TremelImumab and Durvalumab Combination for the Non-OperatIve Management (NOM) of Microsatellite InstabiliTY (MSI)-High Resectable Gastric or Gastroesophageal Junction Cancer: The Multicentre, Single-Arm, Multi-Cohort, Phase II INFINITY Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
- written informed consent and any locally required authorization
- age ≥18 years old
- Eastern Cooperative Oncology Group (ECOG) Performance Status (PS) 0–1
- body weight >30 kg
- diagnosis of resectable GC or GEJC (Siewert II-III), categorized according to TNM classification 8th edition as cT ≥2, any cN, M0 or any cT, cN1-3, M0
- absence of distant metastases as defined by negativity of computed tomography (CT) and 18-fluorodeoxyglucose positron-emission tomography (18-FDG PET)
- MSI-H status confirmed by immunohistochemistry (IHC) and multiplex polymerase chain reaction (PCR) and EBV-negative status confirmed by means of silver in-situ hybridization (SISH for EBER), as determined centrally at the Co-ordinating Centre with lack of heterogeneity of dMMR status as showed by lack of tumor cells showing concomitant expression of all 4 protein markers
- adequate bone marrow and organ function.
- The main exclusion criteria account for:
- signs of distant metastases
- prior medical treatments or irradiation for GC/GEJC
- major surgical procedure within 28 days prior to the first dose of treatment
- previous treatments with anti-CTLA4 or anti-PD1/PD-L1 ICIs
- allergy or severe hypersensitivity reaction to monoclonal antibodies
- autoimmune diseases or history of organ transplantation that require immunosuppressive therapy
- active primary immunodeficiency
- active infection including tuberculosis, hepatitis B, hepatitis C
- uncontrolled intercurrent illness, or psychiatric illness/social situations
- women in pregnancy or lactation condition.
2.3. Study Endpoints
2.4. Statistical Design
2.5. Study Procedures
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiol. Biomark. Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van de Velde, C.J.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. Perioperative Chemotherapy versus Surgery Alone for Resectable Gastroesophageal Cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative Chemotherapy with Fluorouracil Plus Leucovorin, Oxaliplatin, and Docetaxel versus Fluorouracil or Capecitabine Plus Cisplatin and Epirubicin for Locally Advanced, Resectable Gastric or Gastro-Oesophageal Junction Adenocarcinoma (FLOT4): A Randomised, Phase 2/3 Trial. Lancet 2019, 393, 1948–1957. [Google Scholar]
- Bang, Y.J.; Kim, Y.W.; Yang, H.K.; Chung, H.C.; Park, Y.K.; Lee, K.H.; Lee, K.W.; Kim, Y.H.; Noh, S.I.; Cho, J.Y.; et al. Adjuvant Capecitabine and Oxaliplatin for Gastric Cancer after D2 Gastrectomy (CLASSIC): A Phase 3 Open-Label, Randomised Controlled Trial. Lancet 2012, 379, 315–321. [Google Scholar] [CrossRef]
- Sakuramoto, S.; Sasako, M.; Yamaguchi, T.; Kinoshita, T.; Fujii, M.; Nashimoto, A.; Furukawa, H.; Nakajima, T.; Ohashi, Y.; Imamura, H.; et al. Adjuvant Chemotherapy for Gastric Cancer with S-1, an Oral Fluoropyrimidine. N. Engl. J. Med. 2007, 357, 1810–1820. [Google Scholar] [CrossRef]
- GASTRIC (Global Advanced/Adjuvant Stomach Tumor Research International Collaboration) Group; Paoletti, X.; Oba, K.; Burzykowski, T.; Michiels, S.; Ohashi, Y.; Pignon, J.P.; Rougier, P.; Sakamoto, J.; Sargent, D.; et al. Benefit of Adjuvant Chemotherapy for Resectable Gastric Cancer: A Meta-Analysis. JAMA 2010, 303, 1729–1737. [Google Scholar] [CrossRef]
- Ajani, J.A.; D’Amico, T.A.; Almhanna, K.; Bentrem, D.J.; Chao, J.; Das, P.; Denlinger, C.S.; Fanta, P.; Farjah, F.; Fuchs, C.S.; et al. Gastric Cancer, Version 3.2016, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2016, 14, 1286–1312. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.C.; Verheij, M.; Allum, W.; Cunningham, D.; Cervantes, A.; Arnold, D.; ESMO Guidelines Committee. Gastric Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2016, 27, v38–v49. [Google Scholar] [CrossRef] [PubMed]
- Ribic, C.M.; Sargent, D.J.; Moore, M.J.; Thibodeau, S.N.; French, A.J.; Goldberg, R.M.; Hamilton, S.R.; Laurent-Puig, P.; Gryfe, R.; Shepherd, L.E.; et al. Tumor Microsatellite-Instability Status as a Predictor of Benefit from Fluorouracil-Based Adjuvant Chemotherapy for Colon Cancer. N. Engl. J. Med. 2003, 349, 247–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargent, D.J.; Marsoni, S.; Monges, G.; Thibodeau, S.N.; Labianca, R.; Hamilton, S.R.; French, A.J.; Kabat, B.; Foster, N.R.; Torri, V.; et al. Defective Mismatch Repair as a Predictive Marker for Lack of Efficacy of Fluorouracil-Based Adjuvant Therapy in Colon Cancer. J. Clin. Oncol. 2010, 28, 3219–3226. [Google Scholar] [CrossRef] [Green Version]
- Pietrantonio, F.; Miceli, R.; Raimondi, A.; Kim, Y.W.; Kang, W.K.; Langley, R.E.; Choi, Y.Y.; Kim, K.M.; Nankivell, M.G.; Morano, F.; et al. Individual Patient Data Meta-Analysis of the Value of Microsatellite Instability as a Biomarker in Gastric Cancer. J. Clin. Oncol. 2019, 37, 3392–3400. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Pietrantonio, F.; Randon, G.; Di Bartolomeo, M.; Luciani, A.; Chao, J.; Smyth, E.C.; Petrelli, F. Predictive Role of Microsatellite Instability for PD-1 Blockade in Patients with Advanced Gastric Cancer: A Meta-Analysis of Randomized Clinical Trials. ESMO Open 2021, 6, 100036. [Google Scholar] [CrossRef]
- Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant Immunotherapy Leads to Pathological Responses in MMR-Proficient and MMR-Deficient Early-Stage Colon Cancers. Nat. Med. 2020, 26, 566–576. [Google Scholar] [CrossRef]
- Ludford, K.; Cohen, R.; Svrcek, M.; Foo, W.C.; Colle, R.; Parc, Y.; Thomas, J.V.; Morris, V.K.; Kopetz, S.; Chang, G.J.; et al. Pathological Tumor Response Following Immune Checkpoint Blockade for Deficient Mismatch Repair Advanced Colorectal Cancer. J. Natl. Cancer Inst. 2021, 113, 208–211. [Google Scholar] [CrossRef]
- Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; et al. Comprehensive Molecular Characterization of Clinical Responses to PD-1 Inhibition in Metastatic Gastric Cancer. Nat. Med. 2018, 24, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cheng, S.; Gong, J.; Lu, M.; Zhou, J.; Zhang, X.; Li, J.; Shen, L.; Peng, Z. Efficacy and Safety of Neoadjuvant Immunotherapy in Patients with Microsatellite Instability-High Gastrointestinal Malignancies: A Case Series. Eur. J. Surg. Oncol. 2020, 46, e33–e39. [Google Scholar] [CrossRef] [PubMed]
- Cheong, J.H.; Yang, H.K.; Kim, H.; Kim, W.H.; Kim, Y.W.; Kook, M.C.; Park, Y.K.; Kim, H.H.; Lee, H.S.; Lee, K.H.; et al. Predictive Test for Chemotherapy Response in Resectable Gastric Cancer: A Multi-Cohort, Retrospective Analysis. Lancet Oncol. 2018, 19, 629–638. [Google Scholar] [CrossRef]
- Smyth, E.C.; Wotherspoon, A.; Peckitt, C.; Gonzalez, D.; Hulkki-Wilson, S.; Eltahir, Z.; Fassan, M.; Rugge, M.; Valeri, N.; Okines, A.; et al. Mismatch Repair Deficiency, Microsatellite Instability, and Survival: An Exploratory Analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) Trial. JAMA Oncol. 2017, 3, 1197–1203. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.Y.; Kim, H.; Shin, S.J.; Kim, H.Y.; Lee, J.; Yang, H.K.; Kim, W.H.; Kim, Y.W.; Kook, M.C.; Park, Y.K.; et al. Microsatellite Instability and Programmed Cell Death-Ligand 1 Expression in Stage II/III Gastric Cancer: Post Hoc Analysis of the CLASSIC Randomized Controlled Study. Ann. Surg. 2018, 270, 309–316. [Google Scholar] [CrossRef]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for Patients with PD-L1-Positive Advanced Gastric Cancer (KEYNOTE-012): A Multicentre, Open-Label, Phase 1b Trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients with Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef]
- Shitara, K.; Ozguroglu, M.; Bang, Y.J.; Di Bartolomeo, M.; Mandala, M.; Ryu, M.H.; Fornaro, L.; Olesinski, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab versus Paclitaxel for Previously Treated, Advanced Gastric or Gastro-Oesophageal Junction Cancer (KEYNOTE-061): A Randomised, Open-Label, Controlled, Phase 3 Trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef]
- Shitara, K.; Van Cutsem, E.; Bang, Y.J.; Fuchs, C.; Wyrwicz, L.; Lee, K.W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab Or Pembrolizumab Plus Chemotherapy vs. Chemotherapy Alone for Patients with First-Line, Advanced Gastric Cancer: The KEYNOTE-062 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- Lenz, H.-J.; Lonardi, S.; Zagonel, V.; Van Cutsem, E.; Limon, M.L.; Yeung, K.; Wong, M.; Hendlisz, A.; Aglietta, M.; Garcia-Alfonso, P.; et al. Nivolumab Plus Low-Dose Ipilimumab as First-Line Therapy in Microsatellite Instability-high/DNA Mismatch Repair Deficient Metastatic Colorectal Cancer: Clinical Update. J. Clin. Oncol. 2020, 4, 11. [Google Scholar] [CrossRef]
- Andre, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Memarnejadian, A.; Meilleur, C.E.; Shaler, C.R.; Khazaie, K.; Bennink, J.R.; Schell, T.D.; Haeryfar, S.M.M. PD-1 Blockade Promotes Epitope Spreading in Anticancer CD8(+) T Cell Responses by Preventing Fratricidal Death of Subdominant Clones to Relieve Immunodomination. J. Immunol. 2017, 199, 3348–3359. [Google Scholar] [CrossRef] [Green Version]
- Melero, I.; Berraondo, P.; Rodriguez-Ruiz, M.E.; Perez-Gracia, J.L. Making the most of Cancer Surgery with Neoadjuvant Immunotherapy. Cancer. Discov. 2016, 6, 1312–1314. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer. Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [Green Version]
- Broomfield, S.; Currie, A.; van der Most, R.G.; Brown, M.; van Bruggen, I.; Robinson, B.W.; Lake, R.A. Partial, but Not Complete, Tumor-Debulking Surgery Promotes Protective Antitumor Memory when Combined with Chemotherapy and Adjuvant Immunotherapy. Cancer Res. 2005, 65, 7580–7584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, J.S.; Hoefsmit, E.P.; Smyth, M.J.; Blank, C.U.; Teng, M.W.L. The Promise of Neoadjuvant Immunotherapy and Surgery for Cancer Treatment. Clin. Cancer Res. 2019, 25, 5743–5751. [Google Scholar] [CrossRef] [PubMed]
- Forde, P.M.; Chaft, J.E.; Pardoll, D.M. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. N. Engl. J. Med. 2018, 379, e14. [Google Scholar] [CrossRef] [PubMed]
- Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; et al. Durable Clinical Benefit with Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J. Clin. Oncol. 2018, 36, 773–779. [Google Scholar] [CrossRef]
- Pardoll, D.M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer. 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.X.; Jonker, D.J.; Kennecke, H.F.; Berry, S.R.; Couture, F.; Ahmad, C.E.; Goffin, J.R.; Kavan, P.; Harb, M.; Colwell, B.; et al. CCTG CO.26 Trial: A Phase II Randomized Study of Durvalumab (D) and Tremelimumab (T) Plus Best Supportive Care (BSC) versus BSC Alone in Patients (Pts) with Advanced Refractory Colorectal Carcinoma (rCRC). J. Clin. Oncol. 2019, 4, 481. [Google Scholar] [CrossRef]
- Kelley, R.K.; Sangro, B.; Proctor Harris, W.; Ikeda, M.; Okusaka, T.; Kang, Y.-K.; Qin, S.; Meng, W.; Tai, D.; Lim, H.Y.; et al. Efficacy, Tolerability and Biological Activity of a Novel Regimen of Tremelimumab (T) in Combination with Durvalumab (D) for Patients (Pts) with Advanced Hepatocellular Carcinoma (aHCC). J. Clin. Oncol. 2020, 15, 4508. [Google Scholar] [CrossRef]
- Antonia, S.J.; Lopez-Martin, J.A.; Bendell, J.; Ott, P.A.; Taylor, M.; Eder, J.P.; Jager, D.; Pietanza, M.C.; Le, D.T.; de Braud, F.; et al. Nivolumab Alone and Nivolumab Plus Ipilimumab in Recurrent Small-Cell Lung Cancer (CheckMate 032): A Multicentre, Open-Label, Phase 1/2 Trial. Lancet Oncol. 2016, 17, 883–895. [Google Scholar] [CrossRef] [Green Version]
- De Souza, P.; Malczewski, A.; Proscurshim, I.; Yuan, G.; Coart, E.; Dupont, C.; Manrique, M.; Drouin, E.; Gonzalez, A.; Carini, M.; et al. Abstract CT104: Evaluation of Peripheral T Cell Subset Proliferation as a Pharmacodynamic Assay to Guide the Development of Anti-CTLA-4 and Anti-PD-1 Antibody Combinations in Patients with Solid Tumors. Cancer Res. 2018. [Google Scholar] [CrossRef]
Procedures | Pre-Screening | Screening | Treatment Period | Restaging and Response Assessment | ||
---|---|---|---|---|---|---|
Treatment cycle | Week -6 to -4 | Week -4 to -1 | C1 | C2 | C3 | Weeks 12–14 |
Day | -28 to -1 | 1 | 29 | 57 | 85–99 | |
Window (days) | NA | NA | (±3 days assessments) | (±3 days, tumor assessments and PRO assessments ±7 days) | ||
Informed consent | ||||||
Informed consent to pre-screening | X | |||||
Informed consent main: study procedures | X | |||||
Study procedures | ||||||
Full physical exam (including height) | X | |||||
Targeted physical exam (based on symptoms) | X | X | X | X | ||
Vital signs (including weight) | X | X | X | X | X | |
12-leads ECG | X | as clinically indicated | ||||
Concomitant medications | <-------------------------------- All visits ---------------------------> | |||||
Baseline characteristics | X | |||||
Eligibility criteria | X | X | X | |||
Laboratory assessments | ||||||
Serum chemistry | X | X | X | X | X | |
Hematology | X | X | X | X | X | |
Coagulation | X | X | ||||
Biomarkers: CEA, CA 19.9 | X | X | ||||
Thyroid function (TSH, free T3, free T4) | X | X | X | X | ||
Virology assessment | ||||||
HBsAg, anti-HBs, anti-HBc, anti-HCV and HBV DNA | X | |||||
HIV | X | |||||
Urinalysis | X | X | ||||
Pregnancy test | X | X | X | X | X | |
Tumor assessments | ||||||
Disease assessment by chest-abdomen-pelvis CT scan with intravenous contrast | X | X | ||||
18-FDG PET/CT scan | X | X (if clinically indicated) | ||||
Endoscopic ultrasonography (EUS) with multiple random biopsies of the tumor site and FNA of clinically suspicious regional nodes | X | X | ||||
Microsatellite instability (MSI) centralized assessment | X | |||||
Diagnostic laparoscopy | X | |||||
Other assessments and assays | ||||||
Liquid biopsy | X | X | ||||
Exploratory biomarkers blood sample and PBMCs | X | X | X | X | X | |
Monitoring | ||||||
ECOG performance status | X | X | X | X | X | |
AE/SAE assessment | <----------------------------- All visits -----------------------------> | |||||
Study drug administration | ||||||
Tremelimumab 300 mg | X | |||||
Durvalumab 1500 mg | X | X | X | |||
PRO assessments | ||||||
PROs | X | X | X | X |
Evaluation | Surgery | Follow-Up | |
---|---|---|---|
Time from enrolment | Week 15–18 | ||
Phase 1: Protocol-scheduled follow-up Every 12 weeks for 2 years | Phase 2: Subsequent follow-up Every 6 months for 3 years | ||
Study procedures | |||
Full physical exam | X | X | |
Targeted physical exam (based on symptoms) | X | ||
Vital signs (including weight and BMI) | X | X | X |
12-leads ECG | X | as clinically indicated | |
Concomitant medications | X | <---------------------- All visits ----------------------> | |
Management of post-surgical complications c | X | X | |
Laboratory assessments | |||
Serum chemistry | X | X | X |
Hematology | X | X | X |
Biomarkers CEA, CA 19.9 | X | X | X |
Thyroid function (TSH, free T3, free T4) | X | X | as clinically indicated |
Urinalysis | X | as clinically indicated | as clinically indicated |
Pregnancy test | X | Until the third month since last dose of study drugs | |
Tumor and disease assessments | |||
Disease assessment by means of chest-abdomen-pelvis CT scan with intravenous contrast. Abdominal ultrasound and Chest X-ray may be chosen in alternation with chest/abdomen CT scan | As clinically indicated and as per local guidelines | As clinically indicated and as per local guidelines | |
18-FDG PET/CT scan | Only if clinically indicated or suspicious lesions at CT scan | Only if clinically indicated or suspicious lesions at CT | |
EGDS +/- Endoscopic Ultrasonography (EUS) with fine needle aspiration (FNA) biopsy of suspicious lesions | As clinically indicated and as per local guidelines | ||
Other assessment and assays | |||
Liquid biopsy (ctDNA in plasma) | X | X | X |
Exploratory biomarkers blood sample and PBMCs | X | X | X |
Monitoring | |||
ECOG performance status | X | X | X |
AE/SAE assessment | X | ||
AE assessment | as clinically indicated |
Evaluation | Non-Operative Management (NOM) Strategy | |
---|---|---|
Time from enrolment | Week 15–18 | |
Phase 1: Protocol-scheduled follow-up Every 12 weeks for 2 years | Phase 2: Standard follow-up Every 6 months for 3 years | |
Study procedures | ||
Full physical exam | X | |
Targeted physical exam (based on symptoms) | X | |
Vital signs (including weight and BMI) | X | X |
ECG | as clinically indicated | |
Concomitant medications | <------------------------ All visits ------------------------> | |
Laboratory assessments | ||
Serum chemistry | X | X |
Hematology | X | X |
Biomarkers CEA, CA 19.9 | X | X |
Thyroid function (TSH, free T3, free T4) | X | as clinically indicated |
Urinalysis | X | as clinically indicated |
Pregnancy test | Until the third month since last dose of study drugs | |
Tumor and disease assessments | ||
Disease assessment by means of chest-abdomen-pelvis CT scan with intravenous contrast | X | |
Disease assessment by means of chest-abdomen-pelvis CT scan with intravenous contrast. Abdominal ultrasound and Chest X-ray may be chosen in alternation with chest/abdomen CT scan | as clinically indicated and as per local guidelines | |
18-FDG PET/CT scan | if clinically indicated by the judgment of the Investigator | Only if clinically indicated or suspicious lesions at CT scan |
EGDS +/- Endoscopic Ultrasonography (EUS) with multiple random biopsies of the tumor site and FNA of clinically suspicious regional nodes | X | If clinically indicated |
Other assessment and assays | ||
Liquid biopsy | X | X |
Exploratory biomarkers blood sample and PBMCs | X | X |
Monitoring | ||
ECOG performance status | X | X |
AE assessment | as clinically indicated |
Study | Disease Setting | Treatment | Results |
---|---|---|---|
KEYNOTE 059 [23] | Advanced previously treated GC | Pembrolizumab monotherapy | Overall response rate 11.6% overall trial population 57.1% MSI-H patients 9.0% MSS patients |
KEYNOTE 061 [24] | Advanced GC progressing after platinum and fluoropyrimidine | Pembrolizumab vs. paclitaxel | Overall population Median OS 9.1 vs. 8.3 months (HR 0.82, 95% CI 0.66-1.03; p = 0.0421) Median PFS 1.5 vs. 4.1 months (HR 1.27, 95% CI 1.03-1.57) |
MSI-H subgroup Median OS not reached vs. 8.1 months (HR 0.42; 95% CI 0.13–1.31) | |||
KEYNOTE 062 [25] | Advanced previously untreated GC | Pembrolizumab vs. chemotherapy | Overall population Median OS 10.6 vs. 11.1 months in CPS ≥1 (HR 0.91; 99.2% CI 0.69–1.18) while 17.4 vs. 10.8 months in CPS ≥10 (HR 0.69; 95% CI 0.49–0.97) |
MSI-H subgroup Median OS not reached vs. 8.5 months Median PFS 11.2 vs. 6.6 months | |||
Pembrolizumab plus chemotherapy vs. chemotherapy | Median OS 12.5 vs. 11.1 months in CPS ≥1 (HR 0.85; 95% CI 0.70–1.03; p = 0.05) while 12.3 vs. 10.8 months in CPS ≥10 (HR 0.85; 95% CI 0.62–1.17; p = 0.16) | ||
Analysis of KEYNOTE-016, 164, 012, 028, 158 trials [13,26] | Mismatch repair deficient (dMMR) colorectal cancers (CRCs), dMMR non-CRC cancers, pMMR CRCs | Pembrolizumab | Objective response rate 62% in dMMR CRC 60% in dMMR non-CRC cancers 0% in pMMR CRCs |
CheckMate 142 [27] | Metastatic previously untreated MSI-H CRC | Nivolumab plus low dose ipilimumab | Overall response rate 64% (58% per BICR) Disease control rate 84% (78% per BICR) Median PFS not reached 15-month PFS rate 75% Median OS not reached 15-month OS rate 84% |
KEYNOTE 177 [28] | Metastatic previously untreated MSI-H CRC | Pembrolizumab vs. standard chemotherapy | Median PFS 16.5 vs. 8.2 months (HR 0.60; 95% CI 0.45–0.80; p = 0.0002) Estimated restricted mean survival after 24 months of follow-up 13.7 (range 12.0–15.4) vs. 10.8 months (range 9.4–12.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raimondi, A.; Palermo, F.; Prisciandaro, M.; Aglietta, M.; Antonuzzo, L.; Aprile, G.; Berardi, R.; Cardellino, G.G.; De Manzoni, G.; De Vita, F.; et al. TremelImumab and Durvalumab Combination for the Non-OperatIve Management (NOM) of Microsatellite InstabiliTY (MSI)-High Resectable Gastric or Gastroesophageal Junction Cancer: The Multicentre, Single-Arm, Multi-Cohort, Phase II INFINITY Study. Cancers 2021, 13, 2839. https://doi.org/10.3390/cancers13112839
Raimondi A, Palermo F, Prisciandaro M, Aglietta M, Antonuzzo L, Aprile G, Berardi R, Cardellino GG, De Manzoni G, De Vita F, et al. TremelImumab and Durvalumab Combination for the Non-OperatIve Management (NOM) of Microsatellite InstabiliTY (MSI)-High Resectable Gastric or Gastroesophageal Junction Cancer: The Multicentre, Single-Arm, Multi-Cohort, Phase II INFINITY Study. Cancers. 2021; 13(11):2839. https://doi.org/10.3390/cancers13112839
Chicago/Turabian StyleRaimondi, Alessandra, Federica Palermo, Michele Prisciandaro, Massimo Aglietta, Lorenzo Antonuzzo, Giuseppe Aprile, Rossana Berardi, Giovanni G. Cardellino, Giovanni De Manzoni, Ferdinando De Vita, and et al. 2021. "TremelImumab and Durvalumab Combination for the Non-OperatIve Management (NOM) of Microsatellite InstabiliTY (MSI)-High Resectable Gastric or Gastroesophageal Junction Cancer: The Multicentre, Single-Arm, Multi-Cohort, Phase II INFINITY Study" Cancers 13, no. 11: 2839. https://doi.org/10.3390/cancers13112839
APA StyleRaimondi, A., Palermo, F., Prisciandaro, M., Aglietta, M., Antonuzzo, L., Aprile, G., Berardi, R., Cardellino, G. G., De Manzoni, G., De Vita, F., Di Maio, M., Fornaro, L., Frassineti, G. L., Granetto, C., Iachetta, F., Lonardi, S., Murialdo, R., Ongaro, E., Pucci, F., ... Pietrantonio, F. (2021). TremelImumab and Durvalumab Combination for the Non-OperatIve Management (NOM) of Microsatellite InstabiliTY (MSI)-High Resectable Gastric or Gastroesophageal Junction Cancer: The Multicentre, Single-Arm, Multi-Cohort, Phase II INFINITY Study. Cancers, 13(11), 2839. https://doi.org/10.3390/cancers13112839