P.; Widmark, A.; Bergh, A.; Wikstrom, P. Subgroups of Castration-resistant Prostate Cancer Bone Metastases Defined Through an Inverse Relationship Between Androgen Receptor Activity and Immune Response. Eur. Urol. 2017, 71, 776–787. [Google Scholar] [CrossRef] [Green Version]
- Zarif, J.C.; Baena-Del Valle, J.A.; Hicks, J.L.; Heaphy, C.M.; Vidal, I.; Luo, J.; Lotan, T.L.; Hooper, J.E.; Isaacs, W.B.; Pienta, K.J.; et al. Mannose Receptor-positive Macrophage Infiltration Correlates with Prostate Cancer Onset and Metastatic Castration-resistant Disease. Eur. Urol. Oncol. 2019, 2, 429–436. [Google Scholar] [CrossRef]
Clinical Parameter | Low Risk (LR) | Intermediate Risk (IR) | High Risk (HR) | Metastasis (M1) |
---|---|---|---|---|
Number of patients | 15 | 32 | 42 | 30 |
Age at first sample, median (quartiles) years | 66 (59–69) | 68 (62–72) | 70 (67–73) | 67 (63–79) |
Initial PSA, median (quartiles) µg/L | 6.2 (4.7–6.8) | 5.3 (4.3–9.5) | 28.5 (21–51) | 193 (98–372) |
Risk group * | ||||
1: T 1–2 and GS < 7 and PSA < 10 µg/L | 15 | |||
2: T 1–2 and/or GS 7 and/or 10 ≤ PSA < 20 µg/L | 32 | |||
3a: T 1–2 and/or GS 8–10 and/or 20 ≤ PSA < 50 µg/L | 17 | |||
3b: T 3 and/or PSA < 50 µg/L | 10 | |||
4: T 4 and/or N1 and/or 50 ≤ PSA < 100 µg/L and M0 | 10 | |||
4b: PSA ≥ 100 µg/L and M0 | 5 | |||
5: Metastasis # | 30 |
Variable | S100A9 mRNA | S100A12 mRNA | ||||
---|---|---|---|---|---|---|
r | n | r | n | |||
mRNA S100A12 | 0.879 | ** | 119 | |||
Gleason score | 0.031 | 119 | 0.063 | 119 | ||
Initial PSA | 0.101 | 119 | 0.055 | 119 | ||
Age | −0.097 | 119 | −0.087 | 119 | ||
Plasma S100A9 | 0.307 | ** | 94 | 0.322 | ** | 94 |
Plasma S100A12 | 0.162 | 94 | 0.222 | * | 94 | |
Monocyte count | 0.239 | * | 112 | 0.258 | ** | 112 |
PSA Progression | PC Specific Death | |||||
---|---|---|---|---|---|---|
Variable | HR | 95% CI | p-Value | HR | 95% CI | p-Value |
(A) Univariate analyses | ||||||
S100A9 mRNA | 2.4 | 1.0–5.7 | 0.045 | 6.7 | 1.4–32 | 0.016 |
S100A12 mRNA | 3.2 | 1.3–7.9 | 0.010 | 3.1 | 0.8–12 | 0.100 |
Monocyte count | 3.6 | 1.4–9.2 | 0.007 | 14 | 1.8–110 | 0.013 |
Age | 1.0 | 1.0–1.1 | 0.186 | 1.1 | 1.0–1.1 | 0.059 |
Gleason Score | 1.2 | 0.7–2.0 | 0.548 | 1.5 | 0.7–3.2 | 0.293 |
PSA | 1.0 | 1.0–1.0 | 0.537 | 1.0 | 1.0–1.0 | 0.438 |
(B) Multivariate analysis | ||||||
S100A9 mRNA | 2.2 | 0.9–5.4 | 0.103 | 3.8 | 0.8–18 | 0.099 |
Monocyte count | 3.4 | 1.3–8.7 | 0.011 | 10 | 1.2–82 | 0.031 |
(C) Multivariate analysis | ||||||
S100A12 mRNA | 2.9 | 1.1–7.6 | 0.027 | |||
Monocyte count | 3.3 | 1.3–8.5 | 0.012 |
Clinical Parameter | Long PFS | Short PFS | p-Value |
---|---|---|---|
Number of patients | 15 | 15 | |
PSA progression at last follow-up, n | 7/15 (47%) | 15/15 (100%) | |
Age, median (quartiles) years | 67 (65–76) | 66 (61–80) | 0.678 * |
PSA at baseline, median (quartiles) µg/L | 233 (91–330) | 144 (115–391) | 0.917 * |
Gleason Score (Min-Max) | 7–10 | 7–10 | 0.466 # |
Median time to PSA progression, (quartiles) months | 42 (25–49) | 14 (8.7–19) | <0.0001 * |
Median time to death, (quartiles) months | 53 (42–71) | 41 (25–45) | 0.011 * |
Docetaxel prior to PSA progression, n | 3 | 2 | 1.000 # |
Treatment post PSA progression | |||
Docetaxel, n | 2 | 3 | |
Abiraterone, n | 2 | 2 | |
Bicalutamide or Enzalutamide, n | 3 | 7 | |
Radium-223, n | 1 | ||
No treatment, n | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Åberg, A.-M.; Bergström, S.H.; Thysell, E.; Tjon-Kon-Fat, L.-A.; Nilsson, J.A.; Widmark, A.; Thellenberg-Karlsson, C.; Bergh, A.; Wikström, P.; Lundholm, M. High Monocyte Count and Expression of S100A9 and S100A12 in Peripheral Blood Mononuclear Cells Are Associated with Poor Outcome in Patients with Metastatic Prostate Cancer. Cancers 2021, 13, 2424. https://doi.org/10.3390/cancers13102424
Åberg A-M, Bergström SH, Thysell E, Tjon-Kon-Fat L-A, Nilsson JA, Widmark A, Thellenberg-Karlsson C, Bergh A, Wikström P, Lundholm M. High Monocyte Count and Expression of S100A9 and S100A12 in Peripheral Blood Mononuclear Cells Are Associated with Poor Outcome in Patients with Metastatic Prostate Cancer. Cancers. 2021; 13(10):2424. https://doi.org/10.3390/cancers13102424
Chicago/Turabian StyleÅberg, Anna-Maja, Sofia Halin Bergström, Elin Thysell, Lee-Ann Tjon-Kon-Fat, Jonas A. Nilsson, Anders Widmark, Camilla Thellenberg-Karlsson, Anders Bergh, Pernilla Wikström, and Marie Lundholm. 2021. "High Monocyte Count and Expression of S100A9 and S100A12 in Peripheral Blood Mononuclear Cells Are Associated with Poor Outcome in Patients with Metastatic Prostate Cancer" Cancers 13, no. 10: 2424. https://doi.org/10.3390/cancers13102424
APA StyleÅberg, A. -M., Bergström, S. H., Thysell, E., Tjon-Kon-Fat, L. -A., Nilsson, J. A., Widmark, A., Thellenberg-Karlsson, C., Bergh, A., Wikström, P., & Lundholm, M. (2021). High Monocyte Count and Expression of S100A9 and S100A12 in Peripheral Blood Mononuclear Cells Are Associated with Poor Outcome in Patients with Metastatic Prostate Cancer. Cancers, 13(10), 2424. https://doi.org/10.3390/cancers13102424