The Present and Future of Neoadjuvant Endocrine Therapy for Breast Cancer Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patient Selection
Menopausal Status
3. Clinical Implications of NET
3.1. NET vs. NCT
3.2. Effect of NET on Breast and Axilla Surgery
3.2.1. Increasing BCS Rates and Enhancing Surgery
3.2.2. Axilla Management after NET
3.2.3. Surgery Avoidance in Frail Patients
4. Choosing the Best Endocrine Agent
4.1. Tamoxifen versus Aromatase Inhibitors
4.2. Comparison of Aromatase Inhibitors
4.3. Selective Estrogen Down -Regulators versus Aromatase Inhibitors
5. Treatment Duration
6. Monitoring Response to NET
6.1. Assessing Response by Imaging
6.2. Pathological Complete Response
6.3. Ki67
6.4. PEPI Score
6.5. Other Biomarkers
7. NET and Targeted Therapies
8. The Role of Genomic Assays in NET
8.1. MammaPrint®/BluePrint®
8.2. Oncotype DX
8.3. EndoPredict®
8.4. A Four-Gene Model
8.5. Other Gene Expression Profiles
9. Ongoing Trials
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krauss, K.; Stickeler, E. Endocrine Therapy in Early Breast Cancer. Breast Care 2020, 337–346. [Google Scholar] [CrossRef]
- Burstein, H.J.; Curigliano, G.; Loibl, S.; Dubsky, P.; Gnant, M.; Poortmans, P.; Colleoni, M.; Denkert, C.; Piccart-Gebhart, M.; Regan, M.; et al. Estimating the benefits of therapy for early-stage breast cancer: The St. Gallen International Consensus Guidelines for the primary therapy of early breast cancer 2019. Ann. Oncol. 2019, 30, 1541–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCCN. NCCN Clinical Practice Guidelines in Oncology. Breast Cancer. Version 1.2014. 2014. Available online: http://www.nccn.com (accessed on 8 April 2021).
- Arthur, L.M.; Turnbull, A.K.; Khan, L.R.; Dixon, J.M. Pre-operative Endocrine Therapy. Curr. Breast Cancer Rep. 2017, 9, 202–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastelli, F.; Crispino, S. Factors predictive of response to hormone therapy in breast cancer. Tumori 2008, 94, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, P.A.; Van Dam, V.C.N.; Altintas, S.; Papadimitriou, K.; Rolfo, C.; Trinh, X.B. Neoadjuvant endocrine treatment in early breast cancer: An overlooked alternative? Eur. J. Surg. Oncol. 2016, 42, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Eiermann, W.; Paepke, S.; Appfelstaedt, J.; Llombart-Cussac, A.; Eremin, J.; Vinholes, J.; Mauriac, L.; Ellis, M.; Lassus, M.; Chaudri-Ross, H.A.; et al. Preoperative treatment of postmenopausal breast cancer patients with letrozole: A randomized double-blind multicenter study. Ann. Oncol. 2001, 12, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.E.; Dowsett, M.; Ebbs, S.R.; Dixon, J.M.; Skene, A.; Blohmer, J.U.; Ashley, S.E.; Francis, S.; Boeddinghaus, I.; Walsh, G. Neoadjuvant treatment of postmenopausal breast cancer with anastrozole, tamoxifen, or both in combination: The Immediate Preoperative Anastrozole, Tamoxifen, or Combined With Tamoxifen (IMPACT) multicenter double-blind randomized trial. J. Clin. Oncol. 2005, 23, 5108–5116. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.M.; Renshaw, L.; Dixon, J.; Thomas, J. Invasive lobular carcinoma: Response to neoadjuvant letrozole therapy. Breast Cancer Res. Treat. 2011, 130, 871–877. [Google Scholar] [CrossRef]
- Barroso-Sousa, R.; Reis Silva, D.D.A.F.; Alessi, J.V.M.; Mano, M.S. Neoadjuvant endocrine therapy in breast cancer: Current role and future perspectives. Ecancermedicalscience 2016, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- NICE. Overview|Early and Locally Advanced Breast Cancer: Diagnosis and Management|Guidance|NICE; NICE Guidelines. 2018. Available online: http://www.nice.org (accessed on 8 April 2021).
- Masuda, N.; Sagara, Y.; Kinoshita, T.; Iwata, H.; Nakamura, S.; Yanagita, Y.; Nishimura, R.; Iwase, H.; Kamigaki, S.; Takei, H.; et al. Neoadjuvant anastrozole versus tamoxifen in patients receiving goserelin for premenopausal breast cancer (STAGE): A double-blind, randomised phase 3 trial. Lancet Oncol. 2012, 13, 345–352. [Google Scholar] [CrossRef]
- Alba, E.; Calvo, L.; Albanell, J.; De la Haba, J.R.; Lanza, A.A.; Chacon, J.I.; Sanchez-Rovira, P.; Plazaola, A.; Lopez Garcia-Asenjo, J.A.; Bermejo, B.; et al. Chemotherapy (CT) and hormonotherapy (HT) as neoadjuvant treatment in luminal breast cancer patients: Results from the GEICAM/2006-03, a multicenter, randomized, phase-II study. Ann. Oncol. 2012, 23, 3069–3074. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, R.; Bagnardi, V.; Pruneri, G.; Ghisini, R.; Bottiglieri, L.; Magni, E.; Veronesi, P.; D’Alessandro, C.; Luini, A.; Dellapasqua, S.; et al. Antitumour and biological effects of letrozole and GnRH analogue as primary therapy in premenopausal women with ER and PgR positive locally advanced operable breast cancer. Br. J. Cancer 2007, 97, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Semiglazov, V.F.; Semiglazov, V.V.; Dashyan, G.A.; Ziltsova, E.K.; Ivanov, V.G.; Bozhok, A.A.; Melnikova, O.A.; Paltuev, R.M.; Kletzel, A.; Berstein, L.M. Phase 2 randomized trial of primary endocrine therapy versus chemotherapy in postmenopausal patients with estrogen receptor-positive breast cancer. Cancer 2007, 110, 244–254. [Google Scholar] [CrossRef]
- Palmieri, C.; Cleator, S.; Kilburn, L.S.; Kim, S.B.; Ahn, S.H.; Beresford, M.; Gong, G.; Mansi, J.; Mallon, E.; Reed, S.; et al. NEOCENT: A randomised feasibility and translational study comparing neoadjuvant endocrine therapy with chemotherapy in ER-rich postmenopausal primary breast cancer. Breast Cancer Res. Treat. 2014, 148, 581–590. [Google Scholar] [CrossRef]
- Spring, L.M.; Gupta, A.; Reynolds, K.L.; Gadd, M.A.; Ellisen, L.W.; Isakoff, S.J.; Moy, B.; Bardia, A. Neoadjuvant endocrine therapy for estrogen receptor-positive breast cancer a systematic review and meta-Analysis. JAMA Oncol. 2016, 2, 1477–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; He, L.; Song, Y.; Wu, Q.; Wang, H.; Zhang, B.; Ma, X. The tumour response of postmenopausal hormone receptor-positive breast cancers undergoing different types of neoadjuvant therapy: A meta-analysis. BMC Women’s Health 2020, 20, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preece, R.A.; Wood, C.R.; Mackie, A.C. A prospective comparative clinical trial Tamoxifen as initial sole treatment of localised breast cancer in elderly women: A pilot study. Br. Med. J. 1982, 284, 869–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazet, J.C.; Ford, H.T.; Bland, J.M.; Markopoulos Coombes, R.C.; Dixon, R.C. Prospective Randomised Trial Of Tamoxifen versus Surgery In Elderly Patients With Breast Cancer. Lancet 1988, 1, 679–681. [Google Scholar] [CrossRef]
- Gazet, J.C.; Ford, H.T.; Coombes, R.C.; Bland, J.M.; Sutcliffe, R.; Quilliam, J.; Lowndes, S. Prospective randomized trial of tamoxifen vs surgery in elderly patients with breast cancer. Eur. J. Surg. Oncol. 1994, 20, 207–214. [Google Scholar] [PubMed]
- Li, J.J.; Shao, Z.M. Endocrine therapy as adjuvant or neoadjuvant therapy for breast cancer: Selecting the best agents, the timing and duration of treatment. Chin. Clin. Oncol. 2016, 5, 1–12. [Google Scholar] [CrossRef]
- Takei, H.; Kurosumi, M.; Yoshida, T.; Hayashi, Y.; Higuchi, T.; Uchida, S.; Ninomiya, J.; Oba, H.; Inoue, K.; Nagai, S.; et al. Neoadjuvant endocrine therapy of breast cancer: Which patients would benefit and what are the advantages? Breast Cancer 2011, 18, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Montagna, G.; Sevilimedu, V.; Fornier, M.; Jhaveri, K.; Morrow, M.; Pilewskie, M.L. How Effective is Neoadjuvant Endocrine Therapy (NET) in Downstaging the Axilla and Achieving Breast-Conserving Surgery? Ann. Surg. Oncol. 2020, 27, 4702–4710. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Senkus, E.; Costa, A.; Papadopoulos, E.; Aapro, M.; André, F.; Harbeck, N.; Lopez, B.A.; Barrios, C.H.; Bergh, J.; et al. 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4). Ann. Oncol. 2018, 29, 1634–1657. [Google Scholar] [CrossRef] [PubMed]
- Madigan, L.I.; Dinh, P.; Graham, J.D. Neoadjuvant endocrine therapy in locally advanced estrogen or progesterone receptor-positive breast cancer: Determining the optimal endocrine agent and treatment duration in postmenopausal women—A literature review and proposed guidelines. Breast Cancer Res. 2020, 22, 77. [Google Scholar] [CrossRef] [PubMed]
- Charehbili, A.; Fontein, D.B.Y.; Kroep, J.R.; Liefers, G.J.; Mieog, J.S.D.; Nortier, J.W.R.; van de Velde, C.J. Neoadjuvant hormonal therapy for endocrine sensitive breast cancer: A systematic review. Cancer Treat. Rev. 2014, 40, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Samiei, S.; van Kaathoven, B.N.; Boersma, L.; Granzier, R.W.Y.; Siesling, S.; Engelen, S.M.E.; de Munck, L.; van Kuijk, S.M.J.; van der Hulst, R.R.J.W.; Lobbes, M.B.I.; et al. Risk of Positive Sentinel Lymph Node After Neoadjuvant Systemic Therapy in Clinically Node-Negative Breast Cancer: Implications for Postmastectomy Radiation Therapy and Immediate Breast Reconstruction. Ann. Surg. Oncol. 2019, 26, 3902–3909. [Google Scholar] [CrossRef] [Green Version]
- Laws, A.; Hughes, M.E.; Hu, J.; Barry, W.T.; Dominici, L.; Nakhlis, F.; Barbie, T.; Duggan, M.; Weiss, A.; Rhei, E.; et al. Impact of Residual Nodal Disease Burden on Technical Outcomes of Sentinel Lymph Node Biopsy for Node-Positive (cN1) Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Ann. Surg. Oncol. 2019, 26, 3846–3855. [Google Scholar] [CrossRef]
- Hammond, J.B.; Parnall, T.H.; Scott, D.W.; Kosiorek, H.E.; Pockaj, B.A.; Ernst, B.J.; Northfelt, D.W.; McCullough, A.E.; Ocal, I.T.; Cronin, P.A. Gauging the efficacy of neoadjuvant endocrine therapy in breast cancer patients with known axillary disease. J. Surg. Oncol. 2020, 122, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Rusz, O.; Vörös, A.; Varga, Z.; Kelemen, G.; Uhercsák, G.; Nikolényi, A.; Ormándi, K.; Simonka, Z.; Kahán, Z. One-Year Neoadjuvant Endocrine Therapy in Breast Cancer. Pathol. Oncol. Res. 2015, 21, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Stafford, A.; Williams, A.; Edmiston, K.; Cocilovo, C.; Cohen, R.; Bruce, S.; Yoon-Flannery, K.; De La Cruz, L. Axillary Response in Patients Undergoing Neoadjuvant Endocrine Treatment for Node-Positive Breast Cancer: Systematic Literature Review and NCDB Analysis. Ann. Surg. Oncol. 2020, 27, 4669–4677. [Google Scholar] [CrossRef]
- Weiss, A.; Wong, S.; Golshan, M.; Freedman, R.A.; Metzger, O.; Bellon, J.; Mittendorf, E.A.; King, T.A. Patterns of Axillary Management in Stages 2 and 3 Hormone Receptor-Positive Breast Cancer by Initial Treatment Approach. Ann. Surg. Oncol. 2019, 26, 4326–4336. [Google Scholar] [CrossRef]
- Boughey, J.C.; Suman, V.J.; Mittendorf, E.A.; Ahrendt, G.M.; Wilke, L.G.; Taback, B.; Leitch, A.M.; Kuerer, H.M.; Bowling, M.; Flippo-Morton, T.S.; et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: The ACOSOG Z1071 (alliance) clinical trial. JAMA J. Am. Med. Assoc. 2013, 310, 1455–1461. [Google Scholar] [CrossRef] [Green Version]
- Boileau, J.F.; Poirier, B.; Basik, M.; Holloway, C.M.B.; Gaboury, L.; Sideris, L.; Meterissian, S.; Arnaout, A.; Brackstone, M.; McCready, D.R.; et al. Sentinel node biopsy after neoadjuvant chemotherapy in biopsy-proven node-positive breast cancer: The SN FNAC study. J. Clin. Oncol. 2015, 33, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, T.; Bauerfeind, I.; Fehm, T.; Fleige, B.; Hausschild, M.; Helms, G.; Lebeau, A.; Liedtke, C.; von Minckwitz, G.; Nekljudova, V.; et al. Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): A prospective, multicentre cohort study. Lancet Oncol. 2013, 14, 609–618. [Google Scholar] [CrossRef]
- Kantor, O.; Wong, S.; Weiss, A.; Metzger, O.; Mittendorf, E.A.; King, T.A. Prognostic significance of residual nodal disease after neoadjuvant endocrine therapy for hormone receptor-positive breast cancer. Breast Cancer 2020, 6, 5–10. [Google Scholar] [CrossRef]
- Kantor, O.; Wakeman, M.; Weiss, A.; Wong, S.; Laws, A.; Grossmith, S.; Mittendorf, E.A.; King, T.A. Axillary Management After Neoadjuvant Endocrine Therapy for Hormone Receptor-Positive Breast Cancer. Ann. Surg. Oncol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hind, D.; Wyld, L.; Reed, M.W. Surgery, with or without tamoxifen, vs tamoxifen alone for older women with operable breast cancer: Cochrane review. Br. J. Cancer 2007, 96, 1025–1029. [Google Scholar] [CrossRef] [Green Version]
- Wink, C.J.; Woensdregt, K.; Nieuwenhuijzen, G.A.P.; Van Der Sangen, M.J.C.; Hutschemaekers, S.; Roukema, J.A.; Tjan-Heijnen, V.C.; Voogd, A.C. Hormone treatment without surgery for patients aged 75 years or older with operable breast cancer. Ann. Surg. Oncol. 2012, 19, 1185–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborn, G.; Jones, M.; Champ, C.; Gower-Thomas, K.; Vaughan-Williams, E. Is primary endocrine therapy effective in treating the elderly, unfit patient with breast cancer? Ann. R. Coll. Surg. Engl. 2011, 93, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.L.; Reed, M.W.; Wyld, L. Primary endocrine therapy as a treatment for older women with operable breast cancer—A comparison of randomized controlled trial and cohort study findings. Eur. J. Surg. Oncol. 2014, 40, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Carlson, G.W. Total mastectomy under local anesthesia: The tumescent technique. Breast J. 2005, 11, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Sabel, M.S.; Kaufman, C.S.; Whitworth, P.; Chang, H.; Stocks, L.H.; Simmons, R.; Schultz, M. Cryoablation of early-stage breast cancer: Work-in-progress report of a multi-institutional trial. Ann. Surg. Oncol. 2004, 11, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Simmons, R.M.; Ballman, K.V.; Cox, C.; Carp, N.; Sabol, J.; Hwang, R.F.; Attai, D.; Sabel, M.; Nathanson, D.; Kenler, A.; et al. A Phase II Trial Exploring the Success of Cryoablation Therapy in the Treatment of Invasive Breast Carcinoma: Results from ACOSOG (Alliance) Z1072. Ann. Surg. Oncol. 2016, 23, 2438–2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cataliotti, L.; Buzdar, A.U.; Noguchi, S.; Bines, J.; Takatsuka, Y.; Petrakova, K.; Dube, P.; de Oliveira, C.T. Comparison of anastrozole versus tamoxifen as preoperative therapy in postmenopausal women with hormone receptor-positive breast cancer: The Pre-Operative “Arimidex” Compared to Tamoxifen (PROACT) trial. Cancer 2006, 106, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Semiglazov, V.; Kletsel, A.; Semiglazov, V.; Zhiltzova, E.; Ivanov, V.; Dashyan, G.; Bozhok, A.; Melnikova, O.; Paltuev, R.; Berstein, L. Exemestane (E) vs tamoxifen (T) as neoadjuvant endocrine therapy for postmenopausal women with ER+ breast cancer (T2N1–2, T3N0–1, T4N0M0). J. Clin. Oncol. 2005, 23, 530. [Google Scholar] [CrossRef]
- Ellis, M.J.; Suman, V.J.; Hoog, J.; Lin, L.; Snider, J.; Prat, A.; Parker, J.S.; Luo, J.; DeSchryver, K.; Allred, D.C.; et al. Randomized phase II neoadjuvant comparison between letrozole, anastrozole, and exemestane for postmenopausal women with estrogen receptor-rich stage 2 to 3 breast cancer: Clinical and biomarker outcomes and predictive value of the baseline PAM50-based intrinsic subtype-ACOSOGZ1031. J. Clin. Oncol. 2011, 29, 2342–2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerebours, F.; Rivera, S.; Mouret-Reynier, M.A.; Alran, S.; Venat-Bouvet, L.; Kerbrat, P.; Salmon, R.; Becette, V.; Bourgier, C.; Cherel, P.; et al. Randomized phase 2 neoadjuvant trial evaluating anastrozole and fulvestrant efficacy for postmenopausal, estrogen receptor–positive, human epidermal growth factor receptor 2–negative breast cancer patients: Results of the UNICANCER CARMINA 02 french trial. Cancer 2016, 122, 3032–3040. [Google Scholar] [CrossRef]
- Quenel-Tueux, N.; Debled, M.; Rudewicz, J.; MacGrogan, G.; Pulido, M.; Mauriac, L.; Dalenc, F.; Bachelot, T.; Lortal, B.; Breton-Callu, C.; et al. Clinical and genomic analysis of a randomised phase II study evaluating anastrozole and fulvestrant in postmenopausal patients treated for large operable or locally advanced hormone-receptor-positive breast cancer. Br. J. Cancer 2015, 113, 585–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krainick-Strobel, U.E.; Lichtenegger, W.; Wallwiener, D.; Tulusan, A.H.; Jänicke, F.; Bastert, G.; Kiesel, L.; Wackwitz, B.; Paepke, S. Neoadjuvant letrozole in postmenopausal estrogen and/or progesterone receptor positive breast cancer: A phase IIb/III trial to investigate optimal duration of preoperative endocrine therapy. BMC Cancer 2008, 8, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, J.M.; Renshaw, L.; MacAskill, E.J.; Young, O.; Murray, J.; Cameron, D.; Kerr, G.R.; Evans, D.B.; Miller, W.R. Increase in response rate by prolonged treatment with neoadjuvant letrozole. Breast Cancer Res. Treat. 2009, 113, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Llombart-Cussac, A.; Guerrero, Á.; Galán, A.; Carañana, V.; Buch, E.; Rodríguez-Lescure, Á.; Ruiz, A.; Fuster, D.C.; Guillem Porta, V. Phase II trial with letrozole to maximum response as primary systemic therapy in postmenopausal patients with ER/PgR[+] operable breast cancer. Clin. Transl. Oncol. 2012, 14, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, R.; Doughty, J.C.; Cordiner, C.; Moss, N.; Gandhi, A.; Wilson, C.; Andrews, C.; Ellis, G.; Gui, G.; Skene, A.I. Optimum duration of neoadjuvant letrozole to permit breast conserving surgery. Breast Cancer Res. Treat. 2014, 144, 569–576. [Google Scholar] [CrossRef]
- Fontein, D.B.Y.; Charehbili, A.; Nortier, J.W.R.; Kranenbarg, E.M.-K.; Kroep, J.R.; Putter, H.; van Riet, Y.; Nieuwenhuijzen, G.A.; de Valk, B.; Terwogt, J.M.; et al. Efficacy of six month neoadjuvant endocrine therapy in postmenopausal, hormone receptor-positive breast cancer patients—A phase II trial. Eur. J. Cancer 2014, 50, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Allevi, G.; Strina, C.; Andreis, D.; Zanoni, V.; Bazzola, L.; Bonardi, S.; Foroni, C.; Milani, M.; Cappelletti, M.R.; Gussago, F.; et al. Increased pathological complete response rate after a long-term neoadjuvant letrozole treatment in postmenopausal oestrogen and/or progesterone receptor-positive breast cancer. Br. J. Cancer 2013, 108, 1587–1592. [Google Scholar] [CrossRef] [Green Version]
- Hojo, T.; Kinoshita, T.; Imoto, S.; Shimizu, C.; Isaka, H.; Ito, H.; Imi, K.; Wada, N.; Ando, M.; Fujiwara, Y. Use of the neo-adjuvant exemestane in post-menopausal estrogen receptor-positive breast cancer: A randomized phase II trial (PTEX46) to investigate the optimal duration of preoperative endocrine therapy. Breast 2013, 22, 263–267. [Google Scholar] [CrossRef]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thrlimann, B.; Senn, H.J. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef]
- Johnston, S.J.; Kenny, F.S.; Syed, B.M.; Robertson, J.F.R.; Pinder, S.E.; Winterbottom, L.; Ellis, I.O.; Blamey, R.W.; Cheung, K.L. A randomised trial of primary tamoxifen versus mastectomy plus adjuvant tamoxifen in fit elderly women with invasive breast carcinoma of high oestrogen receptor content: Long-term results at 20 years of follow-up. Ann. Oncol. 2012, 23, 2296–2300. [Google Scholar] [CrossRef]
- Pepping, R.M.C.; Portielje, J.E.A.; van de Water, W.; de Glas, N.A. Primary Endocrine Therapy in Older Women with Breast Cancer. Curr. Geriatr. Rep. 2017, 6, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Willsher, P.C.; Robertson, J.F.R.; Jackson, L.; Al-Hilaly, M.; Blarney, R.W. Investigation of primary tamoxifen therapy for elderly patients with operable breast cancer. Breast 1997, 6, 150–154. [Google Scholar] [CrossRef]
- Croshaw, R.; Shapiro-Wright, H.; Svensson, E.; Erb, K.; Julian, T. Accuracy of clinical examination, digital mammogram, ultrasound, and MRI in determining postneoadjuvant pathologic tumor response in operable breast cancer patients. Ann. Surg. Oncol. 2011, 18, 3160–3163. [Google Scholar] [CrossRef] [PubMed]
- Fowler, A.M.; Mankoff, D.A.; Joe, B.N. Imaging neoadjuvant therapy response in breast cancer. Radiology 2017, 285, 358–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilal, T.; Covington, M.; Kosiorek, H.E.; Zwart, C.; Ocal, I.T.; Pockaj, B.A.; Northfelt, D.W.; Patel, B.K. Breast MRI phenotype and background parenchymal enhancement may predict tumor response to neoadjuvant endocrine therapy. Breast J. 2018, 24, 1010–1014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, J.; Zhu, Q.; Chang, C. Prediction of pathologic complete response by ultrasonography and magnetic resonance imaging after neoadjuvant chemotherapy in patients with breast cancer. Cancer Manag. Res. 2020, 12, 2603–2612. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Kanao, S.; Okada, T.; Ueno, T.; Toi, M.; Ishiguro, H.; Mikami, Y.; Tanaka, S.; Togashi, K. MRI evaluation of residual tumor size after neoadjuvant endocrine therapy vs. neoadjuvant chemotherapy. Eur. J. Radiol. 2012, 81, 2148–2153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, J.; Lindstrøm, J.C.; Boavida, J.; Gjesdal, K.I.; Park, D.; Bahrami, N.; Seyedzadeh, M.; Melles, W.A.; Sauer, T.; Geisler, J.; et al. Accuracy of breast MRI in patients receiving neoadjuvant endocrine therapy: Comprehensive imaging analysis and correlation with clinical and pathological assessments. Breast Cancer Res. Treat. 2020, 184, 407–420. [Google Scholar] [CrossRef]
- Vriens, B.E.P.J.; De Vries, B.; Lobbes, M.B.I.; Van Gastel, S.M.; Van Den Berkmortel, F.W.P.J.; Smilde, T.J.; van Warmerdam, L.J.; de Boer, M.; van Spronsen, D.J.; Smidt, M.L.; et al. Ultrasound is at least as good as magnetic resonance imaging in predicting tumour size post-neoadjuvant chemotherapy in breast cancer. Eur. J. Cancer 2016, 52, 67–76. [Google Scholar] [CrossRef]
- Ragusi, M.A.A.; Loo, C.E.; van der Velden, B.H.M.; Wesseling, J.; Linn, S.C.; Beets-Tan, R.G.; Elias, S.G.; Gilhuijs, K.G.A. Contralateral parenchymal enhancement on breast MRI before and during neoadjuvant endocrine therapy in relation to the preoperative endocrine prognostic index. Eur. Radiol. 2020, 30, 6740–6748. [Google Scholar] [CrossRef]
- Ueda, S.; Tsuda, H.; Saeki, T.; Omata, J.; Osaki, A.; Shigekawa, T.; Ishida, J.; Tamura, K.; Abe, Y.; Moriya, T.; et al. Early metabolic response to neoadjuvant letrozole, measured by FDG PET/CT, is correlated with a decrease in the Ki67 labeling index in patients with hormone receptor-positive primary breast cancer: A pilot study. Breast Cancer 2011, 18, 299–308. [Google Scholar] [CrossRef]
- Boughdad, S.; Champion, L.; Becette, V.; Cherel, P.; Fourme, E.; Lemonnier, J.; Lerebours, F.; Alberini, J. L.Early metabolic response of breast cancer to neoadjuvant endocrine therapy: Comparison to morphological and pathological response. Cancer Imaging 2020, 20, 11. [Google Scholar] [CrossRef]
- Gil-Rendo, A.; Martínez-Regueira, F.; Zornoza, G.; García-Velloso, M.J.; Beorlegui, C.; Rodriguez-Spiteri, N. Association between [18F]fluorodeoxyglucose uptake and prognostic parameters in breast cancer. Br. J. Surg. 2009, 96, 166–170. [Google Scholar] [CrossRef]
- Ming, Y.; Wu, N.; Qian, T.; Li, X.; Wan, D.Q.; Li, C.; Li, Y.; Wu, Z.; Wang, X.; Liu, J.; et al. Progress and Future Trends in PET/CT and PET/MRI Molecular Imaging Approaches for Breast Cancer. Front. Oncol. 2020, 10, 1301. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.Y.; Kim, S.B.; Ahn, S.H.; Kim, H.O.; Yoon, D.H.; Ahn, J.H.; Jung, K.H.; Han, S.; Oh, S.J.; Lee, S.J.; et al. A randomized feasibility study of 18F-fluoroestradiol PET to predict pathologic response to neoadjuvant therapy in estrogen receptor-rich postmenopausal breast cancer. J. Nucl. Med. 2017, 58, 563–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groheux, D. 18F-fluoroestradiol PET to predict the response to neoadjuvant treatment of luminal breast cancer. J. Nucl. Med. 2017, 58, 683. [Google Scholar] [CrossRef] [Green Version]
- Mortimer, J.E.; Dehdashti, F.; Siegel, B.A.; Katzenellenbogen, J.A.; Fracasso, P.; Welch, M.J. Positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose and 16α-[18F]fluoro-17β-estradiol in breast cancer: Correlation with estrogen receptor status and response to systemic therapy. Clin. Cancer Res. 1996, 2, 933–939. [Google Scholar]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Urruticoechea, A.; Smith, I.E.; Dowsett, M. Proliferation marker Ki-67 in early breast cancer. J. Clin. Oncol. 2005, 23, 7212–7220. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.; Robertson, J.; Kilburn, L.; Wilcox, M.; Evans, A.; Holcombe, C.; Horgan, K.; Kirwan, C.; Mallon, E.; Sibbering, M.; et al. Long-term outcome and prognostic value of Ki67 after perioperative endocrine therapy in postmenopausal women with hormone-sensitive early breast cancer (POETIC): An open-label, multicentre, parallel-group, randomised, phase 3 trial. Lancet Oncol. 2020, 21, 1443–1454. [Google Scholar] [CrossRef]
- Dowsett, M.; Smith, I.E.; Ebbs, S.R.; Dixon, J.M.; Skene, A.; Griffith, C.; Boeddinghaus, I.; Salter, J.; Detre, S.; Hills, M.; et al. Short-term changes in Ki-67 during neoadjuvant treatment of primary breast cancer with anastrozole or tamoxifen alone or combined correlate with recurrence-free survival. Clin. Cancer Res. 2005, 11, 951–959. [Google Scholar]
- Ellis, M.J.; Suman, V.J.; Hoog, J.; Goncalves, R.; Sanati, S.; Creighton, C.J.; DeSchryver, K.; Crouch, E.; Brink, A.; Watson, M.; et al. Ki67 proliferation index as a tool for chemotherapy decisions during and after neoadjuvant aromatase inhibitor treatment of breast cancer: Results from the American college of surgeons oncology group Z1031 trial (Alliance). J. Clin. Oncol. 2017, 35, 1061–1069. [Google Scholar] [CrossRef]
- Ellis, M.J. Lessons in precision oncology from neoadjuvant endocrine therapy trials in ER+ breast cancer. Breast 2017, 34, S104–S107. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.X.; Suman, V.J.; Leitch, A.M.; Sanati, S.; Vij, K.R.; Unzeitig, G.W.; Unzeitig, G.W.; Hoog, J.; Watson, M.; Hahn, O.M.; et al. ALTERNATE: Neoadjuvant endocrine treatment (NET) approaches for clinical stage II or III estrogen receptor-positive HER2-negative breast cancer (ER+ HER2- BC) in postmenopausal (PM) women: Alliance A011106. J. Clin. Oncol. 2020, 38 (Suppl. S15), 504. [Google Scholar] [CrossRef]
- Hofmann, D.; Nitz, U.; Gluz, O.; Kates, R.E.; Schinkoethe, T.; Staib, P.; Harbeck, N. WSG ADAPT—Adjuvant dynamic marker-adjusted personalized therapy trial optimizing risk assessment and therapy response prediction in early breast cancer: Study protocol for a prospective, multi-center, controlled, non-blinded, randomized, investigator initiated phase II/III trials. Trials 2013, 14, 261. [Google Scholar] [CrossRef] [Green Version]
- Martí, C.; Sánchez-Méndez, J.I. Neoadjuvant endocrine therapy for luminal breast cancer treatment: A first-choice alternative in times of crisis such as the COVID-19 pandemic. Ecancermedicalscience 2020, 14, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Guarneri, V.; Dieci, M.V.; Bisagni, G.; Frassoldati, A.; Bianchi, G.V.; De Salvo, G.L.; Orvieto, E.; Urso, L.; Pascual, T.; Paré, L.; et al. De-escalated therapy for HR+/HER2+ breast cancer patients with Ki67 response after 2-week letrozole: Results of the PerELISA neoadjuvant study. Ann. Oncol. 2019, 30, 921–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero-zotano, A.L.; Arteaga, C.L.; Biology, C.; Program, B.C.; Cancer, V. Neoadjuvant trials in ER+ breast cancer: A tool for acceleration of drug development and discovery. Cancer Discov. 2017, 7, 561–574. [Google Scholar] [CrossRef] [Green Version]
- Ellis, M.J.; Tao, Y.; Luo, J.; A’Hern, R.; Evans, D.B.; Bhatnagar, A.S.; Chaudri Ross, H.A.; von Kameke, A.; Miller, W.R.; Smith, I.; et al. Outcome prediction for estrogen receptor-positive breast cancer based on postneoadjuvant endocrine therapy tumor characteristics. J. Natl. Cancer Inst. 2008, 100, 1380–1388. [Google Scholar] [CrossRef]
- Kurozumi, S.; Matsumoto, H.; Inoue, K.; Tozuka, K.; Hayashi, Y.; Kurosumi, M.; Oyama, T.; Fujii, T.; Horiguchi, J.; Kuwano, H. Impact of combining the progesterone receptor and preoperative endocrine prognostic index (PEPI) as a prognostic factor after neoadjuvant endocrine therapy using aromatase inhibitors in postmenopausal ER positive and HER2 negative breast cancer. PLoS ONE 2018, 13, e0201846. [Google Scholar] [CrossRef]
- Vendrell, J.A.; Solassol, J.; Gyo, B.; Vilquin, P.; Jarlier, M.; Donini, C.F.; Gamba, L.; Maudelonde, T.; Rouanet, P.; Cohen, P.A. Evaluating ZNF217 mRNA expression levels as a predictor of response to endocrine therapy in ER+ breast cancer. Front. Pharmacol. 2019, 9, 1581. [Google Scholar] [CrossRef] [PubMed]
- Goto-Yamaguchi, L.; Yamamoto-Ibusuki, M.; Yamamoto, Y.; Fujiki, Y.; Tomiguchi, M.; Sueta, A.; Takeshita, T.; Iwase, H. Therapeutic predictors of neoadjuvant endocrine therapy response in estrogen receptor-positive breast cancer with reference to optimal gene expression profiling. Breast Cancer Res. Treat. 2018, 172, 353–362. [Google Scholar] [CrossRef]
- Guarneri, V.; Generali, D.G.; Frassoldati, A.; Artioli, F.; Boni, C.; Cavanna, L.; Tagliafico, E.; Maiorana, A.; Bottini, A.; Cagossi, K.; et al. Double-blind, placebo-controlled, multicenter, randomized, phase IIB neoadjuvant study of letrozole-lapatinib in postmenopausal hormone receptor-positive, human epidermal growth factor receptor 2-negative, operable breast cancer. J. Clin. Oncol. 2014, 32, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Mayer, I.A.; Prat, A.; Egle, D.; Blau, S.; Fidalgo, J.A.P.; Fasching, P.A.; Fasching, P.A.; Colleoni, M.; Wolff, A.C.; Winer, E.P.; et al. Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clin. Cancer Res. 2019, 25, 2975–2987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.X.; Gao, F.; Luo, J.; Northfelt, D.W.; Goetz, M.; Forero, A.; Hoog, J.; Naughton, M.; Ademuyiwa, F.; Suresh, R.; et al. NeoPalAna: Neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor–positive breast cancer. Clin. Cancer Res. 2017, 23, 4055–4065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cottu, P.; D’Hondt, V.; Dureau, S.; Lerebours, F.; Desmoulins, I.; Heudel, P.E.; Duhoux, F.P.; Levy, C.; Mouret-Reynier, M.A.; Dalenc, F.; et al. Letrozole and palbociclib versus chemotherapy as neoadjuvant therapy of high-risk luminal breast cancer. Ann. Oncol. 2018, 29, 2334–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prat, A.; Saura, C.; Pascual, T.; Hernando, C.; Muñoz, M.; Paré, L.; González Farré, B.; Fernández, P.L.; Galván, P.; Chic, N.; et al. Ribociclib plus letrozole versus chemotherapy for postmenopausal women with hormone receptor-positive, HER2-negative, luminal B breast cancer (CORALLEEN): An open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 2020, 21, 33–43. [Google Scholar] [CrossRef]
- Baselga, J.; Semiglazov, V.; Van Dam, P.; Manikhas, A.; Bellet, M.; Mayordomo, J.; Campone, M.; Kubista, E.; Greil, R.; Bianchi, G.; et al. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J. Clin. Oncol. 2009, 27, 2630–2637. [Google Scholar] [CrossRef] [PubMed]
- Saura, C.; Hlauschek, D.; Oliveira, M.; Zardavas, D.; Jallitsch-Halper, A.; de la Peña, L.; Nuciforo, P.; Ballestrero, A.; Dubsky, P.; Lombard, J.M.; et al. Neoadjuvant letrozole plus taselisib versus letrozole plus placebo in postmenopausal women with oestrogen receptor-positive, HER2-negative, early-stage breast cancer (LORELEI): A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2019, 20, 1226–1238. [Google Scholar] [CrossRef]
- Johnston, S.; Puhalla, S.; Wheatley, D.; Ring, A.; Barry, P.; Holcombe, C.; Boileau, J.F.; Provencher, L.; Robidoux, A.; Rimawi, M.; et al. Randomized phase II study evaluating palbociclib in addition to letrozole as neoadjuvant therapy in estrogen receptor–positive early breast cancer: Pallet trial. J. Clin. Oncol. 2019, 37, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Hurvitz, S.A.; Martin, M.; Press, M.F.; Chan, D.; Fernandez-abad, M.; Petru, E.; Rostorfer, R.; Guarneri, V.; Huang, C.S.; Barriga, S.; et al. Potent Cell-Cycle Inhibition and Upregulation of Immune Response with Abemaciclib and Anastrozole in neoMONARCH, Phase II Neoadjuvant Study in HR+/HER2− Breast Cancer. Clin. Cancer Res. 2020, 26, 566–580. [Google Scholar] [CrossRef] [Green Version]
- Curigliano, G.; Pardo, P.G.; Meric-Bernstam, F.; Conte, P.; Lolkema, M.P.; Beck, J.T.; Bardia, A.; García, M.M.; Penault-Llorca, F.; Dhuria, S.; et al. Ribociclib plus letrozole in early breast cancer: A presurgical, window-of-opportunity study. Breast 2016, 28, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straver, M.E.; Glas, A.M.; Hannemann, J.; Wesseling, J.; Van De Vijver, M.J.; Rutgers, E.J.T.; Vrancken Peeters, M.J.; van Tinteren, H.; Van’t Veer, L.J.; Rodenhuis, S. The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. Treat. 2010, 119, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.S.; Mullins, M.; Cheung, M.C.U.; Leung, S.; Voduc, D.; Vickery, T.; Fauron, C.; He, X.; Hu, Z.; Quackenbush, J.F.; et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 2009, 27, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.; Prat, A.; Cheang, M.; Lenburg, S.; Paik, J.; Perou, C. Breast Cancer Molecular Subtypes Predict Response to Anthracycline/Taxane-Based Chemotherapy. Cancer Res. 2009, 69, 598s. [Google Scholar]
- Iwao-Koizumi, K.; Matoba, R.; Ueno, N.; Kim, S.J.; Ando, A.; Miyoshi, Y.; Miyoshi, Y.; Maeda, E.; Noguchi, S.; Kato, K. Prediction of docetaxel response in human breast cancer by gene expression profiling. J. Clin. Oncol. 2005, 23, 422–431. [Google Scholar] [CrossRef]
- Dubsky, P.C.; Singer, C.F.; Egle, D.; Wette, V.; Petru, E.; Balic, M.; Pichler, A.; Greil, R.; Petzer, A.L.; Bago-Horvath, Z.; et al. The EndoPredict score predicts response to neoadjuvant chemotherapy and neoendocrine therapy in hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer patients from the ABCSG-34 trial. Eur. J. Cancer 2020, 134, 99–106. [Google Scholar] [CrossRef]
- Soliman, H.; Wagner, S.; Flake, D.D.; Robson, M.; Schwartzberg, L.; Sharma, P.; Magliocco, A.; Kronenwett, R.; Lancaster, J.M.; Lanchbury, J.S.; et al. Evaluation of the 12-Gene Molecular Score and the 21-Gene Recurrence Score as Predictors of Response to Neo-adjuvant Chemotherapy in Estrogen Receptor-Positive, HER2-Negative Breast Cancer. Ann. Surg. Oncol. 2020, 27, 765–771. [Google Scholar] [CrossRef]
- Bear, H.D.; Wan, W.; Robidoux, A.; Rubin, P.; Limentani, S.; White, R.L.; Granfortuna, J.; Hopkins, J.O.; Oldham, D.; Rodriguez, A.; et al. Using the 21-gene assay from core needle biopsies to choose neoadjuvant therapy for breast cancer: A multicenter trial. J. Surg. Oncol. 2017, 115, 917–923. [Google Scholar] [CrossRef]
- Glück, S.; De Snoo, F.; Peeters, J.; Stork-Sloots, L.; Somlo, G. Molecular subtyping of early-stage breast cancer identifies a group of patients who do not benefit from neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2013, 139, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Van de Vijver, M.J.; He, Y.D.; van ’t Veer, L.J.; Dai, H.; Hart, A.A.M.; Voskuil, D.W.; Schreiber, G.J.; Peterse, J.L.; Roberts, C.; Marton, M.J.; et al. A Gene-Expression Signature as a Predictor of Survival in Breast Cancer. N. Engl. J. Med. 2002, 347, 1999–2009. [Google Scholar] [CrossRef] [Green Version]
- Whitworth, P.; Stork-Sloots, L.; de Snoo, F.A.; Richards, P.; Rotkis, M.; Beatty, J.; Mislowsky, A.; Pellicane, J.V.; Nguyen, B.; Lee, L.; et al. Chemosensitivity Predicted by BluePrint 80-Gene Functional Subtype and MammaPrint in the Prospective Neoadjuvant Breast Registry Symphony Trial (NBRST). Ann. Surg. Oncol. 2014, 21, 3261–3267. [Google Scholar] [CrossRef] [Green Version]
- Whitworth, P.; Beitsch, P.; Mislowsky, A.; Pellicane, J.V.; Nash, C.; Murray, M.; Lee, L.A.; Dul, C.L.; Rotkis, M.; Baron, P.; et al. Chemosensitivity and Endocrine Sensitivity in Clinical Luminal Breast Cancer Patients in the Prospective Neoadjuvant Breast Registry Symphony Trial (NBRST) Predicted by Molecular Subtyping. Ann. Surg. Oncol. 2017, 24, 669–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.; et al. A Multigene Assay to Predict Recurrence of Tamoxifen-Treated, Node-Negative Breast Cancer. N. Engl. J. Med. 2004, 351, 2817–2826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albain, K.S.; Barlow, W.E.; Shak, S.; Hortobagyi, G.N.; Livingston, R.B.; Yeh, I.T.; Ravdin, P.; Bugarini, R.; Baehner, F.L.; Davidson, N.E.; et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: A retrospective analysis of a randomised trial. Lancet Oncol. 2010, 11, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Kalinsky, K.; Barlow, W.E.; Meric-Bernstam, F.; Gralow, J.R.; Albain, K.S.; Lin, N.; Edith, N.L.; Perez, A.; Goldstein, L.J.; Chia, S.; et al. First results from a phase III randomized clinical trial of standard adjuvant endocrine therapy (ET) +/− chemotherapy (CT) in patients (pts) with 1-3 positive nodes, hormone receptor-positive (HR+) and HER2-negative (HER2-) breast cancer (BC) with recurrence score (RS) <25: SWOG S1007 (RxPonder). Cancer Res. 2021, 81 (Suppl. S4), GS3-00. [Google Scholar] [CrossRef]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E., Jr.; Dees, E.C.; Goetz, M.P.; Olson, J.A., Jr.; et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, H.; Masuda, N.; Yamamoto, Y.; Fujisawa, T.; Toyama, T.; Kashiwaba, M.; Ohtani, S.; Taira, N.; Sakai, T.; Hasegawa, Y.; et al. Validation of the 21-gene test as a predictor of clinical response to neoadjuvant hormonal therapy for ER+, HER2-negative breast cancer: The TransNEOS study. Breast Cancer Res. Treat. 2019, 173, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Ueno, T.; Masuda, N.; Yamanaka, T.; Saji, S.; Kuroi, K.; Sato, N.; Takei, H.; Yamamoto, Y.; Ohno, S.; Yamashita, H.; et al. Evaluating the 21-gene assay Recurrence Score® as a predictor of clinical response to 24 weeks of neoadjuvant exemestane in estrogen receptor-positive breast cancer. Int. J. Clin. Oncol. 2014, 19, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Filipits, M.; Rudas, M.; Jakesz, R.; Dubsky, P.; Fitzal, F.; Singer, C.F.; Dietze, O.; Greil, R.; Jelen, A.; Sevelda, P.; et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin. Cancer Res. 2011, 17, 6012–6020. [Google Scholar] [CrossRef] [Green Version]
- Chow, L.W.C.; Morita, S.; Chow, C.Y.C.; Ng, W.K.; Toi, M. Neoadjuvant palbociclib on ER+ breast cancer (N007): Clinical response and EndoPredict’s value. Endocr. Relat. Cancer 2018, 25, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, A.K.; Arthur, L.M.; Renshaw, L.; Larionov, A.A.; Kay, C.; Dunbier, A.K.; Thomas, J.S.; Dowsett, M.; Sims, A.H.; Dixon, J.M.; et al. Accurate prediction and validation of response to endocrine therapy in breast cancer. J. Clin. Oncol. 2015, 33, 2270–2278. [Google Scholar] [CrossRef]
- Selli, C.; Sims, A.H. Neoadjuvant Therapy for Breast Cancer as a Model for Translational Research. Breast Cancer Basic Clin. Res. 2019, 13, 117822341982907. [Google Scholar] [CrossRef]
- Mello-Grand, M.; Singh, V.; Ghimenti, C.; Scatolini, M.; Regolo, L.; Grosso, E.; Zambelli, A.; Da Prada, G.A.; Villani, L.; Fregoni, V.; et al. Gene expression profiling and prediction of response to hormonal neoadjuvant treatment with anastrozole in surgically resectable breast cancer. Breast Cancer Res. Treat. 2010, 121, 399–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, T.W.; Balko, J.M.; Ghazoui, Z.; Dunbier, A.; Anderson, H.; Dowsett, M.; González-Angulo, A.M.; Mills, G.B.; Miller, W.R.; Wu, H.; et al. A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance. Clin. Cancer Res. 2011, 17, 2024–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Briaux, A.; Becette, V.; Benoist, C.; Boulai, A.; Chemlali, W.; Schnitzler, A.; Baulande, S.; Rivera, S.; Mouret-Reynier, M.A.; et al. Molecular profiling of hormone receptor-positive, HER2-negative breast cancers from patients treated with neoadjuvant endocrine therapy in the CARMINA 02 trial (UCBG-0609). J. Hematol. Oncol. 2018, 11, 124. [Google Scholar] [CrossRef] [Green Version]
- Inda, M.A.; Blok, E.J.; Kuppen, P.J.K.; Charehbili, A.; den Biezen-Timmermans, E.C.; van Brussel, A.; Fruytier, S.E.; Meershoek-Klein Kranenbarg, E.; Kloet, S.; van der Burg, B.; et al. Estrogen receptor pathway activity score to predict clinical response or resistance to neoadjuvant endocrine therapy in primary breast cancer. Mol. Cancer Ther. 2020, 19, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.S.J.; Wong, A.L.A.; Ow, S.G.W.; Eng, L.S.; Sundar, R.; Chan, G.H.J.; Yadav, K.; Heong, V.; Peng Tan, D.S.; Soo, R.A.; et al. A phase Ib/II trial of lenvatinib (len) and letrozole (let) incorporating pharmacodynamics studies in postmenopausal women with hormone receptor positive (HR+) locally advanced/metastatic breast cancer (LABC/MBC). J. Clin. Oncol. 2019, 37 (Suppl. S15), 1045. [Google Scholar] [CrossRef]
- Da Silva, L.R.; de Andrade, C.A.; Brenelli, F.; Ramalho, S.; Reinert, T.; da Silva, A.E.R.; da Silva, A.E.R.; Kraft, M.B.; de Vasconcelos, V.C.A.; Frasson, A.L.; et al. Real-world data on neoadjuvant endocrine therapy in ER-positive/HER2-negative breast cancer. Breast Cancer Res. Treat. 2021, 186, 753–760. [Google Scholar] [CrossRef]
Clinical Trial | No | Characteristics | Chemotherapy | Endocrine Therapy | Primary Endpoint | Response | BCS Rate |
---|---|---|---|---|---|---|---|
Semiglazov et al., 2007 [15] | 239 | Postmenopausal ER+ and/or PR + stage IIA − IIIB | Doxorubicin+ paclitaxel × 4 cycles | Anastrozole/ Exemestane × 12 wk | CR | 64% CT vs. 64% ET | 24% CT vs. 33% ET |
Alba et al., 2012 (GEICAM 2006-03) [13] | 95 | Pre and postmenopausal ER+/PR+/HER2− | EC × 4, followed by docetaxel × 4 | Exemestane × 24 wk (+goserelin if premenopausal) | OR (RECIST, MRI) | 66% CT vs. 48% ET | 47% CT vs. 56% ET |
Palmieri et al., 2014 (NEOCENT) [16] | 44 | Postmenopausal ER+ | 5-FU + EC × 6, switched to docetaxel after 3 cycles if stability/ progression | Letrozole × 18 wk | OR (US, mammogram) | 55% CT vs. 59% ET | 55% CT vs. 68% ET |
Clinical Trial | No of Patients | Duration (months) | Drugs | Outcomes |
---|---|---|---|---|
P024 (2001) [7] | 337 | 4 | Letrozole vs. TMX | CRR 55% vs. 36% (p < 0.001) RRR 35% vs. 25% (p = 0.042) BCS 45% vs. 35% (p = 0.022) |
PROACT (2005) [46] | 451 | 3 | Anastrozole vs. TMX | CRR 50.0% vs. 46.2% (p = 0.37) RRR 39.5% vs. 35.4% (p = 0.29) BCS: 43% vs. 30.8% (p = 0.04) |
IMPACT (2006) [8] | 330 | 3 | Anastrozole vs. TMX vs. Anastrozole + TMX | CRR 38% vs. 36% vs. 39% (ns) RRR 24% vs. 20% vs. 28% BCS: 43% vs. 30.8% vs. 24% (NS) |
SEMIGLAZOV [47] | 151 | 3 | Exemestane vs. TMX | OR 76% vs. 40% (p = 0.05) BCS 37% vs. 20% (p = 0.05) |
STAGE (2012) [12] | 197 | 6 | Anastrozole + Goserelin vs. TMX + Goserelin | CRR 70.4% vs. 50.5% (p = 0.004) RRR 58.2% vs. 42.4%, (p = 0.027) BCS 86% vs. 68% |
ACOSOG Z1031 (2011) [48] | 377 | 4 | Exemestane vs. Letrozole vs. Anastrozole | CRR 62.9% vs. 74.8% vs. 69.1% (NS) |
CARMINA (2016) [49] | 116 | 4 or 6 | Anastrozole vs. Fulvestrant | CRR 52.6% vs. 36.8% (NS) BCS 57.6% vs. 50% (NS) |
QUENEL-TUEUX (2016) [50] | 108 | 6 | Anastrozole vs. Fulvestrant | CRR 59% vs. 54% (NS) BCS 59% vs. 50% |
Study | No of Patients | Type of NET | Duration (months) | Assessment | Outcomes |
---|---|---|---|---|---|
Krainick-Strobel et al. 2008 [50] | 32 | Letrozole | 4 to 8 | Monthly: palpation 3 monthly: MRI, Mammogram, or US | 4 mo 55% ORR 71% BCS 8 mo 72.4% ORR/>80% BCS |
Dixon et al. 2009 [49] | 182 | Letrozole | 3 vs. >3 | Clinical and US measurement (0,2,6,12 wk) Mammogram (0.12 wk) Review/3 mo | 3 mo: 70% ORR 60% BCS >3 mo: 83% ORR 72% BCS |
Llombart-Cussac et al. 2012 [51] | 70 | Letrozole | 4–12 | Monthly: clinical examination Mammogram and US/8wk for first 4 mo | 76.8% ORR (25% CR and 51.8% PR) 43% BCS |
Allevi et al. 2013 [54] | 120 | Letrozole | 4,8 or 12 | Monthly: clinical palpation (caliper) Mammogram and US at baseline and before surgery | 4 mo: pCR 2.5%; ORR 45%; BCS 80% 8 mo: pCR 5%; ORR 86.8%; BCS 85% 12 mo: pCR 17.5%; ORR 95%; BCS 87.5% |
Hojo et al. 2013 [56] | 52 | Exemestane | 4 vs. 6 | Monthly: caliper measurement and toxicity assessment Ultrasound and Mammogram if progression suspected | 4 mo: pCR 0%; ORR 42.3%; BCS 50% 6 mo: pCR 4 %; ORR 48%; BCS 48% |
Carpenter et al. 2014 [52] | 139 | Letrozole | up to 12 | Clinical examination and bimodal US/2 mo until BCS | ORR 85% (3.2% CR and 81.5% PR) 66% BCS Median time to achieve tumor response to allow BCS: 7.5 mo |
Fontein et al. 2014 [53] | 102 | Exemestane | 3 to 6 | Monthly: clinical palpation 3 monthly: MRI, Mammogram, or US | pCR: 0.98% 3 mo: ORR 58.7% BCS 58.7% >3 mo: ORR 68.3%; BCS 70.6% |
Rusz et al. 2015 [55] | 42 | Letrozole | 12 | Clinical palpation every 3 months. Imaging as necessary | pCR: 14.3% operated cases ORR: 88% BCS: 45% |
Pathological Characteristics of Surgical Specimen | RFS | BCSS | ||
---|---|---|---|---|
HR | Score | HR | Score | |
Tumor size T1/2 T3/4 | - 2.8 | 0 3 | - 4.4 | 0 3 |
Nodal status Negative Positive | - 3.2 | 0 3 | - 3.9 | 0 3 |
Ki67 level 0%–2.7% >2.7%–7.3% >7.3%–19.7% >19.7%–53.1% >53.1% | - 1.3 1.7 2.2 2.9 | 0 1 1 2 3 | - 1.4 2.0 2.7 3.8 | 0 1 2 3 3 |
ER status (Allred score) 0–2 3–8 | 2.8 - | 3 0 | 7.0 - | 3 0 |
Drug Group | Study | No of Patients | AI | Targeted Therapy | Design | Outcomes | pCR |
---|---|---|---|---|---|---|---|
PI3K Inhibitors | LORELEI [88] | 334 | L | Taselisib (T) | L + T/L + P | ORR 50%/39% p = 0.049 | 1.8%/0.6% ns |
NEO-ORB [89] | 257 | L | Alpelisib (Al) | L + P/L + Al | ORR 61.0%/63.4% ns | 1.7%/2.8% ns | |
Tyr Kin inhibitors | Guarneri et al. [91] | 92 | L | Lapatinib (Lp) | L + P/L + Lp | ORR 63%/70% ns | 93% ORR in PI3K mut |
CDK4/6 inhibitors | MONALEESA-1 [90] | 14 | L | Ribociclib 400 mg (R400) 600 mg (R600) | L 2 wk/ L + R400 2 wk/ L + R600 2 wk | Higher Ki67 reduction in the R arm | - |
NeoPalAna [92] | 50 | A | Palbociclib (Pal) | A → A + Pal | CCCA higher after adding Pal C1D15/C1D1 87%/26%, p < 0.001 | - | |
NeoPAL [93] | 106 | L | Palbociclib (Pal) | L + Pal 19 wk vs. FEC/21 d × 3 + docetaxel/21 d × 3 | RCB higher in the CT arm BCS equal in both arms PEPI 0 17.6%/8.0% | 3.8%/5.9% | |
NeoMONARCH [94] | 224 | A | Abemaciclib (Ab) | A/Ab/Ab + A 2 wk and 2nd core biopsy Ab + A 14 wk | CCCA higher in Ab arms 14%/58%/68% p < 0.001 | 4% | |
PALLET [95] | 307 | L | Palbociclib (Pal) | L 14 wk/ L 2 wk → L + Pal 14 wk Pal 2 wk → L + Pal 14 wk L + Pal 14 wk | Ki67 reduction and CCCA higher in the L + Pal arm 90%/59%. p < 0.001 CR 49.5%/54.3% ns | ns 1.1% in L vs. 3.3% in L + Pal | |
CORALLEEN [96] | 106 | L | Ribociclib (R) | L + R 28 d × 6/ DC/21 d × 4 → Paclitaxel/7 d × 12 | ROR at surgery 46.9%/46.1% | 2%/3% | |
mTOR inhibitor | Baselga et al. [97] | 270 | L | Everolimus (E) | L/L + E 4 mo | CR 59.1%/68.1% ns | 0.8/1.4% ns |
Targeted Therapy | Study | Population | Design | Arms | Primary Endpoints | Secondary Endpoints | Status |
---|---|---|---|---|---|---|---|
CDK4/6 inhibitor | NCT04293393 (CARABELA) | Stages II-III Surgery feasible | Phase II | Arm A: AC/21 days × 4 cycles → Paclitaxel/7 d × 12 wk or 3-weekly docetaxel/21 d × 4 cycles (wk) Arm B: letrozole plus abemaciclib ± LHRH up to 12 mo | RCB | Ki67 changes RCB 0+ I versus RCB-II versus RCB-III PEPI score IEFS Molecular downstaging for high-risk genomic groups | Recruiting |
NCT03969121 | T > 15 mm Ki67 > 14% | Phase III | Arm A: Letrozole (+LHRH if premenopausal) + placebo 16 wk Arm B: Letrozole(+LHRH if premenopausal) + palbociclib 16 wk | PEPI score EPclin score | CRR Ki67 change pCR BCS Adverse events | Recruiting | |
NCT03819010 (DxCARTES) | T > 2 cm Ki67 ≥ 20% | Phase II | Pretreatment RS 18.25: letrozole (+LHRH if premenopausal) + palbociclib/6 cycles Pretreatment RS 26-100: letrozole (+LHRH if premenopausal) + palbociclib/6 cycles | Difference on RS pre- and post- treatment (molecular results) | Molecular changes concordance rate between the RCB score (0–I vs. II–III) and pCR and post-treatment RS | Completed | |
NCT03065621 (NeoRHEA) | T2–T3 N0–N1 | Phase II | Single arm: palbociclib 125 mg × 4 cycles + letrozole/tamoxifen | Biomarkers of resistance | Radiological response | Completed | |
NCT02712723 | ER+ >66%/ Allred score 6–8 Stage II-III | Phase II | Arm A: letrozole + placebo 22 wk Arm B: letrozole + ribociclib 600 mg 22 wk Arm C: letrozole + ribocilib 400 mg 22 wk | PEPI score 0 | CCCA pCR BCS RFS | Active, not recruiting | |
NCT02603679 (PREDIXLumB) | Luminal B any N Luminal A N+ | Phase II | Arm A: Weekly paclitaxel 12 wk → switch to NET + palbociclib Arm B: tamoxifen + palbociclib 12 wkArm C: AI + palbociclib 12 wk switch to Arm D: goserelin + AI + palbociclib 12 wk weekly paclitaxel | RRR after 12 wk | pORR BCS RFS BCSS OS | Recruiting | |
NCT02592083 (PREDIXLumA) | Luminal A IDC >40 y | Phase II | Arm A: ET (tamoxifen or AI or AI + goserelin) Arm B: ET + palbociclib | CRR RRR | pORR BCS RFS BCSS OS | Recruiting | |
Immunotherapy | NCT03573648 | Stage II-III | Phase II | Arm A: ET Arm B: ET + palbociclib (PET) in a 1:2 ratio. After 1 cycle (1 mo) both arms will receive avelumab (A) × 3 cycles | CCR | Adverse events | Recruiting |
NCT02997995 | Postmenopausal Luminal A | Phase II | 1st phase: immune attractant + exemestane 6 wk. After three wk (± 3 days), a tumor biopsy 2nd phase: Patients > 10% CD8+ cells in the tumor after 3 wk a durvalumab 1500 mg Q4W IV, combined with exemestane (25 mg daily), for six months. | pCR | Number of CD8+ T cell Clinical response Assessment of Ki67 Toxicities Predictive value of Mutational load for efficacy of Durvalumab Predictive value of PDL1 | Completed | |
NCT03874325 | T2–T4c, any N | Phase II | Single arm: 1500 mg durvalumab i.v/4 wk × 6 cycles + anastrozole 1 mg | PEPI score = 0 | CRR CPD CSD | Active, no recruiting | |
Anti-VEGF | NCT00773695 | Her-2neg BC T > 25 mm | Phase II | CT arm: FEC 12 wk → taxane × 12 wk FEC 12 wk → taxane × 12 wk + bevacizumab ET arm: AI 24 wk AI + bevacizumab | pCR | pORR type of surgery | Active, recruiting |
PI3K inh | NCT01275859 | Postmenopausal T2N0-3 | Phase II | Single arm: letrozole 2.5 mg + lapatinib 1500 mg po for 18–21 wk | pCR | CRR RRR DFS OS | Completed |
Tyr Kin inh | NCT02562118 | ER+ Postmenopausal | Phase I–II | Single arm: lenvatinib × 2 wk → letrozole 2.5 mg daily + lenvatinib × 12 wk | CRR | pCR PFS | Recruiting |
Ros inh. | NCT04551495 (ROSALINE) | LIC neg | Phase II | Single arm: 428-day of letrozole 2.5 mg + entrectinib 600 mg daily. (+goserelin if premenopausal) | RCB | pCR ORR (by MRI) Adverse events | Not yet recruiting |
Histone deacetylase inh. | NCT04465097 | Stage II/III | Phase II | Single arm: exemestane from week 1 to week 26 and tucidinostat BIW from week 3 to week 26 (+leuprorelin/goserelin if premenopausal) | ORR evaluated by MRI | ORR evaluated by US pCR Adverse events RCB | Recruiting |
Other Ongoing Trials | |||||||
Lobular breast cancer | NCT02206984 | T > 1 cm | Phase II (WoT) | Arm A: tamoxifen 21 d Arm B: anastrozole 21 d Arm C: fulvestrant day 1 and 14 | Change in Ki67 | ER expression ER gene expression PR expression | Recruiting |
NCT03397537 | T > 1 cm | Phase II | letrozole 2.5 mg × 6 mo (+aGnRH if premenopausal) | ORR | - | Completed | |
Premenopausal | NCT02535221 | >35 < 55 y T2N0M0 | Phase III | Arm A: goserelin + TAM + AI (1st 4 wk TAM → AI) Arm B: FEC × 4–6 cycles | RRR by US | pCR (Miller-Paine) | Recruiting |
MammaPrint® | NCT03900637 | Stage I–IIIA BCS not feasible | Phase II | MammaPrint® high risk: NCT × 4 followed by docetaxel × 4 MammaPrint® low risk: letrozole 2.5 mg × 16–24 wk (+leuprorelin if premenopausal) | BCS conversion rate | pCR CRR Tumor size reduction rate DFS IBTRBluePrint® | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martí, C.; Sánchez-Méndez, J.I. The Present and Future of Neoadjuvant Endocrine Therapy for Breast Cancer Treatment. Cancers 2021, 13, 2538. https://doi.org/10.3390/cancers13112538
Martí C, Sánchez-Méndez JI. The Present and Future of Neoadjuvant Endocrine Therapy for Breast Cancer Treatment. Cancers. 2021; 13(11):2538. https://doi.org/10.3390/cancers13112538
Chicago/Turabian StyleMartí, Covadonga, and José Ignacio Sánchez-Méndez. 2021. "The Present and Future of Neoadjuvant Endocrine Therapy for Breast Cancer Treatment" Cancers 13, no. 11: 2538. https://doi.org/10.3390/cancers13112538
APA StyleMartí, C., & Sánchez-Méndez, J. I. (2021). The Present and Future of Neoadjuvant Endocrine Therapy for Breast Cancer Treatment. Cancers, 13(11), 2538. https://doi.org/10.3390/cancers13112538