A Phase Ib Clinical Trial of Metformin and Chloroquine in Patients with IDH1-Mutated Solid Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Study Design
2.3. Study Treatment
2.4. Recommended Phase II Dose
2.5. Pharmacokinetics
2.6. Detection of D-2HG Levels
2.7. Therapy Response
2.8. ctDNA Analysis with the Digital Droplet Polymerase Chain Reaction
2.9. Statistical Analysis
3. Results
3.1. Characterization of the Study Cohort
3.2. Safety and Dose Adjustments
3.3. Pharmacokinetics
3.4. Plasma D-2HG Concentrations
3.5. ctDNA
3.6. Tumor Responses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
αKG | alpha-ketoglutarate |
AML | acute myeloid leukemia |
b.i.d. | bis in die, two times a day |
CTCAE | common terminology criteria for adverse events |
ctDNA | circulating tumor DNA |
D-2HG | D-2-hydroxyglutarate |
DLT | dose-limiting toxicity |
ETC | electron transport chain |
IDH1/2 | isocitrate dehydrogenase 1 or 2 |
IDH1/2WT | IDH1/2 wild-type |
IDH1/2MT | IDH1/2 mutant |
MAD | maximum administered dose |
MRS | magnetic resonance spectroscopy |
MS | mass spectrometry |
MTD | maximum tolerated dose |
NGS | next-generation sequencing |
q.d. | quaque die, one a day |
RANO | response assessment in neuro-oncology |
RD | recommended dose (for a phase II clinical trial) |
RECIST | response evaluation criteria in solid tumors |
SAE | serious adverse events |
T2DM | type 2 diabetes mellitus |
TCA cycle | tricarboxylic acid cycle |
References
- Molenaar, R.J.; Radivoyevitch, T.; Maciejewski, J.P.; van Noorden, C.J.; Bleeker, F.E. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim. Biophys. Acta 2014, 1846, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.E.; Mazor, T.; Hong, C.; Barnes, M.; Aihara, K.; McLean, C.Y.; Fouse, S.D.; Yamamoto, S.; Ueda, H.; Tatsuno, K.; et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 2014, 343, 189–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molenaar, R.J.; Thota, S.; Nagata, Y.; Patel, B.; Clemente, M.; Przychodzen, B.; Hirsh, C.; Viny, A.D.; Hosano, N.; Bleeker, F.E.; et al. Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia 2015, 29, 2134–2142. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, R.J.; Botman, D.; Smits, M.A.; Hira, V.V.; van Lith, S.A.; Stap, J.; Henneman, P.; Khurshed, M.; Lenting, K.; Mul, A.N.; et al. Radioprotection of IDH1-mutated cancer cells by the IDH1-mutant inhibitor AGI-5198. Cancer Res. 2015, 75, 4790–4802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohrenz, I.V.; Antonietti, P.; Pusch, S.; Capper, D.; Balss, J.; Voigt, S.; Weissert, S.; Mukrowsky, A.; Frank, J.; Senft, C.; et al. Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death. Apoptosis 2013, 18, 1416–1425. [Google Scholar] [CrossRef]
- Khurshed, M.; Aarnoudse, N.; Hulsbos, R.; Hira, V.V.V.; van Laarhoven, H.W.M.; Wilmink, J.W.; Molenaar, R.J.; van Noorden, C.J.F. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity. FASEB J. 2018, 32, 6344–6352. [Google Scholar] [CrossRef] [Green Version]
- Amatangelo, M.D.; Quek, L.; Shih, A.; Stein, E.M.; Roshal, M.; David, M.D.; Marteyn, B.; Farnoud, N.R.; de Botton, S.; Bernard, O.A.; et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood 2017, 130, 732–741. [Google Scholar] [CrossRef]
- Rohle, D.; Popovici-Muller, J.; Palaskas, N.; Turcan, S.; Grommes, C.; Campos, C.; Tsoi, J.; Clark, O.; Oldrini, B.; Komisopoulou, E.; et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013, 340, 626–630. [Google Scholar] [CrossRef] [Green Version]
- Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef]
- Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 2009, 360, 765–773. [Google Scholar] [CrossRef]
- Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S.H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M.T.; et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011, 19, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462, 739–744. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, R.; Yeoh, K.K.; Tian, Y.M.; Hillringhaus, L.; Bagg, E.A.; Rose, N.R.; Leung, I.K.; Li, X.S.; Woon, E.C.; Yang, M.; et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. Embo Rep. 2011, 12, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Khurshed, M.; Molenaar, R.J.; Lenting, K.; Leenders, W.P.; van Noorden, C.J.F. In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma. Oncotarget 2017, 8, 49165–49177. [Google Scholar] [CrossRef] [Green Version]
- He, Y.F.; Li, B.Z.; Li, Z.; Liu, P.; Wang, Y.; Tang, Q.; Ding, J.; Jia, Y.; Chen, Z.; Li, L.; et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333, 1303–1307. [Google Scholar] [CrossRef] [Green Version]
- Janin, M.; Mylonas, E.; Saada, V.; Micol, J.B.; Renneville, A.; Quivoron, C.; Koscielny, S.; Scourzic, L.; Forget, S.; Pautas, C.; et al. Serum 2-hydroxyglutarate production in IDH1- and IDH2-mutated de novo acute myeloid leukemia: A study by the Acute Leukemia French Association Group. J. Clin. Oncol. 2014, 32, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Travins, J.; DeLaBarre, B.; Penard-Lacronique, V.; Schalm, S.; Hansen, E.; Straley, K.; Kernytsky, A.; Liu, W.; Gliser, C.; et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 2013, 340, 622–626. [Google Scholar] [CrossRef]
- Tap, W.D.; Villalobos, V.M.; Cote, G.M.; Burris, H.; Janku, F.; Mir, O.; Beeram, M.; Wagner, A.J.; Jiang, L.; Wu, B.; et al. Phase I study of the mutant IDH1 inhibitor Ivosidenib: Safety and clinical activity in patients with advanced chondrosarcoma. J. Clin. Oncol. 2020, 38, 1693–1701. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- van Lith, S.A.; Navis, A.C.; Verrijp, K.; Niclou, S.P.; Bjerkvig, R.; Wesseling, P.; Tops, B.; Molenaar, R.; van Noorden, C.J.; Leenders, W.P. Glutamate as chemotactic fuel for diffuse glioma cells: Are they glutamate suckers? Biochim. Biophys. Acta 2014, 1846, 66–74. [Google Scholar] [CrossRef]
- Lenting, K.; Khurshed, M.; Peeters, T.H.; van den Heuvel, C.; van Lith, S.A.M.; de Bitter, T.; Hendriks, W.; Span, P.N.; Molenaar, R.J.; Botman, D.; et al. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress. FASEB J. 2019, 33, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Grassian, A.R.; Parker, S.J.; Davidson, S.M.; Divakaruni, A.S.; Green, C.R.; Zhang, X.; Slocum, K.L.; Pu, M.; Lin, F.; Vickers, C.; et al. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res. 2014, 74, 3317–3331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Lith, S.A.; Molenaar, R.; van Noorden, C.J.; Leenders, W.P. Tumor cells in search for glutamate: An alternative explanation for increased invasiveness of IDH1 mutant gliomas. Neuro Oncol. 2014, 16, 1669–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurshed, M.; Molenaar, R.J.; van Noorden, C.J. A simple in silico approach to generate gene-expression profiles from subsets of cancer genomics data. Biotechniques 2019, 67, 172–176. [Google Scholar] [CrossRef]
- Cuyas, E.; Fernandez-Arroyo, S.; Corominas-Faja, B.; Rodriguez-Gallego, E.; Bosch-Barrera, J.; Martin-Castillo, B.; De Llorens, R.; Joven, J.; Menendez, J.A. Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype. Oncotarget 2015, 6, 12279–12296. [Google Scholar] [CrossRef] [Green Version]
- Peterse, E.F.P.; Niessen, B.; Addie, R.D.; de Jong, Y.; Cleven, A.H.G.; Kruisselbrink, A.B.; van den Akker, B.; Molenaar, R.J.; Cleton-Jansen, A.M.; Bovee, J. Targeting glutaminolysis in chondrosarcoma in context of the IDH1/2 mutation. Br. J. Cancer 2018, 118, 1074–1083. [Google Scholar] [CrossRef] [Green Version]
- Kordes, S.; Pollak, M.N.; Zwinderman, A.H.; Mathot, R.A.; Weterman, M.J.; Beeker, A.; Punt, C.J.; Richel, D.J.; Wilmink, J.W. Metformin in patients with advanced pancreatic cancer: A double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol. 2015, 16, 839–847. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Bi, Y.; Li, S.; Zhang, Q.; Zhao, G.; Guo, Y.; Song, Q. Reduced risk of lung cancer with metformin therapy in diabetic patients: A systematic review and meta-analysis. Am. J. Epidemiol 2014, 180, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Bodmer, M.; Meier, C.; Krahenbuhl, S.; Jick, S.S.; Meier, C.R. Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care 2010, 33, 1304–1308. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005, 330, 1304–1305. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, N.; Abbruzzese, J.L.; Yeung, S.C.; Hassan, M.; Li, D. Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin. Cancer Res. 2012, 18, 2905–2912. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.C.; Kachingwe, B.H.; Lin, H.L.; Cheng, H.W.; Uang, Y.S.; Wang, L.H. Effects of metformin dose on cancer risk reduction in patients with type 2 diabetes mellitus: A 6-year follow-up study. Pharmacotherapy 2014, 34, 36–45. [Google Scholar] [CrossRef]
- Mazurek, M.; Litak, J.; Kamieniak, P.; Kulesza, B.; Jonak, K.; Baj, J.; Grochowski, C. Metformin as potential therapy for high-grade glioma. Cancers (Basel) 2020, 12, 210. [Google Scholar] [CrossRef] [Green Version]
- Yin, M.; Zhou, J.; Gorak, E.J.; Quddus, F. Metformin is associated with survival benefit in cancer patients with concurrent type 2 diabetes: A systematic review and meta-analysis. Oncologist 2013, 18, 1248–1255. [Google Scholar] [CrossRef] [Green Version]
- Molenaar, R.J.; Maciejewski, J.P.; Wilmink, J.W.; van Noorden, C.J.F. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 2018, 37, 1949–1960. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.M.; Kim, E.A.; Choi, S.Y.; Kim, T.U.; Cho, S.W.; Yang, S.J. Inhibitory properties of nerve-specific human glutamate dehydrogenase isozyme by chloroquine. J. Biochem. Mol. Biol. 2007, 40, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Jarzyna, R.; Kiersztan, A.; Lisowa, O.; Bryla, J. The inhibition of gluconeogenesis by chloroquine contributes to its hypoglycaemic action. Eur. J. Pharmacol. 2001, 428, 381–388. [Google Scholar] [CrossRef]
- Jarzyna, R.; Lenarcik, E.; Bryla, J. Chloroquine is a potent inhibitor of glutamate dehydrogenase in liver and kidney-cortex of rabbit. Pharmacol. Res. 1997, 35, 79–84. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Liu, Y.; Neltner, J.; Pu, H.; Morris, A.; Sunkara, M.; Pittman, T.; Kyprianou, N.; Horbinski, C. Autophagy and oxidative stress in gliomas with IDH1 mutations. Acta Neuropathol. 2014, 127, 221–233. [Google Scholar] [CrossRef]
- Rubinsztein, D.C.; Gestwicki, J.E.; Murphy, L.O.; Klionsky, D.J. Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov. 2007, 6, 304–312. [Google Scholar] [CrossRef]
- Wiseman, D.H.; Struys, E.A.; Wilks, D.P.; Clark, C.I.; Dennis, M.W.; Jansen, E.E.; Salomons, G.S.; Somervaille, T.C. Direct comparison of quantitative digital PCR and 2-hydroxyglutarate enantiomeric ratio for IDH mutant allele frequency assessment in myeloid malignancy. Leukemia 2015, 29, 2421–2423. [Google Scholar] [CrossRef]
- Struys, E.A.; Jansen, E.E.; Verhoeven, N.M.; Jakobs, C. Measurement of urinary D- and L-2-hydroxyglutarate enantiomers by stable-isotope-dilution liquid chromatography-tandem mass spectrometry after derivatization with diacetyl-L-tartaric anhydride. Clin. Chem. 2004, 50, 1391–1395. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.M.; Boriack, R.; Struys, E.A.; Rakheja, D. Measurement of oncometabolites D-2-hydroxyglutaric acid and L-2-hydroxyglutaric acid. Methods Mol. Biol. 2017, 1633, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; Degroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, O.; Barron, F.; Padilla, M.S.; Aviles-Salas, A.; Ramirez-Tirado, L.A.; Arguelles Jimenez, M.J.; Vergara, E.; Zatarain-Barron, Z.L.; Hernandez-Pedro, N.; Cardona, A.F.; et al. Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: A phase 2 randomized clinical trial. JAMA Oncol. 2019, e192553. [Google Scholar] [CrossRef] [PubMed]
- Marrone, K.A.; Zhou, X.; Forde, P.M.; Purtell, M.; Brahmer, J.R.; Hann, C.L.; Kelly, R.J.; Coleman, B.; Gabrielson, E.; Rosner, G.L.; et al. A Randomized phase II study of metformin plus paclitaxel/carboplatin/bevacizumab in patients with chemotherapy-naive advanced or metastatic nonsquamous non-small cell lung cancer. Oncologist 2018, 23, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Borger, D.R.; Goyal, L.; Yau, T.; Poon, R.T.; Ancukiewicz, M.; Deshpande, V.; Christiani, D.C.; Liebman, H.M.; Yang, H.; Kim, H.; et al. Circulating oncometabolite 2-hydroxyglutarate is a potential surrogate biomarker in patients with isocitrate dehydrogenase-mutant intrahepatic cholangiocarcinoma. Clin. Cancer Res. 2014, 20, 1884–1890. [Google Scholar] [CrossRef] [Green Version]
- Delahousse, J.; Verlingue, L.; Broutin, S.; Legoupil, C.; Touat, M.; Doucet, L.; Ammari, S.; Lacroix, L.; Ducreux, M.; Scoazec, J.Y.; et al. Circulating oncometabolite D-2-hydroxyglutarate enantiomer is a surrogate marker of isocitrate dehydrogenase-mutated intrahepatic cholangiocarcinomas. Eur. J. Cancer 2018, 90, 83–91. [Google Scholar] [CrossRef]
- Gutteridge, A.; Rathbone, V.M.; Gibbons, R.; Bi, M.; Archard, N.; Davies, K.E.J.; Brown, J.; Plagnol, V.; Pillay, N.; Amary, F.; et al. Digital PCR analysis of circulating tumor DNA: A biomarker for chondrosarcoma diagnosis, prognostication, and residual disease detection. Cancer Med. 2017, 6, 2194–2202. [Google Scholar] [CrossRef]
Dose Level | Dose of Metformin (Total Daily Dose) | Dose of Chloroquine (Total Daily Dose) |
---|---|---|
−1 | 500 mg once a day (500 mg total) | 200 mg once a day |
1 | 500 mg two times a day (1000 mg total) | 200 mg once a day |
2 | 1000 mg two times a day (2000 mg total) | 200 mg once a day |
3 | 1500 mg two times a day (3000 mg total) | 200 mg once a day |
Pt # | Gender | Age | WHO-PS | Primary Diagnosis | Earlier Surgery | Earlier Systemic Therapy | Earlier Radiotherapy | Time Since Initial Diagnosis |
---|---|---|---|---|---|---|---|---|
(in Years) | ||||||||
1 | Male | 54 | 0 | Chondrosarcoma | Resection of tumor of the right knee | None | No | 5.6 |
2 | Male | 49 | 1 | Cholangiocarcinoma | Right hemihepatectomy | Gemcitabine/cisplatin | No (during study) | 3.92 |
3 | Male | 51 | 2 | Chondrosarcoma | Resection of left pelvic tumor | Sirolimus/cyclophosphamide | Yes | 3.25 |
4 | Male | 64 | 0 | Cholangiocarcinoma | Exploratory laparotomy | Gemcitabine/cisplatin | No | 3.3 |
5 | Male | 58 | 1 | Cholangiocarcinoma | Right hemihepatectomy | Gemcitabine/cisplatin | No | 3.72 |
6 | Male | 57 | 1 | Cholangiocarcinoma | None | Gemcitabine/cisplatin | No | 2.84 |
7 | Male | 82 | 2 | Cholangiocarcinoma | None | Gemcitabine/cisplatin, pembrolizumab | Yes | 3.75 |
8 | Female | 53 | 1 | Cholangiocarcinoma | None | Gemcitabine/cisplatin | No | 2.33 |
9 | Male | 70 | 0 | Cholangiocarcinoma | Right hemihepatectomy | Gemcitabine/cisplatin, capecitabine/oxaliplatin | No | 2.58 |
10 | Male | 39 | 0 | Cholangiocarcinoma | Right hemihepatectomy | Gemcitabine/cisplatin, folfirinox | No | 3.82 |
11 | Male | 50 | 0 | Cholangiocarcinoma | None | Gemcitabine/cisplatin, gemcitabine/oxaliplatin | No | 3.25 |
12 | Male | 39 | 0 | Chondrosarcoma | Resection of right scapular tumor | Sirolimus/cyclophosphamide | No | 2.96 |
13 | Female | 42 | 0 | Cholangiocarcinoma | None | Gemcitabine/cisplatin | Yes | 1.53 |
14 | Male | 46 | 1 | Glioma | Tumor resection | Temozolomide | Yes | 6.43 |
15 | Male | 34 | 1 | Glioma | Tumor resection right frontal | Temozolomide, lomustine | Yes | 5.33 |
16 | Female | 63 | 0 | Cholangiocarcinoma | Right hemihepatectomy | Gemcitabine/cisplatin | No | 2.50 |
17 | Male | 64 | 0 | Cholangiocarcinoma | None | Gemcitabine/cisplatin, CAPOX | No | 1.50 |
Pt # | Metformin Dose (mg) | Chloroquine Dose (mg) | DLT (Grade) | SAE (Grade) | Days on Study | Reason for Study Termination | Overall Survival |
---|---|---|---|---|---|---|---|
(Days after Start of Study) | |||||||
1 | 1000 | 200 | - | - | 61 | Progressive disease (CT) | 818 |
2 | 1000 | 200 | - | - | 33 | Patient decision (toxicity) | 66 |
3 | 1000 | - | - | - | 7 | Progressive disease (clinical) | 29 |
4 | 1000 | 200 | - | - | 56 | Progressive disease | 426 |
5 | 2000 | 200 | - | - | 33 | Progressive disease (clinical and CT) | 951 |
6 | 2000 | 200 | - | - | 43 | Patient decision (toxicity) | 351 |
7 | 1000 | 200 | - | - | 14 | Progressive disease (clinical) | 680 |
8 | 2000 | 200 | - | - | 17 | Patient decision (toxicity) | 322 |
9 | 2000 | 200 | - | - | 62 | Progressive disease (CT) | 194 |
10 | 2000 | 200 | - | - | 58 | Progressive disease (CT) | 108 |
11 | 2000 | 200 | - | - | 67 | Progressive disease (CT) | 323 |
12 | 3000 | 200 | - | - | 59 | Progressive disease (CT) | 330 |
13 | 2000 | 200 | - | - | 59 | Progressive disease (CT) | 255 |
14 | 3000 | 200 | - | Hydrocephalus (4) | 28 | Progressive disease (clinical) | 154 |
15 | 3000 | - | - | - | 13 | Progressive disease (clinical) | 42 |
16 | 3000 | 200 | - | Bile duct stenosis (3) | 43 | Progressive disease (CT) | 92 |
17 | 3000 | 200 | - | - | 74 | Progressive disease (CT) | 102 |
Dose Level 1 | Dose Level 2 | Dose Level 3 | ||||
---|---|---|---|---|---|---|
Number of Patients: | n = 3 | n = 6 | n = 3 | |||
CTCAE Grade: | 1–2 | 3–4 | 1–2 | 3–4 | 1–2 | 3–4 |
Fatigue | 1 | 3 | 2 | |||
Anorexia | 1 | 6 | 2 | |||
Nausea | 3 | 6 | 2 | |||
Vomiting | 2 | 2 | ||||
Diarrhea | 4 | 1 | ||||
Constipation | 1 | 1 | ||||
Weight loss | 1 | |||||
Abdominal pain | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khurshed, M.; Molenaar, R.J.; van Linde, M.E.; Mathôt, R.A.; Struys, E.A.; van Wezel, T.; van Noorden, C.J.F.; Klümpen, H.-J.; Bovée, J.V.M.G.; Wilmink, J.W. A Phase Ib Clinical Trial of Metformin and Chloroquine in Patients with IDH1-Mutated Solid Tumors. Cancers 2021, 13, 2474. https://doi.org/10.3390/cancers13102474
Khurshed M, Molenaar RJ, van Linde ME, Mathôt RA, Struys EA, van Wezel T, van Noorden CJF, Klümpen H-J, Bovée JVMG, Wilmink JW. A Phase Ib Clinical Trial of Metformin and Chloroquine in Patients with IDH1-Mutated Solid Tumors. Cancers. 2021; 13(10):2474. https://doi.org/10.3390/cancers13102474
Chicago/Turabian StyleKhurshed, Mohammed, Remco J. Molenaar, Myra E. van Linde, Ron A. Mathôt, Eduard A. Struys, Tom van Wezel, Cornelis J. F. van Noorden, Heinz-Josef Klümpen, Judith V. M. G. Bovée, and Johanna W. Wilmink. 2021. "A Phase Ib Clinical Trial of Metformin and Chloroquine in Patients with IDH1-Mutated Solid Tumors" Cancers 13, no. 10: 2474. https://doi.org/10.3390/cancers13102474
APA StyleKhurshed, M., Molenaar, R. J., van Linde, M. E., Mathôt, R. A., Struys, E. A., van Wezel, T., van Noorden, C. J. F., Klümpen, H. -J., Bovée, J. V. M. G., & Wilmink, J. W. (2021). A Phase Ib Clinical Trial of Metformin and Chloroquine in Patients with IDH1-Mutated Solid Tumors. Cancers, 13(10), 2474. https://doi.org/10.3390/cancers13102474