GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset Curation
2.1.1. CircRNA-Disease Association
2.1.2. CircRNA-MiRNA Association and Disease-mRNA Association
2.1.3. Construction of the Interaction Network
2.2. Similarity Calculation
2.2.1. Network Similarity
2.2.2. Information Entropy Similarity
2.2.3. Disease Symptom Similarity
2.2.4. Integration of Similarities
2.3. Graph Attention Network
3. Results
3.1. Performance Evaluation
3.2. Adjustment of Parameters
3.3. Compared with Other Methods
3.4. Case Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Zheng, Q.; Bao, C.; Li, S.; Guo, W.; Zhao, J.; Chen, D.; Gu, J.; He, X.; Huang, S. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 2015, 25, 981–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rong, D.; Sun, H.; Li, Z.; Liu, S.; Dong, C.; Fu, K.; Tang, W.; Cao, H. An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 2017, 8, 73271–73281. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wei, S.; Wang, X.; Zhu, X.; Han, S. Progress in research on the role of circular RNAs in lung cancer. World J. Surg. Oncol. 2018, 16, 215. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, C.; Chen, C.; Guo, Y.; Yuan, W.; Yin, D.; Liu, J.; Sun, Z. The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs. Mol. Cancer 2020, 19, 105. [Google Scholar] [CrossRef]
- Patop, I.L.; Wüst, S.; Kadener, S. Past, present, and future of circRNAs. EMBO J. 2019, 38, e100836. [Google Scholar] [CrossRef]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nat. Cell Biol. 2013, 495, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Chao, J.; Yao, H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol. Ther. 2018, 187, 31–44. [Google Scholar] [CrossRef]
- Zhu, L.-P.; He, Y.-J.; Hou, J.-C.; Chen, X.; Zhou, S.-Y.; Yang, S.-J.; Li, J.; Zhang, H.-D.; Hu, J.-H.; Zhong, S.-L.; et al. The role of circRNAs in cancers. Biosci. Rep. 2017, 37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, T.; Xiao, J. Circular RNAs: Promising Biomarkers for Human Diseases. EBioMedicine 2018, 34, 267–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Botchway, B.O.A.; Zhang, Y.; Wang, X.; Liu, X. Role of Circular Ribonucleic Acids in the Treatment of Traumatic Brain and Spinal Cord Injury. Mol. Neurobiol. 2020, 57, 4296–4304. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Yao, Y.; Yang, N.; Gong, L.; Kong, Y.; Wu, A. Circular RNA circCTNNA1 promotes colorectal cancer progression by sponging miR-149-5p and regulating FOXM1 expression. Cell Death Dis. 2020, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-H.; Wu, X.-J.; Duan, Y.-Z.; Li, F. Circular RNA_CNST Promotes the Tumorigenesis of Osteosarcoma Cells by Sponging miR-421. Cell Transplant. 2020, 29. [Google Scholar] [CrossRef]
- Wu, C.; Deng, L.; Zhuo, H.; Chen, X.; Tan, Z.; Han, S.; Tang, J.; Qian, X.; Yao, A. Circulating circRNA predicting the occurrence of hepatocellular carcinoma in patients with HBV infection. J. Cell. Mol. Med. 2020, 24, 10216–10222. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, J.; Liu, X.; Guo, R.; Zhang, R. circITGA7 Functions as an Oncogene by Sponging miR-198 and Upregulating FGFR1 Expression in Thyroid Cancer. BioMed Res. Int. 2020, 2020, 8084028. [Google Scholar] [CrossRef]
- Fan, C.; Lei, X.; Fang, Z.; Jiang, Q.; Wu, F.-X. CircR2Disease: A manually curated database for experimentally supported circular RNAs associated with various diseases. Database 2018, 2018, bay044. [Google Scholar] [CrossRef] [Green Version]
- Ji, P.; Wu, W.; Chen, S.; Zheng, Y.; Zhou, L.; Zhang, J.; Cheng, H.; Yan, J.; Zhang, S.; Yang, P.; et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep. 2019, 26, 3444–3460.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, D.; Zhang, L.; Zheng, M.; Sun, X.; Lu, Y.; Liu, P. Circ2Disease: A manually curated database of experimentally validated circRNAs in human disease. Sci. Rep. 2018, 8, 11018. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Wang, K.; Wu, F.; Wang, W.; Zhang, K.; Hu, H.; Liu, Y.; Jiang, T. circRNA disease: A manually curated database of experimentally supported circRNA-disease associations. Cell Death Dis. 2018, 9, 475. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Mudiyanselage, T.B.; Zhang, Y.; Bian, C.; Lan, W.; Yu, N.; Pan, Y. A comprehensive survey on computational methods of non-coding RNA and disease association prediction. Brief. Bioinform. 2020. [Google Scholar] [CrossRef]
- Lei, X.; Zhang, W. BRWSP: Predicting circRNA-Disease Associations Based on Biased Random Walk to Search Paths on a Multiple Heterogeneous Network. Complexity 2019, 2019, 5938035. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Lei, X.; Wu, F.-X. Prediction of CircRNA-Disease Associations Using KATZ Model Based on Heterogeneous Networks. Int. J. Biol. Sci. 2018, 14, 1950–1959. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Fang, Z.; Guo, L. Predicting circRNA-Disease Associations Based on Improved Collaboration Filtering Recommendation System with Multiple Data. Front. Genet. 2019, 10, 897. [Google Scholar] [CrossRef] [PubMed]
- Hang, W.; Bin, L. iCircDA-MF: Identification of circRNA-disease associations based on matrix factorization. Brief. Bioinform. 2019, 21, 1356–1367. [Google Scholar]
- Zhang, Y.; Lei, X.; Fang, Z.; Pan, Y. CircRNA-disease associations prediction based on metapath2vec++ and matrix factorization. Big Data Min. Anal. 2020, 3, 280–291. [Google Scholar] [CrossRef]
- Lei, X.; Fang, Z. GBDTCDA: Predicting circRNA-disease Associations Based on Gradient Boosting Decision Tree with Multiple Biological Data Fusion. Int. J. Biol. Sci. 2019, 15, 2911–2924. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Chen, B.; Lei, X.; Liao, B.; Wu, F.-X. Predicting novel CircRNA-disease associations based on random walk and logistic regression model. Comput. Biol. Chem. 2020, 87, 107287. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; You, Z.-H.; Huang, Y.-A.; Huang, D.-S.; Chan, K.C.C. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network. Bioinformatics 2019, 36, 4038–4046. [Google Scholar] [CrossRef]
- Wang, L.; You, Z.-H.; Li, Y.-M.; Zheng, K.; Huang, Y.-A. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm. PLoS Comput. Biol. 2020, 16, e1007568. [Google Scholar] [CrossRef]
- Li, J.-H.; Liu, S.; Zhou, H.; Qu, L.-H.; Yang, J.-H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014, 42, D92–D97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2019, 48, D845–D855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Yue, L.; Wang, Y.; Jiang, Y.; Xiang, L.; Cheng, Y.; Ju, D.; Chen, Y. A circRNA-miRNA-mRNA network plays a role in the protective effect of diosgenin on alveolar bone loss in ovariectomized rats. BMC Complement. Med. Ther. 2020, 20, 220. [Google Scholar] [CrossRef]
- Su, Q.; Lv, X. Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis. Genomics 2020, 112, 1680–1685. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.K.; Shen, Z.A.; Yu, H.; Luo, T.; Gao, Y.; Du, P.F. Predicting lncRNA-Protein Interactions with miRNAs as Mediators in a Heterogeneous Network Model. Front. Genet. 2019, 10, 1341. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Z.; Menche, J.R.; Barabási, A.-L.; Sharma, A. Human symptoms-disease network. Nat. Commun. 2014, 5, 4212. [Google Scholar] [CrossRef] [Green Version]
- Velikovi, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
- Yan, C.; Wang, J.; Wu, F.-X. DWNN-RLS: Regularized least squares method for predicting circRNA-disease associations. BMC Bioinform. 2018, 19, 520. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Tie, J. Prediction of disease-related metabolites using bi-random walks. PLoS ONE 2019, 14, e0225380. [Google Scholar] [CrossRef]
- Chen, H.; Perozzi, B.; Al-Rfou, R.; Skiena, S. A Tutorial on Network Embeddings. arXiv 2018, arXiv:1808.02590. [Google Scholar]
- Hindy, J.-R.; Souaid, T.; Kourie, H.R.; Kattan, J. Targeted therapies in urothelial bladder cancer: A disappointing past preceding a bright future? Future Oncol. 2019, 15, 1505–1524. [Google Scholar] [CrossRef]
- Kwan, M.L.; Garren, B.; Nielsen, M.E.; Tang, L. Lifestyle and nutritional modifiable factors in the prevention and treatment of bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2019, 37, 380–386. [Google Scholar] [CrossRef]
- Silpa-Archa, S.; Ruamviboonsuk, P. Diabetic Retinopathy: Current Treatment and Thailand Perspective. J. Med. Assoc. Thail. Chotmaihet Thangphaet 2017, 100 (Suppl. S1), S136–S147. [Google Scholar]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Li, B.; Li, N.; Zhang, L.; Li, K.; Xie, Y.; Xue, M.; Zheng, Z. Hsa_circ_0001859 Regulates ATF2 Expression by Functioning as an MiR-204/211 Sponge in Human Rheumatoid Arthritis. J. Immunol. Res. 2018, 2018, 9412387. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-J.; Chen, X.; Li, C.-P.; Li, X.-M.; Liu, C.; Liu, B.-H.; Shan, K.; Jiang, Q.; Zhao, C.; Yan, B. Identification and Characterization of Circular RNAs as a New Class of Putative Biomarkers in Diabetes Retinopathy. Investig. Opthalmol. Vis. Sci. 2017, 58, 6500–6509. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, H.B.; Zhao, C.Y.; Shi, L.; Ren, X.L. Cyclic RNA hsa_circ_0091017 inhibits proliferation, migration and invasiveness of bladder cancer cells by binding to microRNA-589-5p. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 86–96. [Google Scholar] [CrossRef]
- Cai, D.; Liu, Z.; Kong, G. Molecular and Bioinformatics Analyses Identify 7 Circular RNAs Involved in Regulation of Oncogenic Transformation and Cell Proliferation in Human Bladder Cancer. Med. Sci. Monit. 2018, 24, 1654–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Yuan, W.; Yang, X.; Li, P.; Wang, J.; Han, J.; Tao, J.; Li, P.; Yang, H.; Lv, Q.; et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol. Cancer 2018, 17, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Z.; Lv, M.; Chen, J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci. Rep. 2016, 6, 30919. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, C.; Huang, X.; Yu, J.; Gui, Y. Circular RNA hsa_circ_0075828 Promotes Bladder Cancer Cell Proliferation through Activation of CREB1. BMB Rep. 2020, 53, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Huang, M.; Lv, M.; He, Y.; Duan, C.; Zhang, L.; Chen, J. Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 2017, 403, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yao, M.-D.; Li, C.-P.; Shan, K.; Yang, H.; Wang, J.-J.; Liu, B.; Li, X.-M.; Yao, J.; Jiang, Q.; et al. Silencing of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction. Theranostics 2017, 7, 2863–2877. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Yu, X.; Huang, J.; Dai, Y. Circular RNA expression profiles of peripheral blood mononuclear cells in rheumatoid arthritis patients, based on microarray chip technology. Mol. Med. Rep. 2017, 16, 8029–8036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, S.; Ouyang, Q.; Zhu, D.; Huang, Q.; Zhao, J.; Fan, M.; Cai, Y.; Yang, M. Hsa_circ_0088036 promotes the proliferation and migration of fibroblast-like synoviocytes by sponging miR-140-3p and upregulating SIRT 1 expression in rheumatoid arthritis. Mol. Immunol. 2020, 125, 131–139. [Google Scholar] [CrossRef] [PubMed]
Disease | Rank | CircRNA | Source |
---|---|---|---|
Bladder cancer | 1 | hsa_circ_0091017 | [45] |
2 | hsa_circ_0002495 | [46] | |
3 | hsa_circ_0071410 | - 1 | |
4 | hsa_circ_0001141 | [47] | |
5 | hsa_circ_0007915 | - | |
6 | hsa_circ_0041103 | [48] | |
7 | hsa_circ_0075828 | [49] | |
8 | hsa_circ_0061265 | [48] | |
9 | hsa_circ_0002768 | [50] | |
10 | hsa_circ_0082582 | [48] | |
Diabetes retinopathy | 1 | hsa_circ_0098964 | - |
2 | hsa_circ_0057093 | [44] | |
3 | hsa_circ_0051172 | - | |
4 | hsa_circ_0087215 | [44] | |
5 | hsa_circ_0081162 | [44] | |
6 | hsa_circ_0066922 | [44] | |
7 | hsa_circ_0026388 | [44] | |
8 | hsa_circ_0005525 | - | |
9 | hsa_circ_0000615 | [51] | |
10 | hsa_circ_0005015 | [44] | |
Rheumatoid arthritis | 1 | hsa_circ_0083964 | [52] |
2 | hsa_circ_0064996 | [52] | |
3 | hsa_circ_0004712 | [52] | |
4 | hsa_circ_0061893 | - | |
5 | hsa_circ_0052012 | [52] | |
6 | hsa_circ_0032683 | [52] | |
7 | hsa_circ_0001859 | [43] | |
8 | hsa_circ_0088036 | [53] | |
9 | hsa_circ_0003028 | - | |
10 | hsa_circ_0010090 | - |
Model | Bladder Cancer | Diabetes Retinopathy | Rheumatoid Arthritis |
---|---|---|---|
GATCDA | 8 | 7 | 7 |
DWNN-RLS | 7 | 5 | 4 |
KATZHCDA | 5 | 4 | 4 |
BiRWR | 5 | 3 | 4 |
DeepWalk | 3 | 1 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, C.; Lei, X.-J.; Wu, F.-X. GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network. Cancers 2021, 13, 2595. https://doi.org/10.3390/cancers13112595
Bian C, Lei X-J, Wu F-X. GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network. Cancers. 2021; 13(11):2595. https://doi.org/10.3390/cancers13112595
Chicago/Turabian StyleBian, Chen, Xiu-Juan Lei, and Fang-Xiang Wu. 2021. "GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network" Cancers 13, no. 11: 2595. https://doi.org/10.3390/cancers13112595
APA StyleBian, C., Lei, X. -J., & Wu, F. -X. (2021). GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network. Cancers, 13(11), 2595. https://doi.org/10.3390/cancers13112595