Thrombospondin-2 and LDH Are Putative Predictive Biomarkers for Treatment with Everolimus in Second-Line Metastatic Clear Cell Renal Cell Carcinoma (MARC-2 Study)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Biomarker Expression
3.2. Oncological Outcome, Stratified by Patient Groups and Biomarkers
3.3. Predictive Impact of Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Oudard, S.; Negrier, S.; Szczylik, C.; Pili, R.; Bjarnason, G.A.; et al. Overall Survival and Updated Results for Sunitinib Compared With Interferon Alfa in Patients With Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2009, 27, 3584–3590. [Google Scholar] [CrossRef] [PubMed]
- Escudier, B.; Choueiri, T.K.; Oudard, S.; Szczylik, C.; Négrier, S.; Ravaud, A.; Chevreau, C.; Venner, P.; Champagne, P.; Croteau, D.; et al. Prognostic Factors of Metastatic Renal Cell Carcinoma After Failure of Immunotherapy: New Paradigm From a Large Phase III Trial With Shark Cartilage Extract AE 941. J. Urol. 2007, 178, 1901–1905. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; Oudard, S.; Hutson, T.E.; Porta, C.; Bracarda, S.; Grünwald, V.; Thompson, J.A.; Figlin, R.A.; Hollaender, N.; et al. Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial. Lancet 2008, 372, 449–456. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Frontera, O.A.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Alyasova, A.; Ye, D.; Karpenko, A.; Li, H.; Alekseev, B.; Xie, L.; Kurteva, G.; Kowalyszyn, R.; Karyakin, O.; et al. Phase II trial of second-line everolimus in patients with metastatic renal cell carcinoma (RECORD-4). Ann. Oncol. 2015, 27, 441–448. [Google Scholar] [CrossRef]
- Staehler, M.; Stöckle, M.; Christoph, D.C.; Stenzl, A.; Potthoff, K.; Grimm, M.; Klein, D.; Harde, J.; Brüning, F.; Goebell, P.J.; et al. Everolimus after failure of one prior VEGF -targeted therapy in metastatic renal cell carcinoma: Final results of the MARC -2 trial. Int. J. Cancer 2021, 148, 1685–1694. [Google Scholar] [CrossRef]
- Heng, D.Y.; Xie, W.; Regan, M.M.; Warren, M.A.; Golshayan, A.R.; Sahi, C.; Eigl, B.J.; Ruether, J.D.; Cheng, T.; North, S.; et al. Prognostic Factors for Overall Survival in Patients With Metastatic Renal Cell Carcinoma Treated With Vascular Endothelial Growth Factor–Targeted Agents: Results From a Large, Multicenter Study. J. Clin. Oncol. 2009, 27, 5794–5799. [Google Scholar] [CrossRef]
- Husen, P.; Straub, K.; Willuweit, K.; Hagemann, A.; Wedemeyer, H.; Bachmann, H.S.; Herzer, K. SNPs Within the MTOR Gene Are Associated With an Increased Risk of Developing De Novo Diabetes Mellitus Following the Administration of Everolimus in Liver Transplant Recipients. Transplant. Proc. 2019, 51, 1962–1971. [Google Scholar] [CrossRef]
- Morgan, C.J. Landmark analysis: A primer. J. Nucl. Cardiol. 2019, 26, 391–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Senkus, E.; Costa, A.; Papadopoulos, E.; Aapro, M.; André, F.; Harbeck, N.; Lopez, B.A.; Barrios, C.; Bergh, J.; et al. 4th ESO–ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4). Ann. Oncol. 2018, 29, 1634–1657. [Google Scholar] [CrossRef]
- Schmoll, H.J.; Van Cutsem, E.; Stein, A.; Valentini, V.; Glimelius, B.; Haustermans, K.; Nordlinger, B.; van de Velde, C.J.; Balmana, J.; Regula, J.; et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann. Oncol. 2012, 23, 2479–2516. [Google Scholar] [CrossRef] [PubMed]
- Junker, K.; Zeuschner, P. [Personalised medicine in renal cell tumours]. Aktuel- Urol. 2019, 50, 513–523. [Google Scholar] [CrossRef]
- Molina, A.M.; Ginsberg, M.S.; Motzer, R.J. Long-term response with everolimus for metastatic renal cell carcinoma refractory to sunitinib. Med Oncol. 2011, 28, 1527–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, Y.; Sakai, H. Thrombospondin-1 in Urological Cancer: Pathological Role, Clinical Significance, and Therapeutic Prospects. Int. J. Mol. Sci. 2013, 14, 12249–12272. [Google Scholar] [CrossRef] [Green Version]
- Boguslawska, J.; Kedzierska, H.; Poplawski, P.; Rybicka, B.; Tanski, Z.; Piekielko-Witkowska, A. Expression of Genes Involved in Cellular Adhesion and Extracellular Matrix Remodeling Correlates with Poor Survival of Patients with Renal Cancer. J. Urol. 2016, 195, 1892–1902. [Google Scholar] [CrossRef]
- Bartsch, G.; Eggert, K.; Soker, S.; Bokemeyer, C.; Hautmann, R.; Schuch, G. Combined Antiangiogenic Therapy is Superior to Single Inhibitors in a Model of Renal Cell Carcinoma. J. Urol. 2008, 179, 326–332. [Google Scholar] [CrossRef]
- Resovi, A.; Bani, M.R.; Porcu, L.; Anastasia, A.; Minoli, L.; Allavena, P.; Cappello, P.; Novelli, F.; Scarpa, A.; Morandi, E.; et al. Soluble stroma-related biomarkers of pancreatic cancer. EMBO Mol. Med. 2018, 10, e8741. [Google Scholar] [CrossRef]
- Peng, H.-Y.; Chang, M.-C.; Hu, C.-M.; Yang, H.-I.; Lee, W.-H.; Chang, Y.-T. Thrombospondin-2 is a Highly Specific Diagnostic Marker and is Associated with Prognosis in Pancreatic Cancer. Ann. Surg. Oncol. 2018, 26, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Oida, Y.; Abe, Y.; Yamazaki, H.; Mukai, M.; Matsuyama, M.; Chijiwa, T.; Matsumoto, H.; Ueyama, Y. Thrombospondin-2 inhibits tumor cell invasion through the modulation of MMP-9 and uPA in pancreatic cancer cells. Mol. Med. Rep. 2008, 1, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Chijiwa, T.; Abe, Y.; Inoue, Y.; Matsumoto, H.; Kawai, K.; Matsuyama, M.; Miyazaki, N.; Inoue, H.; Mukai, M.; et al. Cancerous, but not stromal, thrombospondin-2 contributes prognosis in pulmonary adenocarcinoma. Oncol. Rep. 2009, 22, 279–283. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.-M.; Yu, D.-L.; Hou, G.-X.; Jiang, J.-L.; Zhou, Q.; Xu, X.-F. Serum thrombospondin-2 is a candidate diagnosis biomarker for early non-small-cell lung cancer. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [Green Version]
- Tokunaga, T.; Nakamura, M.; Oshika, Y.; Abe, Y.; Ozeki, Y.; Fukushima, Y.; Hatanaka, H.; Sadahiro, S.; Kijima, H.; Tsuchida, T.; et al. Thrombospondin 2 expression is correlated with inhibition of angiogenesis and metastasis of colon cancer. Br. J. Cancer 1998, 79, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-Y.; Lin, C.-Y.; Chang, I.-W.; Sheu, M.-J.; Li, C.-F.; Lee, S.-W.; Lin, L.-C.; Lee, Y.-E.; He, H.-L. Low thrombospondin 2 expression is predictive of low tumor regression after neoadjuvant chemoradiotherapy in rectal cancer. Am. J. Transl. Res. 2015, 7, 2423–2432. [Google Scholar] [PubMed]
- Adams, J.C.; Lawler, J. The thrombospondins. Int. J. Biochem. Cell Biol. 2004, 36, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, P. Thrombospondins as matricellular modulators of cell function. J. Clin. Investig. 2001, 107, 929–934. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-H.; Motzer, R.J.; Glen, H.; Michaelson, M.D.; Larkin, J.; Minoshima, Y.; Kanekiyo, M.; Ikezawa, H.; Sachdev, P.; Dutcus, C.E.; et al. Correlative serum biomarker analyses in the phase 2 trial of lenvatinib-plus-everolimus in patients with metastatic renal cell carcinoma. Br. J. Cancer 2021, 124, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; E Hutson, T.; Glen, H.; Michaelson, M.D.; Molina, A.; Eisen, T.; Jassem, J.; Zolnierek, J.; Maroto, J.P.; Mellado, B.; et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: A randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015, 16, 1473–1482. [Google Scholar] [CrossRef] [Green Version]
- Voss, M.H.; Chen, D.; Marker, M.; Hakimi, A.A.; Lee, C.-H.; Hsieh, J.J.; Knox, J.J.; Voi, M.; Motzer, R.J. Circulating biomarkers and outcome from a randomised phase II trial of sunitinib vs everolimus for patients with metastatic renal cell carcinoma. Br. J. Cancer 2016, 114, 642–649. [Google Scholar] [CrossRef]
- Knox, J.J.; Barrios, C.H.; Kim, T.M.; Cosgriff, T.; Srimuninnimit, V.; Pittman, K.; Sabbatini, R.; Rha, S.Y.; Flaig, T.W.; Page, R.D.; et al. Final overall survival analysis for the phase II RECORD-3 study of first-line everolimus followed by sunitinib versus first-line sunitinib followed by everolimus in metastatic RCC. Ann. Oncol. 2017, 28, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Chen, Z.; Zhuang, Q.; Fan, M.; Ding, T.; Lu, H.; He, X. Prognostic Value of Serum Lactate Dehydrogenase in Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0166482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, R.J.; Flaherty, A.; Zhang, Y.; Ouyang, F.; Mohlere, V. Clinical prognostic factors associated with outcome in patients with renal cell cancer with prior tyrosine kinase inhibitors or immunotherapy treated with everolimus. Urol. Oncol. Semin. Orig. Investig. 2014, 32, 345–354. [Google Scholar] [CrossRef]
- Bodnar, L.; Stec, R.; Cierniak, S.; Synowiec, A.; Wcisło, G.; Jesiotr, M.; Koktysz, R.; Kozłowski, W.; Szczylik, C. Clinical usefulness of PI3K/Akt/mTOR genotyping in companion with other clinical variables in metastatic renal cell carcinoma patients treated with everolimus in the second and subsequent lines. Ann. Oncol. 2015, 26, 1385–1389. [Google Scholar] [CrossRef]
- Huang, L.; Sim, A.Y.L.; Wu, Y.; Liang, Z.; Li, K.; Du, Y.; Ong, E.H.W.; Tan, H.Q.; Wee, J.T.S.; Xie, Y.; et al. Lactate dehydrogenase kinetics predict chemotherapy response in recurrent metastatic nasopharyngeal carcinoma. Ther. Adv. Med Oncol. 2020, 12, 1758835920970050. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, C.; Guo, M.; Shang, S.; Li, X.; Xie, P.; Sun, X.; Yu, J.; Wang, L. Predictive value of LDH kinetics in bevacizumab treatment and survival of patients with advanced NSCLC. Onco Targets Ther. 2018, 11, 6287–6294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- William, B.M.; Bongu, N.R.; Bast, M.; Bociek, R.G.; Bierman, P.J.; Vose, J.M.; Armitage, J.O. The utility of lactate dehydrogenase in the follow up of patients with diffuse large B-cell lymphoma. Rev. Bras. de Hematol. e Hemoter. 2013, 35, 189–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarhini, A.; Kudchadkar, R.R. Predictive and on-treatment monitoring biomarkers in advanced melanoma: Moving toward personalized medicine. Cancer Treat. Rev. 2018, 71, 8–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motzer, R.; Alekseev, B.; Rha, S.-Y.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Kopyltsov, E.; Méndez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. New Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef]
- Hutson, T.E.; Michaelson, M.D.; Kuzel, T.M.; Agarwal, N.; Molina, A.M.; Hsieh, J.J.; Vaishampayan, U.N.; Xie, R.; Bapat, U.; Ye, W.; et al. A Single-arm, Multicenter, Phase 2 Study of Lenvatinib Plus Everolimus in Patients with Advanced Non-Clear Cell Renal Cell Carcinoma. Eur. Urol. 2021. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Juárez, V.M.O.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Zeuschner, P.; Linxweiler, J.; Junker, K. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies. Expert Rev. Mol. Diagn. 2019, 20, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Gerlinger, M.; Horswell, S.; Larkin, J.; Rowan, A.J.; Salm, M.P.; Varela, I.; Fisher, R.; McGranahan, N.; Matthews, N.; Santos, C.R.; et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 2014, 46, 225–233. [Google Scholar] [CrossRef]
- Turajlic, S.; Xu, H.; Litchfield, K.; Rowan, A.; Horswell, S.; Chambers, T.; O’Brien, T.; Lopez, J.I.; Watkins, T.B.; Nicol, D.; et al. Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal. Cell 2018, 173, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Zining, J.; Lu, X.; Caiyun, H.; Yuan, Y. Genetic polymorphisms of mTOR and cancer risk: A systematic review and updated meta-analysis. Oncotarget 2016, 7, 57464–57480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Q.; Ju, X.; Li, P.; Meng, X.; Shao, P.; Cai, H.; Wang, M.; Zhang, Z.; Qin, C.; Yin, C. A Functional Variant in the MTOR Promoter Modulates Its Expression and Is Associated with Renal Cell Cancer Risk. PLoS ONE 2012, 7, e50302. [Google Scholar] [CrossRef]
- Hildebrandt, M.A.; Yang, H.; Hung, M.-C.; Izzo, J.G.; Huang, M.; Lin, J.; Ajani, J.A.; Wu, X. Genetic Variations in the PI3K/PTEN/AKT/mTOR Pathway Are Associated With Clinical Outcomes in Esophageal Cancer Patients Treated With Chemoradiotherapy. J. Clin. Oncol. 2009, 27, 857–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Subgroup | Patients | 6-Month PFS (%) (95%CI) | Median PFS (Months) (95%CI) | Median OS (Months) (95%CI) |
---|---|---|---|---|---|
all patients | - | 63 | 39.3 (27.0–31.5) | 3.8 (3.2–6.2) | 16.8 (14.3–24.3) |
IMDC risk groups | favorable | 7 | 47.6 (7.5–80.8) | 3.7 (0–8.4) | 20.4 (NA–NA) |
intermediate | 40 | 44.6 (28.9–59.2) | 5.3 (1.6–8.9) | 18.9 (9.9–27.9) | |
poor | 11 | 9.1 (0.5–33.3) | 3.6 (1.6–5.5) | 6.8 (3.8–9.8) | |
TSP-2 C1D1 | ≤665 ppb | 19 | 50.8 (26.8–70.7) | 6.9 (1.3–12.5) | 27.8 (3.3–52.2) |
>665 ppb | 22 | 13.6 (3.4–30.9) | 1.8 (1.6–2.1) | 15.4 (5.6–25.2) | |
TSP-2 C1D15 | ≤635 ppb | 14 | 57.1 (28.4–78.0) | 6.5 (2.3–10.5) | 15.8 (0.0–35.6) |
>635 ppb | 22 | 10.4 (1.8–27.6) | 2.0 (1.6–2.3) | 16.2 (8.8–23.6) | |
LDH C1D15 | ≤27.14 nmol/L | 21 | 17.6 (4.5–37.7) | 2.2 (1.4–3.0) | 14.0 (8.8–19.1) |
>27.14 nmol/L | 30 | 41.9 (24.1–58.8) | 3.8 (0.4–7.3) | 31.0 (16.7–45.4) |
Variable | Subgroup | Univariate | Multiple | ||||
---|---|---|---|---|---|---|---|
Pat. | HR (95%CI) | p-Value | Pat. | HR (95%CI) | p-Value | ||
age | <65 years | 31 | 1 | 0.004 | 18 | 1 | 0.002 |
≥65 years | 32 | 0.45 (0.26–0.78) | 20 | 0.31 (0.14–0.66) | |||
gender | male | 48 | - | 0.149 | - | - | - |
female | 15 | - | - | - | |||
BMI | ≤25 kg/m² | 22 | 1 | 0.042 | 12 | 1 | 0.008 |
>25 kg/m² | 41 | 0.57 (0.33–0.98) | 26 | 0.34 (0.15–0.76) | |||
IMDC risk groups | fav.+ interm. | 47 | 1 | 0.029 | 30 | - | 0.779 |
poor | 11 | 2.16 (1.08–4.3) | 8 | - | |||
TSP-2 C1D1 | >665 ppb | 22 | 1 | 0.007 | 19 | 1 | 0.008 |
≤665 ppb | 19 | 0.40 (0.20–0.78) | 19 | 0.36 (0.16–0.76) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeuschner, P.; Hölters, S.; Stöckle, M.; Seliger, B.; Mueller, A.; Bachmann, H.S.; Grünwald, V.; Christoph, D.C.; Stenzl, A.; Grimm, M.-O.; et al. Thrombospondin-2 and LDH Are Putative Predictive Biomarkers for Treatment with Everolimus in Second-Line Metastatic Clear Cell Renal Cell Carcinoma (MARC-2 Study). Cancers 2021, 13, 2594. https://doi.org/10.3390/cancers13112594
Zeuschner P, Hölters S, Stöckle M, Seliger B, Mueller A, Bachmann HS, Grünwald V, Christoph DC, Stenzl A, Grimm M-O, et al. Thrombospondin-2 and LDH Are Putative Predictive Biomarkers for Treatment with Everolimus in Second-Line Metastatic Clear Cell Renal Cell Carcinoma (MARC-2 Study). Cancers. 2021; 13(11):2594. https://doi.org/10.3390/cancers13112594
Chicago/Turabian StyleZeuschner, Philip, Sebastian Hölters, Michael Stöckle, Barbara Seliger, Anja Mueller, Hagen S. Bachmann, Viktor Grünwald, Daniel C. Christoph, Arnulf Stenzl, Marc-Oliver Grimm, and et al. 2021. "Thrombospondin-2 and LDH Are Putative Predictive Biomarkers for Treatment with Everolimus in Second-Line Metastatic Clear Cell Renal Cell Carcinoma (MARC-2 Study)" Cancers 13, no. 11: 2594. https://doi.org/10.3390/cancers13112594
APA StyleZeuschner, P., Hölters, S., Stöckle, M., Seliger, B., Mueller, A., Bachmann, H. S., Grünwald, V., Christoph, D. C., Stenzl, A., Grimm, M. -O., Brüning, F., Goebell, P. J., Augustin, M., Roos, F., Harde, J., Benz-Rüd, I., Staehler, M., & Junker, K. (2021). Thrombospondin-2 and LDH Are Putative Predictive Biomarkers for Treatment with Everolimus in Second-Line Metastatic Clear Cell Renal Cell Carcinoma (MARC-2 Study). Cancers, 13(11), 2594. https://doi.org/10.3390/cancers13112594