A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Serum Sample Collection and Storage
2.3. NMR Analysis
2.4. NMR Spectra Processing
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Metabolomics Discrimination between Patients with Non-Relapsed eCRC and mCRC
3.3. Metabolomics Analysis of Relapsed Patients in the eCRC Cohort
3.4. Univariate Metabolite Analysis
3.5. Prognostic Significance of the Metabolomic Classifier in the eCRC Cohort
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reinert, T.; Schøler, L.V.; Thomsen, R.; Tobiasen, H.; Vang, S.; Nordentoft, I.; Lamy, P.; Kannerup, A.-S.; Mortensen, F.V.; Stribolt, K.; et al. Analysis of Circulating Tumour DNA to Monitor Disease Burden Following Colorectal Cancer Surgery. Gut 2016, 65, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J.; Morris, A.M.; Sun, W. Precision Medicine Versus Population Medicine in Colon Cancer: From Prospects of Prevention, Adjuvant Chemotherapy, and Surveillance. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Dienstmann, R.; Mason, M.J.; Sinicrope, F.A.; Phipps, A.I.; Tejpar, S.; Nesbakken, A.; Danielsen, S.A.; Sveen, A.; Buchanan, D.D.; Clendenning, M.; et al. Prediction of Overall Survival in Stage II and III Colon Cancer beyond TNM System: A Retrospective, Pooled Biomarker Study. Ann. Oncol. 2017, 28, 1023–1031. [Google Scholar] [CrossRef]
- SEER Cancer Statistics Review, 1975–2017. Available online: https://seer.cancer.gov/csr/1975_2017/index.html (accessed on 30 March 2021).
- Renfro, L.A.; Grothey, A.; Xue, Y.; Saltz, L.B.; André, T.; Twelves, C.; Labianca, R.; Allegra, C.J.; Alberts, S.R.; Loprinzi, C.L.; et al. ACCENT-Based Web Calculators to Predict Recurrence and Overall Survival in Stage III Colon Cancer. J. Natl. Cancer Inst. 2014, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiser, M.R.; Gönen, M.; Chou, J.F.; Kattan, M.W.; Schrag, D. Predicting Survival after Curative Colectomy for Cancer: Individualizing Colon Cancer Staging. J. Clin. Oncol. 2011, 29, 4796–4802. [Google Scholar] [CrossRef] [Green Version]
- Sjo, O.H.; Merok, M.A.; Svindland, A.; Nesbakken, A. Prognostic Impact of Lymph Node Harvest and Lymph Node Ratio in Patients with Colon Cancer. Dis. Colon Rectum 2012, 55, 307–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auclin, E.; Zaanan, A.; Vernerey, D.; Douard, R.; Gallois, C.; Laurent-Puig, P.; Bonnetain, F.; Taieb, J. Subgroups and Prognostication in Stage III Colon Cancer: Future Perspectives for Adjuvant Therapy. Ann. Oncol. 2017, 28, 958–968. [Google Scholar] [CrossRef]
- Siegel, R.; Desantis, C.; Jemal, A. Colorectal Cancer Statistics, 2014. CA Cancer J. Clin. 2014, 64, 104–117. [Google Scholar] [CrossRef]
- Sargent, D.; Sobrero, A.; Grothey, A.; O’Connell, M.J.; Buyse, M.; Andre, T.; Zheng, Y.; Green, E.; Labianca, R.; O’Callaghan, C.; et al. Evidence for Cure by Adjuvant Therapy in Colon Cancer: Observations Based on Individual Patient Data from 20,898 Patients on 18 Randomized Trials. J. Clin. Oncol. 2009, 27, 872–877. [Google Scholar] [CrossRef]
- Cancer du Côlon non Métastatique—(Version: 21 January 2019). Thésaurus National de Cancérologie Digestive. Available online: https://www.snfge.org/content/3-cancer-du-colon-non-metastatique (accessed on 30 March 2021).
- Amri, R.; England, J.; Bordeianou, L.G.; Berger, D.L. Risk Stratification in Patients with Stage II Colon Cancer. Ann. Surg. Oncol. 2016, 23, 3907–3914. [Google Scholar] [CrossRef]
- Hutchins, L.F.; Unger, J.M.; Crowley, J.J.; Coltman, C.A.; Albain, K.S. Underrepresentation of Patients 65 Years of Age or Older in Cancer-Treatment Trials. N. Engl. J. Med. 1999, 341, 2061–2067. [Google Scholar] [CrossRef]
- Sargent, D.J.; Goldberg, R.M.; Jacobson, S.D.; Macdonald, J.S.; Labianca, R.; Haller, D.G.; Shepherd, L.E.; Seitz, J.F.; Francini, G. A Pooled Analysis of Adjuvant Chemotherapy for Resected Colon Cancer in Elderly Patients. N. Engl. J. Med. 2001, 345, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Fata, F.; Mirza, A.; Craig, G.; Nair, S.; Law, A.; Gallagher, J.; Ellison, N.; Bernath, A. Efficacy and Toxicity of Adjuvant Chemotherapy in Elderly Patients with Colon Carcinoma: A 10-Year Experience of the Geisinger Medical Center. Cancer 2002, 94, 1931–1938. [Google Scholar] [CrossRef]
- Sanoff, H.K.; Carpenter, W.R.; Stürmer, T.; Goldberg, R.M.; Martin, C.F.; Fine, J.P.; McCleary, N.J.; Meyerhardt, J.A.; Niland, J.; Kahn, K.L.; et al. Effect of Adjuvant Chemotherapy on Survival of Patients with Stage III Colon Cancer Diagnosed after Age 75 Years. J. Clin. Oncol. 2012, 30, 2624–2634. [Google Scholar] [CrossRef]
- Tournigand, C.; André, T.; Bonnetain, F.; Chibaudel, B.; Lledo, G.; Hickish, T.; Tabernero, J.; Boni, C.; Bachet, J.-B.; Teixeira, L.; et al. Adjuvant Therapy with Fluorouracil and Oxaliplatin in Stage II and Elderly Patients (between Ages 70 and 75 Years) with Colon Cancer: Subgroup Analyses of the Multicenter International Study of Oxaliplatin, Fluorouracil, and Leucovorin in the Adjuvant Treatment of Colon Cancer Trial. J. Clin. Oncol. 2012, 30, 3353–3360. [Google Scholar] [CrossRef] [PubMed]
- McCleary, N.J.; Meyerhardt, J.A.; Green, E.; Yothers, G.; de Gramont, A.; Van Cutsem, E.; O’Connell, M.; Twelves, C.J.; Saltz, L.B.; Haller, D.G.; et al. Impact of Age on the Efficacy of Newer Adjuvant Therapies in Patients with Stage II/III Colon Cancer: Findings from the ACCENT Database. J. Clin. Oncol. 2013, 31, 2600–2606. [Google Scholar] [CrossRef] [PubMed]
- Neugut, A.I.; Matasar, M.; Wang, X.; McBride, R.; Jacobson, J.S.; Tsai, W.-Y.; Grann, V.R.; Hershman, D.L. Duration of Adjuvant Chemotherapy for Colon Cancer and Survival among the Elderly. J. Clin. Oncol. 2006, 24, 2368–2375. [Google Scholar] [CrossRef]
- Dobie, S.A.; Baldwin, L.-M.; Dominitz, J.A.; Matthews, B.; Billingsley, K.; Barlow, W. Completion of Therapy by Medicare Patients with Stage III Colon Cancer. J. Natl. Cancer Inst. 2006, 98, 610–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haller, D.G.; O’Connell, M.J.; Cartwright, T.H.; Twelves, C.J.; McKenna, E.F.; Sun, W.; Saif, M.W.; Lee, S.; Yothers, G.; Schmoll, H.-J. Impact of Age and Medical Comorbidity on Adjuvant Treatment Outcomes for Stage III Colon Cancer: A Pooled Analysis of Individual Patient Data from Four Randomized, Controlled Trials. Ann. Oncol. 2015, 26, 715–724. [Google Scholar] [CrossRef]
- Copija, A.; Waniczek, D.; Witkoś, A.; Walkiewicz, K.; Nowakowska-Zajdel, E. Clinical Significance and Prognostic Relevance of Microsatellite Instability in Sporadic Colorectal Cancer Patients. Int. J. Mol. Sci. 2017, 18, 107. [Google Scholar] [CrossRef]
- Bertagnolli, M.M.; Redston, M.; Compton, C.C.; Niedzwiecki, D.; Mayer, R.J.; Goldberg, R.M.; Colacchio, T.A.; Saltz, L.B.; Warren, R.S. Microsatellite Instability and Loss of Heterozygosity at Chromosomal Location 18q: Prospective Evaluation of Biomarkers for Stages II and III Colon Cancer--A Study of CALGB 9581 and 89803. J. Clin. Oncol. 2011, 29, 3153–3162. [Google Scholar] [CrossRef] [Green Version]
- Roth, A.D.; Delorenzi, M.; Tejpar, S.; Yan, P.; Klingbiel, D.; Fiocca, R.; d’Ario, G.; Cisar, L.; Labianca, R.; Cunningham, D.; et al. Integrated Analysis of Molecular and Clinical Prognostic Factors in Stage II/III Colon Cancer. J. Natl. Cancer Inst. 2012, 104, 1635–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar, R.; Roepman, P.; Capella, G.; Moreno, V.; Simon, I.; Dreezen, C.; Lopez-Doriga, A.; Santos, C.; Marijnen, C.; Westerga, J.; et al. Gene Expression Signature to Improve Prognosis Prediction of Stage II and III Colorectal Cancer. J. Clin. Oncol. 2011, 29, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribic, C.M.; Sargent, D.J.; Moore, M.J.; Thibodeau, S.N.; French, A.J.; Goldberg, R.M.; Hamilton, S.R.; Laurent-Puig, P.; Gryfe, R.; Shepherd, L.E.; et al. Tumor Microsatellite-Instability Status as a Predictor of Benefit from Fluorouracil-Based Adjuvant Chemotherapy for Colon Cancer. N. Engl. J. Med. 2003, 349, 247–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popat, S.; Hubner, R.; Houlston, R.S. Systematic Review of Microsatellite Instability and Colorectal Cancer Prognosis. J. Clin. Oncol. 2005, 23, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Sargent, D.J.; Marsoni, S.; Monges, G.; Thibodeau, S.N.; Labianca, R.; Hamilton, S.R.; French, A.J.; Kabat, B.; Foster, N.R.; Torri, V.; et al. Defective Mismatch Repair as a Predictive Marker for Lack of Efficacy of Fluorouracil-Based Adjuvant Therapy in Colon Cancer. J. Clin. Oncol. 2010, 28, 3219–3226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galon, J.; Pagès, F.; Marincola, F.M.; Angell, H.K.; Thurin, M.; Lugli, A.; Zlobec, I.; Berger, A.; Bifulco, C.; Botti, G.; et al. Cancer Classification Using the Immunoscore: A Worldwide Task Force. J. Transl. Med. 2012, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Pagès, F.; Mlecnik, B.; Marliot, F.; Bindea, G.; Ou, F.-S.; Bifulco, C.; Lugli, A.; Zlobec, I.; Rau, T.T.; Berger, M.D.; et al. International Validation of the Consensus Immunoscore for the Classification of Colon Cancer: A Prognostic and Accuracy Study. Lancet 2018, 391, 2128–2139. [Google Scholar] [CrossRef]
- Diehn, M.; Alizadeh, A.A.; Adams, H.-P.; Lee, J.J.; Klassen, S.; Palma, J.F.; Hinzman, B.; Lovejoy, A.F.; Newman, A.M.; Yao, L.; et al. Early Prediction of Clinical Outcomes in Resected Stage II and III Colorectal Cancer (CRC) through Deep Sequencing of Circulating Tumor DNA (CtDNA). J. Clin. Oncol. 2017, 35, 3591. [Google Scholar] [CrossRef]
- Parikh, A.R.; Van Seventer, E.E.; Boland, G.M.; Hartwig, A.; Jaimovich, A.; Raymond, V.M.; Talasaz, A.; Corcoran, R.B. A Plasma-Only Integrated Genomic and Epigenomic Circulating Tumor DNA (CtDNA) Assay to Inform Recurrence Risk in Colorectal Cancer (CRC). J. Clin. Oncol. 2019, 37, 3602. [Google Scholar] [CrossRef]
- Reinert, T.; Henriksen, T.V.; Christensen, E.; Sharma, S.; Salari, R.; Sethi, H.; Knudsen, M.; Nordentoft, I.; Wu, H.-T.; Tin, A.S.; et al. Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients with Stages I to III Colorectal Cancer. JAMA Oncol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Tie, J.; Cohen, J.D.; Wang, Y.; Christie, M.; Simons, K.; Lee, M.; Wong, R.; Kosmider, S.; Ananda, S.; McKendrick, J.; et al. Circulating Tumor DNA Analyses as Markers of Recurrence Risk and Benefit of Adjuvant Therapy for Stage III Colon Cancer. JAMA Oncol. 2019. [Google Scholar] [CrossRef]
- Tie, J.; Wang, Y.; Tomasetti, C.; Li, L.; Springer, S.; Kinde, I.; Silliman, N.; Tacey, M.; Wong, H.-L.; Christie, M.; et al. Circulating Tumor DNA Analysis Detects Minimal Residual Disease and Predicts Recurrence in Patients with Stage II Colon Cancer. Sci. Transl. Med. 2016, 8, 346ra92. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, L.; Cohen, J.D.; Kinde, I.; Ptak, J.; Popoli, M.; Schaefer, J.; Silliman, N.; Dobbyn, L.; Tie, J.; et al. Prognostic Potential of Circulating Tumor DNA Measurement in Postoperative Surveillance of Nonmetastatic Colorectal Cancer. JAMA Oncol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Lindon, J.C. Systems Biology: Metabonomics. Available online: https://www.nature.com/articles/4551054a (accessed on 22 March 2018).
- Vignoli, A.; Ghini, V.; Meoni, G.; Licari, C.; Takis, P.G.; Tenori, L.; Turano, P.; Luchinat, C. High-Throughput Metabolomics by 1D NMR. Angew. Chem.Int. Edit. 2019, 58, 968–994. [Google Scholar] [CrossRef] [PubMed]
- Takis, P.G.; Ghini, V.; Tenori, L.; Turano, P.; Luchinat, C. Uniqueness of the NMR Approach to Metabolomics. TrAC Trends Anal. Chem. 2019, 120, 115300. [Google Scholar] [CrossRef]
- McCartney, A.; Vignoli, A.; Biganzoli, L.; Love, R.; Tenori, L.; Luchinat, C.; Di Leo, A. Metabolomics in Breast Cancer: A Decade in Review. Cancer Treat. Rev. 2018, 67, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Claudino, W.M.; Quattrone, A.; Biganzoli, L.; Pestrin, M.; Bertini, I.; Di, L.A. Metabolomics: Available Results, Current Research Projects in Breast Cancer, and Future Applications. J. Clin. Oncol. 2007, 25, 2840–2846. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, P.; Wang, F.; Liu, W.; Yang, J.; Qin, H. An Integrated Proteomics and Metabolomics Approach for Defining Oncofetal Biomarkers in the Colorectal Cancer. Ann. Surg. 2012, 255, 720–730. [Google Scholar] [CrossRef]
- Nishiumi, S.; Kobayashi, T.; Ikeda, A.; Yoshie, T.; Kibi, M.; Izumi, Y.; Okuno, T.; Hayashi, N.; Kawano, S.; Takenawa, T.; et al. A Novel Serum Metabolomics-Based Diagnostic Approach for Colorectal Cancer. PLoS ONE 2012, 7, e40459. [Google Scholar] [CrossRef]
- Qiu, Y.; Cai, G.; Zhou, B.; Li, D.; Zhao, A.; Xie, G.; Li, H.; Cai, S.; Xie, D.; Huang, C.; et al. A Distinct Metabolic Signature of Human Colorectal Cancer with Prognostic Potential. Clin. Cancer Res. 2014, 20, 2136–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farshidfar, F.; Weljie, A.M.; Kopciuk, K.; Buie, W.D.; Maclean, A.; Dixon, E.; Sutherland, F.R.; Molckovsky, A.; Vogel, H.J.; Bathe, O.F. Serum Metabolomic Profile as a Means to Distinguish Stage of Colorectal Cancer. Genome Med. 2012, 4, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farshidfar, F.; Weljie, A.M.; Kopciuk, K.A.; Hilsden, R.; McGregor, S.E.; Buie, W.D.; MacLean, A.; Vogel, H.J.; Bathe, O.F. A Validated Metabolomic Signature for Colorectal Cancer: Exploration of the Clinical Value of Metabolomics. Br. J. Cancer 2016, 115, 848–857. [Google Scholar] [CrossRef] [Green Version]
- Bertini, I.; Cacciatore, S.; Jensen, B.V.; Schou, J.V.; Johansen, J.S.; Kruhøffer, M.; Luchinat, C.; Nielsen, D.L.; Turano, P. Metabolomic NMR Fingerprinting to Identify and Predict Survival of Patients with Metastatic Colorectal Cancer. Cancer Res. 2012, 72, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Oakman, C.; Tenori, L.; Claudino, W.M.; Cappadona, S.; Nepi, S.; Battaglia, A.; Bernini, P.; Zafarana, E.; Saccenti, E.; Fornier, M.; et al. Identification of a Serum-Detectable Metabolomic Fingerprint Potentially Correlated with the Presence of Micrometastatic Disease in Early Breast Cancer Patients at Varying Risks of Disease Relapse by Traditional Prognostic Methods. Ann. Oncol. 2011, 22, 1295–1301. [Google Scholar] [CrossRef]
- Tenori, L.; Oakman, C.; Morris, P.G.; Gralka, E.; Turner, N.; Cappadona, S.; Fornier, M.; Hudis, C.; Norton, L.; Luchinat, C.; et al. Serum Metabolomic Profiles Evaluated after Surgery May Identify Patients with Oestrogen Receptor Negative Early Breast Cancer at Increased Risk of Disease Recurrence. Results from a Retrospective Study. Mol. Oncol. 2015, 9, 128–139. [Google Scholar] [CrossRef]
- Hart, C.D.; Vignoli, A.; Tenori, L.; Uy, G.L.; To, T.V.; Adebamowo, C.; Hossain, S.M.; Biganzoli, L.; Risi, E.; Love, R.R.; et al. Serum Metabolomic Profiles Identify ER-Positive Early Breast Cancer Patients at Increased Risk of Disease Recurrence in a Multicenter Population. Clin. Cancer Res. 2017, 23, 1422–1431. [Google Scholar] [CrossRef] [Green Version]
- McCartney, A.; Vignoli, A.; Tenori, L.; Fornier, M.; Rossi, L.; Risi, E.; Luchinat, C.; Biganzoli, L.; Di Leo, A. Metabolomic Analysis of Serum May Refine 21-Gene Expression Assay Risk Recurrence Stratification. NPJ Breast Cancer 2019, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Biganzoli, L.; Mislang, A.R.; Di Donato, S.; Becheri, D.; Biagioni, C.; Vitale, S.; Sanna, G.; Zafarana, E.; Gabellini, S.; Del Monte, F.; et al. Screening for Frailty in Older Patients with Early-Stage Solid Tumors: A Prospective Longitudinal Evaluation of Three Different Geriatric Tools. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 922–928. [Google Scholar] [CrossRef] [Green Version]
- Bernini, P.; Bertini, I.; Luchinat, C.; Nincheri, P.; Staderini, S.; Turano, P. Standard Operating Procedures for Pre-Analytical Handling of Blood and Urine for Metabolomic Studies and Biobanks. J. Biomol. NMR 2011, 49, 231–243. [Google Scholar] [CrossRef]
- Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics. Anal. Chem. 2006, 78, 4281–4290. [Google Scholar] [CrossRef]
- Ihaka, R.; Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Stat. Graph. 1996, 5, 299–314. [Google Scholar]
- Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The Human Serum Metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef] [Green Version]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Society. Ser. B (Methodol.) 1995, 289–300. [Google Scholar] [CrossRef]
- Gunderson, L.L.; Jessup, J.M.; Sargent, D.J.; Greene, F.L.; Stewart, A.K. Revised TN Categorization for Colon Cancer Based on National Survival Outcomes Data. J. Clin. Oncol. 2010, 28, 264–271. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.; Loprinzi, C.L.; Sargent, D.J.; Thomé, S.D.; Alberts, S.R.; Haller, D.G.; Benedetti, J.; Francini, G.; Shepherd, L.E.; Francois Seitz, J.; et al. Pooled Analysis of Fluorouracil-Based Adjuvant Therapy for Stage II and III Colon Cancer: Who Benefits and by How Much? J. Clin. Oncol. 2004, 22, 1797–1806. [Google Scholar] [CrossRef]
- Cancer Staging Form Supplement. Available online: https://www.facs.org/quality-programs/cancer/ajcc/cancer-staging/form-supplement (accessed on 30 March 2021).
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016. [Google Scholar]
- Yothers, G.; O’Connell, M.J.; Allegra, C.J.; Kuebler, J.P.; Colangelo, L.H.; Petrelli, N.J.; Wolmark, N. Oxaliplatin as Adjuvant Therapy for Colon Cancer: Updated Results of NSABP C-07 Trial, Including Survival and Subset Analyses. J. Clin. Oncol. 2011, 29, 3768–3774. [Google Scholar] [CrossRef] [Green Version]
- Haller, D.G.; Tabernero, J.; Maroun, J.; de Braud, F.; Price, T.; Van Cutsem, E.; Hill, M.; Gilberg, F.; Rittweger, K.; Schmoll, H.-J. Capecitabine plus Oxaliplatin Compared with Fluorouracil and Folinic Acid as Adjuvant Therapy for Stage III Colon Cancer. J. Clin. Oncol. 2011, 29, 1465–1471. [Google Scholar] [CrossRef]
- André, T.; Boni, C.; Mounedji-Boudiaf, L.; Navarro, M.; Tabernero, J.; Hickish, T.; Topham, C.; Zaninelli, M.; Clingan, P.; Bridgewater, J.; et al. Oxaliplatin, Fluorouracil, and Leucovorin as Adjuvant Treatment for Colon Cancer. N. Engl. J. Med. 2004, 350, 2343–2351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normanno, N.; Cervantes, A.; Ciardiello, F.; De Luca, A.; Pinto, C. The Liquid Biopsy in the Management of Colorectal Cancer Patients: Current Applications and Future Scenarios. Cancer Treat. Rev. 2018, 70, 1–8. [Google Scholar] [CrossRef]
- Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino Acids in Cancer. Exp. Mol. Med. 2020, 52, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Nannini, G.; Meoni, G.; Amedei, A.; Tenori, L. Metabolomics Profile in Gastrointestinal Cancers: Update and Future Perspectives. World J. Gastroenterol. 2020, 26, 2514–2532. [Google Scholar] [CrossRef]
- Sirniö, P.; Väyrynen, J.P.; Klintrup, K.; Mäkelä, J.; Karhu, T.; Herzig, K.-H.; Minkkinen, I.; Mäkinen, M.J.; Karttunen, T.J.; Tuomisto, A. Alterations in Serum Amino-Acid Profile in the Progression of Colorectal Cancer: Associations with Systemic Inflammation, Tumour Stage and Patient Survival. Br. J. Cancer 2019, 120, 238–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Djukovic, D.; Deng, L.; Gu, H.; Himmati, F.; Chiorean, E.G.; Raftery, D. Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling. J. Proteome Res. 2014, 13, 4120–4130. [Google Scholar] [CrossRef]
- Tan, B.; Qiu, Y.; Zou, X.; Chen, T.; Xie, G.; Cheng, Y.; Dong, T.; Zhao, L.; Feng, B.; Hu, X.; et al. Metabonomics Identifies Serum Metabolite Markers of Colorectal Cancer. J. Proteome Res. 2013, 12, 3000–3009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Caballero, M.; Neugebauer, E.; Campos, R.; Nunez de Castro, I.; Vara-Thorbeck, C. Increased Histidine Decarboxylase (HDC) Activity in Human Colorectal Cancer: Results of a Study on Ten Patients. Agents Actions 1988, 23, 357–360. [Google Scholar] [CrossRef]
- Masini, E.; Fabbroni, V.; Giannini, L.; Vannacci, A.; Messerini, L.; Perna, F.; Cortesini, C.; Cianchi, F. Histamine and Histidine Decarboxylase Up-Regulation in Colorectal Cancer: Correlation with Tumor Stage. Inflamm. Res. 2005, 54, S80–S81. [Google Scholar] [CrossRef]
- Vignoli, A.; Rodio, D.M.; Bellizzi, A.; Sobolev, A.P.; Anzivino, E.; Mischitelli, M.; Tenori, L.; Marini, F.; Priori, R.; Scrivo, R.; et al. NMR-Based Metabolomic Approach to Study Urine Samples of Chronic Inflammatory Rheumatic Disease Patients. Anal. Bioanal. Chem. 2017, 409, 1405–1413. [Google Scholar] [CrossRef]
Covariate | Study Patients (N = 94) |
---|---|
Age at study entry, years | |
Median age (range) | 78 (70–89) |
Tumor localization; n (%): | |
• Left/Rectum | 57 (61) |
• Right | 37 (39) |
Tumor size; n (%): | |
• T1 | 1 (1) |
• T2 | 6 (6) |
• T3 | 72 (77) |
• T4 | 7 (7) |
• NA * | 8 (9) |
Nodal involvement; n (%): | |
• N0 | 41 (44) |
• N1 | 28 (30) |
• N2 | 17 (18) |
• NA * | 8 (9) |
Histologic grade; n (%): | |
• Grade 1 | 6 (6) |
• Grade 2 | 67 (72) |
• Grade 3 | 17 (18) |
• NA | 4 (4) |
Stage; n (%): | |
• Stage I | 3 (3) |
• Stage II | 42 (45) |
• Stage III | 41 (43) |
• NA * | 8 (9) |
Relapse; n (%): | |
• Not relapsed | 65 (69) |
• Relapsed | 29 (31) |
Treatment; n (%): | |
• Neoadjuvant chemo-radiotherapy | 8 (9) |
• Adjuvant CT | 56 (59) |
• No treatment | 30 (32) |
Metabolite | p-Value | p-Value FDR Adjusted | Effect Size |
---|---|---|---|
Glutamine | 0.0002 | 0.007 | 0.330 |
Histidine | 0.002 | 0.028 | 0.280 |
Formate | 0.018 | 0.194 | −0.212 |
Alanine | 0.061 | 0.320 | 0.168 |
Proline | 0.062 | 0.320 | 0.168 |
Valine | 0.069 | 0.320 | 0.163 |
3-methyl-2-oxovalerate | 0.070 | 0.320 | −0.163 |
Tyrosine | 0.122 | 0.451 | 0.139 |
Acetate | 0.127 | 0.451 | −0.137 |
Glucose | 0.161 | 0.514 | 0.126 |
Isoleucine | 0.193 | 0.561 | 0.117 |
3-hydroxybutyrate | 0.234 | 0.619 | −0.107 |
Leucine | 0.251 | 0.619 | 0.103 |
Glycoproteins | 0.281 | 0.637 | 0.097 |
Lactate | 0.299 | 0.637 | −0.093 |
Lipoproteins βCH2 | 0.403 | 0.752 | 0.075 |
Lipoproteins N(CH3)3 | 0.417 | 0.752 | 0.073 |
cholesterol | 0.434 | 0.752 | 0.070 |
Creatinine | 0.447 | 0.752 | 0.068 |
Citrate | 0.472 | 0.755 | 0.065 |
Lipoproteins CHCH | 0.572 | 0.833 | 0.051 |
Glutamate | 0.614 | 0.833 | −0.045 |
Lipoproteins CH2n | 0.618 | 0.833 | 0.045 |
N,N-Dimethylglycine | 0.625 | 0.833 | −0.044 |
Lipoproteins CHCH2CH | 0.661 | 0.846 | 0.039 |
Lipoproteins CH3 | 0.698 | 0.859 | 0.035 |
Pyruvate | 0.760 | 0.901 | −0.028 |
Phenylalanine | 0.792 | 0.905 | −0.024 |
Dimethylsulfone | 0.846 | 0.911 | −0.018 |
Glycine | 0.896 | 0.911 | −0.012 |
Lipoproteins CHCH2CH2 | 0.898 | 0.911 | 0.012 |
Creatine | 0.911 | 0.911 | −0.010 |
Covariate | Whole Sample (N = 94) | High (N = 40) | Low (N = 54) | p-Value |
---|---|---|---|---|
Age at study entry (years) | 78 (70–89) | 76 (70;85) | 78 (71;89) | 0.062 |
Tumor localization (n,%) | 0.025 | |||
• Left/Rectum | 57 (61) | 19 (48) | 38 (70) | |
• Right | 37 (39) | 21 (52) | 16 (30) | |
Tumor size (n,%) | 0.273 | |||
• T1 | 1 (1) | 0 (0) | 1 (1) | |
• T2 | 6 (6) | 3 (8) | 3 (6) | |
• T3 | 72 (77) | 29 (72) | 43 (80) | |
• T4 | 7 (7) | 2 (5) | 5 (9) | |
• NA * | 8 (9) | 6 (15) | 2 (4) | |
Nodal involvement (n,%) | 0.017 | |||
• N0 | 41 (44) | 11(28) | 30 (56) | |
• N1 | 28 (30) | 16 (40) | 12 (22) | |
• N2 | 17 (18) | 7 (18) | 10 (19) | |
• NA * | 8 (9) | 6 (15) | 2 (4) | |
Histologic grade (n,%) | 0.495 | |||
• Grade 1 | 6 (7) | 1 (3) | 5 (10) | |
• Grade 2 | 67 (74) | 30 (79) | 37 (71) | |
• Grade 3 | 17 (19) | 7 (18) | 10 (19) | |
• NA | 4 | 2 | 2 | |
Stage (n,%) | 0.054 | |||
• Stage I | 3 (2) | 0 (0) | 3 (6) | |
• Stage II | 42 (45) | 14 (35) | 28 (51) | |
• Stage III | 41 (44) | 20 (50) | 21 (39) | |
• NA * | 8 (9) | 6 (15) | 2 (4) | |
Neo/adjuvant CT (n,%) | 0.033 | |||
• Yes | 64 (68) | 32 (80) | 32 (59) | |
• No | 30 (32) | 8 (20) | 22 (41) | |
Relapse (n,%) | 0.001 | |||
• Not relapsed | 65 (69) | 20 (50) | 45 (83) | |
• Relapsed | 29 (31) | 20 (50) | 9 (17) |
UNIVARIATE (n = 84) | MULTIVARIATE (n = 84) | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Metabolomic risk (High vs. Low) | 3.68 | 1.65–8.22 | 0.001 | 3.18 | 1.41–7.15 | 0.005 |
Stage (III vs. I–II) | 3.57 | 1.51–8.46 | 0.004 | 3.05 | 1.28–7.28 | 0.012 |
Histologic grade (G3 vs. G1–G2) | 1.71 | 0.72–4.04 | 0.2 | |||
Cancer localization (Right vs. Left/Rectum) | 0.97 | 0.45–2.08 | > 0.9 | |||
Adjuvant chemotherapy (No vs. Yes) | 0.53 | 0.21–1.31 | 0.2 | |||
Tumor dimension (T3–T4 vs. T1–T2) | 2.34 | 0.32–17.3 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Donato, S.; Vignoli, A.; Biagioni, C.; Malorni, L.; Mori, E.; Tenori, L.; Calamai, V.; Parnofiello, A.; Di Pierro, G.; Migliaccio, I.; et al. A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting. Cancers 2021, 13, 2762. https://doi.org/10.3390/cancers13112762
Di Donato S, Vignoli A, Biagioni C, Malorni L, Mori E, Tenori L, Calamai V, Parnofiello A, Di Pierro G, Migliaccio I, et al. A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting. Cancers. 2021; 13(11):2762. https://doi.org/10.3390/cancers13112762
Chicago/Turabian StyleDi Donato, Samantha, Alessia Vignoli, Chiara Biagioni, Luca Malorni, Elena Mori, Leonardo Tenori, Vanessa Calamai, Annamaria Parnofiello, Giulia Di Pierro, Ilenia Migliaccio, and et al. 2021. "A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting" Cancers 13, no. 11: 2762. https://doi.org/10.3390/cancers13112762
APA StyleDi Donato, S., Vignoli, A., Biagioni, C., Malorni, L., Mori, E., Tenori, L., Calamai, V., Parnofiello, A., Di Pierro, G., Migliaccio, I., Cantafio, S., Baraghini, M., Mottino, G., Becheri, D., Del Monte, F., Miceli, E., McCartney, A., Di Leo, A., Luchinat, C., & Biganzoli, L. (2021). A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting. Cancers, 13(11), 2762. https://doi.org/10.3390/cancers13112762