Octogenarians’ Breast Cancer Is Associated with an Unfavorable Tumor Immune Microenvironment and Worse Disease-Free Survival
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Data of Breast Cancer Patient Cohorts
2.2. Statistical Analysis
2.3. Gene Set Enrichment Analysis (GSEA)
2.4. The Immune Cytolytic Activity (CYT) Score, the Mutant-Allele Tumor Heterogeneity (MATH), and CIBERSORT
3. Results
3.1. Octogenarians Have a Significantly Higher Rate of Luminal Type Cancers Than the Control Group in Both Cohorts
3.2. Octogenarians Have Worse Overall Survival and Higher Recurrence Rates in Two Independent Cohorts
3.3. There Is No Significant Difference in Tumor Mutation Load, Intratumor Heterogeneity, or Cytolytic Activity between the Age Groups
3.4. The Octogenarian Group Was Not Associated with Any Gene Set Related to Cancer Aggressiveness by Gene Set Enrichment Analysis (GSEA) in Both the TCGA and the METABRIC Cohorts
3.5. Octogenarians’ Tumors Had High Infiltration of Pro-Cancer Immune Cells M2 Macrophage and Regulatory T Cells While Having Lower Infiltration of Anti-Cancer Immune Cells M1 Macrophage and Activated Memory CD4 T Cells
3.6. Analyses by Subtype
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Society, A.C. Breast Cancer Facts & Figures 2017–2018. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2017-2018.pdf (accessed on 10 April 2021).
- Berry, D.A.; Cronin, K.A.; Plevritis, S.K.; Fryback, D.G.; Clarke, L.; Zelen, M.; Mandelblatt, J.S.; Yakovlev, A.Y.; Habbema, J.D.; Feuer, E.J. Effect of screening and adjuvant therapy on mortality from breast cancer. N. Engl. J. Med. 2005, 353, 1784–1792. [Google Scholar] [CrossRef]
- Allemani, C.; Weir, H.K.; Carreira, H.; Harewood, R.; Spika, D.; Wang, X.S.; Bannon, F.; Ahn, J.V.; Johnson, C.J.; Bonaventure, A.; et al. Global surveillance of cancer survival 1995–2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 2015, 385, 977–1010. [Google Scholar] [CrossRef] [Green Version]
- Cossetti, R.J.; Tyldesley, S.K.; Speers, C.H.; Zheng, Y.; Gelmon, K.A. Comparison of breast cancer recurrence and outcome patterns between patients treated from 1986 to 1992 and from 2004 to 2008. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.D.; Jiang, J.; McLaughlin, S.S.; Hurria, A.; Smith, G.L.; Giordano, S.H.; Buchholz, T.A. Improvement in breast cancer outcomes over time: Are older women missing out? J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 4647–4653. [Google Scholar] [CrossRef]
- Chen, H.L.; Zhou, M.Q.; Tian, W.; Meng, K.X.; He, H.F. Effect of Age on Breast Cancer Patient Prognoses: A Population-Based Study Using the SEER 18 Database. PLoS ONE 2016, 11, e0165409. [Google Scholar] [CrossRef]
- Vaz-Luis, I.; Lin, N.U.; Keating, N.L.; Barry, W.T.; Winer, E.P.; Freedman, R.A. Factors Associated with Early Mortality Among Patients with De Novo Metastatic Breast Cancer: A Population-Based Study. Oncologist 2017, 22, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Schonberg, M.A.; Marcantonio, E.R.; Li, D.; Silliman, R.A.; Ngo, L.; McCarthy, E.P. Breast cancer among the oldest old: Tumor characteristics, treatment choices, and survival. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 2038–2045. [Google Scholar] [CrossRef]
- Jenkins, E.O.; Deal, A.M.; Anders, C.K.; Prat, A.; Perou, C.M.; Carey, L.A.; Muss, H.B. Age-specific changes in intrinsic breast cancer subtypes: A focus on older women. Oncologist 2014, 19, 1076–1083. [Google Scholar] [CrossRef] [Green Version]
- Morrison, D.H.; Rahardja, D.; King, E.; Peng, Y.; Sarode, V.R. Tumour biomarker expression relative to age and molecular subtypes of invasive breast cancer. Br. J. Cancer 2012, 107, 382–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azim, H.A., Jr.; Partridge, A.H. Biology of breast cancer in young women. Breast Cancer Res. 2014, 16, 427. [Google Scholar] [CrossRef]
- Azim, H.A., Jr.; Michiels, S.; Bedard, P.L.; Singhal, S.K.; Criscitiello, C.; Ignatiadis, M.; Haibe-Kains, B.; Piccart, M.J.; Sotiriou, C.; Loi, S. Elucidating prognosis and biology of breast cancer arising in young women using gene expression profiling. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 1341–1351. [Google Scholar] [CrossRef] [Green Version]
- Rooney, M.S.; Shukla, S.A.; Wu, C.J.; Getz, G.; Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015, 160, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Mroz, E.A.; Rocco, J.W. MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. Oral Oncol. 2013, 49, 211–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015, 12, 453–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsuta, E.; Rashid, O.M.; Takabe, K. Clinical relevance of tumor microenvironment: Immune cells, vessels, and mouse models. Hum. Cell 2020, 33, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Oshi, M.; Huyser, M.R.; Le, L.; Tokumaru, Y.; Yan, L.; Matsuyama, R.; Endo, I.; Takabe, K. Abundance of Microvascular Endothelial Cells Is Associated with Response to Chemotherapy and Prognosis in Colorectal Cancer. Cancers 2021, 13, 1477. [Google Scholar] [CrossRef] [PubMed]
- Oshi, M.; Newman, S.; Tokumaru, Y.; Yan, L.; Matsuyama, R.; Endo, I.; Nagahashi, M.; Takabe, K. Intra-Tumoral Angiogenesis Is Associated with Inflammation, Immune Reaction and Metastatic Recurrence in Breast Cancer. Int. J. Mol. Sci. 2020, 21, 6708. [Google Scholar] [CrossRef] [PubMed]
- Tokumaru, Y.; Oshi, M.; Katsuta, E.; Yan, L.; Huang, J.L.; Nagahashi, M.; Matsuhashi, N.; Futamura, M.; Yoshida, K.; Takabe, K. Intratumoral Adipocyte-High Breast Cancer Enrich for Metastatic and Inflammation-Related Pathways but Associated with Less Cancer Cell Proliferation. Int. J. Mol. Sci. 2020, 21, 5744. [Google Scholar] [CrossRef]
- Katsuta, E.; Rashid, O.M.; Takabe, K. Fibroblasts as a Biological Marker for Curative Resection in Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2020, 21, 3890. [Google Scholar] [CrossRef]
- Le, L.; Tokumaru, Y.; Oshi, M.; Asaoka, M.; Yan, L.; Endo, I.; Ishikawa, T.; Futamura, M.; Yoshida, K.; Takabe, K. Th2 cell infiltrations predict neoadjuvant chemotherapy response of estrogen receptor-positive breast cancer. Gland Surg. 2021, 10, 154–165. [Google Scholar] [CrossRef]
- Oshi, M.; Newman, S.; Tokumaru, Y.; Yan, L.; Matsuyama, R.; Kalinski, P.; Endo, I.; Takabe, K. Plasmacytoid Dendritic Cell (pDC) Infiltration Correlate with Tumor Infiltrating Lymphocytes, Cancer Immunity, and Better Survival in Triple Negative Breast Cancer (TNBC) More Strongly than Conventional Dendritic Cell (cDC). Cancers 2020, 12, 3342. [Google Scholar] [CrossRef]
- Oshi, M.; Asaoka, M.; Tokumaru, Y.; Angarita, F.A.; Yan, L.; Matsuyama, R.; Zsiros, E.; Ishikawa, T.; Endo, I.; Takabe, K. Abundance of Regulatory T Cell (Treg) as a Predictive Biomarker for Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Cancers 2020, 12, 3038. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, T.; Torigoe, T.; Yan, L.; Huang, J.L.; Yamashita, H.; Takabe, K. The Impact of Immunofunctional Phenotyping on the Malfunction of the Cancer Immunity Cycle in Breast Cancer. Cancers 2020, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Oshi, M.; Tokumaru, Y.; Asaoka, M.; Yan, L.; Satyananda, V.; Matsuyama, R.; Matsuhashi, N.; Futamura, M.; Ishikawa, T.; Yoshida, K.; et al. M1 Macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical characteristics in breast cancer. Sci. Rep. 2020, 10, 16554. [Google Scholar] [CrossRef] [PubMed]
- Oshi, M.; Asaoka, M.; Tokumaru, Y.; Yan, L.; Matsuyama, R.; Ishikawa, T.; Endo, I.; Takabe, K. CD8 T Cell Score as a Prognostic Biomarker for Triple Negative Breast Cancer. Int. J. Mol. Sci. 2020, 21, 6968. [Google Scholar] [CrossRef] [PubMed]
- Chouliaras, K.; Tokumaru, Y.; Asaoka, M.; Oshi, M.; Attwood, K.M.; Yoshida, K.; Ishikawa, T.; Takabe, K. Prevalence and clinical relevance of tumor-associated tissue eosinophilia (TATE) in breast cancer. Surgery 2020, 169, 1234–1239. [Google Scholar] [CrossRef]
- Gandhi, S.; Elkhanany, A.; Oshi, M.; Dai, T.; Opyrchal, M.; Mohammadpour, H.; Repasky, E.A.; Takabe, K. Contribution of Immune Cells to Glucocorticoid Receptor Expression in Breast Cancer. Int. J. Mol. Sci. 2020, 21, 4635. [Google Scholar] [CrossRef]
- Takahashi, H.; Kawaguchi, T.; Yan, L.; Peng, X.; Qi, Q.; Morris, L.G.T.; Chan, T.A.; Tsung, A.; Otsuji, E.; Takabe, K. Immune Cytolytic Activity for Comprehensive Understanding of Immune Landscape in Hepatocellular Carcinoma. Cancers 2020, 12, 1221. [Google Scholar] [CrossRef]
- Narayanan, S.; Kawaguchi, T.; Peng, X.; Qi, Q.; Liu, S.; Yan, L.; Takabe, K. Tumor Infiltrating Lymphocytes and Macrophages Improve Survival in Microsatellite Unstable Colorectal Cancer. Sci. Rep. 2019, 9, 13455. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, S.; Kawaguchi, T.; Yan, L.; Peng, X.; Qi, Q.; Takabe, K. Cytolytic Activity Score to Assess Anticancer Immunity in Colorectal Cancer. Ann. Surg. Oncol. 2018, 25, 2323–2331. [Google Scholar] [CrossRef]
- Azim, H.A., Jr.; Nguyen, B.; Brohée, S.; Zoppoli, G.; Sotiriou, C. Genomic aberrations in young and elderly breast cancer patients. BMC Med. 2015, 13, 266. [Google Scholar] [CrossRef] [Green Version]
- Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V.; et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 2018, 173, 291–304. [Google Scholar] [CrossRef] [Green Version]
- Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Okano, M.; Oshi, M.; Butash, A.L.; Asaoka, M.; Katsuta, E.; Peng, X.; Qi, Q.; Yan, L.; Takabe, K. Estrogen Receptor Positive Breast Cancer with High Expression of Androgen Receptor has Less Cytolytic Activity and Worse Response to Neoadjuvant Chemotherapy but Better Survival. Int. J. Mol. Sci. 2019, 20, 2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okano, M.; Oshi, M.; Butash, A.L.; Katsuta, E.; Tachibana, K.; Saito, K.; Okayama, H.; Peng, X.; Yan, L.; Kono, K.; et al. Triple-Negative Breast Cancer with High Levels of Annexin A1 Expression Is Associated with Mast Cell Infiltration, Inflammation, and Angiogenesis. Int. J. Mol. Sci. 2019, 20, 4197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asaoka, M.; Patnaik, S.K.; Zhang, F.; Ishikawa, T.; Takabe, K. Lymphovascular invasion in breast cancer is associated with gene expression signatures of cell proliferation but not lymphangiogenesis or immune response. Breast Cancer Res. Treat. 2020, 181, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Katsuta, E.; Qi, Q.; Peng, X.; Hochwald, S.N.; Yan, L.; Takabe, K. Pancreatic adenocarcinomas with mature blood vessels have better overall survival. Sci. Rep. 2019, 9, 1310. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, T.; Yan, L.; Qi, Q.; Peng, X.; Edge, S.B.; Young, J.; Yao, S.; Liu, S.; Otsuji, E.; Takabe, K. Novel MicroRNA-Based Risk Score Identified by Integrated Analyses to Predict Metastasis and Poor Prognosis in Breast Cancer. Ann. Surg. Oncol. 2018, 25, 4037–4046. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Yan, L.; Qi, Q.; Peng, X.; Gabriel, E.M.; Young, J.; Liu, S.; Takabe, K. Overexpression of suppressive microRNAs, miR-30a and miR-200c are associated with improved survival of breast cancer patients. Sci. Rep. 2017, 7, 15945. [Google Scholar] [CrossRef] [Green Version]
- McDonald, K.A.; Kawaguchi, T.; Qi, Q.; Peng, X.; Asaoka, M.; Young, J.; Opyrchal, M.; Yan, L.; Patnaik, S.; Otsuji, E.; et al. Tumor Heterogeneity Correlates with Less Immune Response and Worse Survival in Breast Cancer Patients. Ann. Surg. Oncol. 2019, 26, 2191–2199. [Google Scholar] [CrossRef] [PubMed]
- Oshi, M.; Kim, T.H.; Tokumaru, Y.; Yan, L.; Matsuyama, R.; Endo, I.; Cherkassky, L.; Takabe, K. Enhanced DNA Repair Pathway is Associated with Cell Proliferation and Worse Survival in Hepatocellular Carcinoma (HCC). Cancers 2021, 13, 323. [Google Scholar] [CrossRef]
- Oshi, M.; Tokumaru, Y.; Angarita, F.A.; Yan, L.; Matsuyama, R.; Endo, I.; Takabe, K. Degree of Early Estrogen Response Predict Survival after Endocrine Therapy in Primary and Metastatic ER-Positive Breast Cancer. Cancers 2020, 12, 3557. [Google Scholar] [CrossRef]
- Oshi, M.; Tokumaru, Y.; Patel, A.; Yan, L.; Matsuyama, R.; Endo, I.; Katz, M.H.G.; Takabe, K. A Novel Four-Gene Score to Predict Pathologically Complete (R0) Resection and Survival in Pancreatic Cancer. Cancers 2020, 12, 3635. [Google Scholar] [CrossRef]
- Takahashi, H.; Katsuta, E.; Yan, L.; Dasgupta, S.; Takabe, K. High expression of Annexin A2 is associated with DNA repair, metabolic alteration, and worse survival in pancreatic ductal adenocarcinoma. Surgery 2019, 166, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Asaoka, M.; Yan, L.; Rashid, O.M.; Oshi, M.; Ishikawa, T.; Nagahashi, M.; Takabe, K. Biologically Aggressive Phenotype and Anti-cancer Immunity Counterbalance in Breast Cancer with High Mutation Rate. Sci. Rep. 2020, 10, 1852. [Google Scholar] [CrossRef] [Green Version]
- Takeshita, T.; Asaoka, M.; Katsuta, E.; Photiadis, S.J.; Narayanan, S.; Yan, L.; Takabe, K. High expression of polo-like kinase 1 is associated with TP53 inactivation, DNA repair deficiency, and worse prognosis in ER positive Her2 negative breast cancer. Am. J. Transl. Res. 2019, 11, 6507–6521. [Google Scholar]
- Takeshita, T.; Yan, L.; Asaoka, M.; Rashid, O.; Takabe, K. Late recurrence of breast cancer is associated with pro-cancerous immune microenvironment in the primary tumor. Sci. Rep. 2019, 9, 16942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokumaru, Y.; Oshi, M.; Katsuta, E.; Yan, L.; Satyananda, V.; Matsuhashi, N.; Futamura, M.; Akao, Y.; Yoshida, K.; Takabe, K. KRAS signaling enriched triple negative breast cancer is associated with favorable tumor immune microenvironment and better survival. Am. J. Cancer Res. 2020, 10, 897–907. [Google Scholar]
- Gourgou-Bourgade, S.; Cameron, D.; Poortmans, P.; Asselain, B.; Azria, D.; Cardoso, F.; A’Hern, R.; Bliss, J.; Bogaerts, J.; Bonnefoi, H.; et al. Guidelines for time-to-event end point definitions in breast cancer trials: Results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials). Ann. Oncol. Off. J. Eur. Soc. Med Oncol. 2015, 26, 873–879. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, H.; Oshi, M.; Asaoka, M.; Yan, L.; Endo, I.; Takabe, K. Molecular Biological Features of Nottingham Histological Grade 3 Breast Cancers. Ann. Surg. Oncol. 2020, 27, 4475–4485. [Google Scholar] [CrossRef]
- Asaoka, M.; Ishikawa, T.; Takabe, K.; Patnaik, S.K. APOBEC3-Mediated RNA Editing in Breast Cancer is Associated with Heightened Immune Activity and Improved Survival. Int. J. Mol. Sci. 2019, 20, 5621. [Google Scholar] [CrossRef] [Green Version]
- Katsuta, E.; Maawy, A.A.; Yan, L.; Takabe, K. High expression of bone morphogenetic protein (BMP) 6 and BMP7 are associated with higher immune cell infiltration and better survival in estrogen receptor-positive breast cancer. Oncol. Rep. 2019, 42, 1413–1421. [Google Scholar] [CrossRef]
- Satyananda, V.; Oshi, M.; Endo, I.; Takabe, K. High BRCA2 Gene Expression is Associated with Aggressive and Highly Proliferative Breast Cancer. Ann. Surg. Oncol. 2021, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef]
- Tokumaru, Y.; Oshi, M.; Patel, A.; Tian, W.; Yan, L.; Matsuhashi, N.; Futamura, M.; Yoshida, K.; Takabe, K. Organoids Are Limited in Modeling the Colon Adenoma-Carcinoma Sequence. Cells 2021, 10, 488. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, Y.; Hamilton, T.A. IL-4-induced STAT6 suppresses IFN-gamma-stimulated STAT1-dependent transcription in mouse macrophages. J. Immunol. 1997, 159, 5474–5482. [Google Scholar] [PubMed]
- Satoh, T.; Takeuchi, O.; Vandenbon, A.; Yasuda, K.; Tanaka, Y.; Kumagai, Y.; Miyake, T.; Matsushita, K.; Okazaki, T.; Saitoh, T.; et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 2010, 11, 936–944. [Google Scholar] [CrossRef]
- Jetten, N.; Verbruggen, S.; Gijbels, M.J.; Post, M.J.; De Winther, M.P.; Donners, M.M. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 2014, 17, 109–118. [Google Scholar] [CrossRef]
- Leek, R.D.; Lewis, C.E.; Whitehouse, R.; Greenall, M.; Clarke, J.; Harris, A.L. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 1996, 56, 4625–4629. [Google Scholar]
- Lin, E.Y.; Li, J.F.; Gnatovskiy, L.; Deng, Y.; Zhu, L.; Grzesik, D.A.; Qian, H.; Xue, X.N.; Pollard, J.W. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006, 66, 11238–11246. [Google Scholar] [CrossRef] [Green Version]
- Gomez, C.R.; Hirano, S.; Cutro, B.T.; Birjandi, S.; Baila, H.; Nomellini, V.; Kovacs, E.J. Advanced age exacerbates the pulmonary inflammatory response after lipopolysaccharide exposure. Crit. Care Med. 2007, 35, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Jackaman, C.; Radley-Crabb, H.G.; Soffe, Z.; Shavlakadze, T.; Grounds, M.D.; Nelson, D.J. Targeting macrophages rescues age-related immune deficiencies in C57BL/6J geriatric mice. Aging Cell 2013, 12, 345–357. [Google Scholar] [CrossRef]
- Jackaman, C.; Dye, D.E.; Nelson, D.J. IL-2/CD40-activated macrophages rescue age and tumor-induced T cell dysfunction in elderly mice. Age 2014, 36, 9655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wehling-Henricks, M.; Samengo, G.; Tidball, J.G. Increases of M2a macrophages and fibrosis in aging muscle are influenced by bone marrow aging and negatively regulated by muscle-derived nitric oxide. Aging Cell 2015, 14, 678–688. [Google Scholar] [CrossRef]
- Kitamura, T.; Qian, B.Z.; Pollard, J.W. Immune cell promotion of metastasis. Nat. Rev. Immunol. 2015, 15, 73–86. [Google Scholar] [CrossRef]
- Sharma, S.; Dominguez, A.L.; Lustgarten, J. High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. J. Immunol. 2006, 177, 8348–8355. [Google Scholar] [CrossRef]
- Griggs, J.J.; Culakova, E.; Sorbero, M.E.; Poniewierski, M.S.; Wolff, D.A.; Crawford, J.; Dale, D.C.; Lyman, G.H. Social and racial differences in selection of breast cancer adjuvant chemotherapy regimens. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 2522–2527. [Google Scholar] [CrossRef] [PubMed]
- Field, K.M.; Kosmider, S.; Jefford, M.; Michael, M.; Jennens, R.; Green, M.; Gibbs, P. Chemotherapy dosing strategies in the obese, elderly, and thin patient: Results of a nationwide survey. J. Oncol. Pract. 2008, 4, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Vaz-Luis, I.; Keating, N.L.; Lin, N.U.; Lii, H.; Winer, E.P.; Freedman, R.A. Duration and toxicity of adjuvant trastuzumab in older patients with early-stage breast cancer: A population-based study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Di Capua, B.; Bellieni, A.; Fusco, D.; Gambacorta, M.A.; Tagliaferri, L.; Villani, E.R.; Bernabei, R.; Valentini, V.; Colloca, G.F. Perspectives and limits of cancer treatment in an oldest old population. Aging Clin. Exp. Res. 2021, 1–7. [Google Scholar] [CrossRef]
- Bellieni, A.; Fusco, D.; Sanchez, A.M.; Franceschini, G.; Di Capua, B.; Allocca, E.; Di Stasio, E.; Marazzi, F.; Tagliaferri, L.; Masetti, R.; et al. Different Impact of Definitions of Sarcopenia in Defining Frailty Status in a Population of Older Women with Early Breast Cancer. J. Pers. Med. 2021, 11, 243. [Google Scholar] [CrossRef]
- Hurria, A.; Dale, W.; Mooney, M.; Rowland, J.H.; Ballman, K.V.; Cohen, H.J.; Muss, H.B.; Schilsky, R.L.; Ferrell, B.; Extermann, M.; et al. Designing therapeutic clinical trials for older and frail adults with cancer: U13 conference recommendations. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 2587–2594. [Google Scholar] [CrossRef] [PubMed]
- Muss, H.B.; Berry, D.A.; Cirrincione, C.T.; Theodoulou, M.; Mauer, A.M.; Kornblith, A.B.; Partridge, A.H.; Dressler, L.G.; Cohen, H.J.; Becker, H.P.; et al. Adjuvant chemotherapy in older women with early-stage breast cancer. N. Engl. J. Med. 2009, 360, 2055–2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayyar, A.; Strassle, P.D.; Iles, K.; Jameison, D.; Jadi, J.; McGuire, K.P.; Gallagher, K.K. Survival Outcomes of Early-Stage Hormone Receptor-Positive Breast Cancer in Elderly Women. Ann. Surg. Oncol. 2020, 27, 4853–4860. [Google Scholar] [CrossRef]
- Riley, G.F.; Warren, J.L.; Harlan, L.C.; Blackwell, S.A. Endocrine therapy use among elderly hormone receptor-positive breast cancer patients enrolled in Medicare Part D. Medicare Medicaid Res. Rev. 2011, 1. [Google Scholar] [CrossRef]
- Biggers, A.; Shi, Y.; Charlson, J.; Smith, E.C.; Smallwood, A.J.; Nattinger, A.B.; Laud, P.W.; Neuner, J.M. Medicare D Subsidies and Racial Disparities in Persistence and Adherence with Hormonal Therapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 4398–4404. [Google Scholar] [CrossRef] [Green Version]
- Bailur, J.K.; Pawelec, G.; Hatse, S.; Brouwers, B.; Smeets, A.; Neven, P.; Laenen, A.; Wildiers, H.; Shipp, C. Immune profiles of elderly breast cancer patients are altered by chemotherapy and relate to clinical frailty. Breast Cancer Res. 2017, 19, 20. [Google Scholar] [CrossRef] [Green Version]
- Nappi, R.E.; Kroll, R.; Siddiqui, E.; Stoykova, B.; Rea, C.; Gemmen, E.; Schultz, N.M. Global cross-sectional survey of women with vasomotor symptoms associated with menopause: Prevalence and quality of life burden. Menopause 2021. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K.H.; Blair, S.L.; Burstein, H.J.; Dang, C.; Elias, A.D.; et al. NCCN Guidelines® Insights: Breast Cancer, Version 4.2021. J. Natl. Compr. Cancer Netw. 2021, 19, 484–493. [Google Scholar] [CrossRef]
- George, C.N.; Canuas-Landero, V.; Theodoulou, E.; Muthana, M.; Wilson, C.; Ottewell, P. Oestrogen and zoledronic acid driven changes to the bone and immune environments: Potential mechanisms underlying the differential anti-tumour effects of zoledronic acid in pre- and post-menopausal conditions. J. Bone Oncol. 2020, 25, 100317. [Google Scholar] [CrossRef] [PubMed]
TCGA | METABRIC | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age Group | Age Group | ||||||||||||||
Variable | Total | Control (40>, ≤60 years) | Octogenarian (>80 years) | p-Value | Variable | Total | Control (40>, ≤60 years) | Octogenarian (>80 years) | p-Value | ||||||
N | % | N | % | N | % | N | % | N | % | N | % | ||||
Total | 1081 | 100 | 668 | 100 | 53 | 100 | Total | 1866 | 100 | 979 | 100 | 118 | 100 | ||
pTMN stage | T stage | ||||||||||||||
I | 181 | 16.7 | 108 | 16.2 | 11 | 20.8 | 0.113 | 1 | 464 | 24.9 | 298 | 30.4 | 10 | 8.5 | 0.135 |
II | 611 | 56.5 | 391 | 58.5 | 22 | 41.5 | 2 | 777 | 41.6 | 391 | 39.9 | 62 | 52.5 | ||
III | 246 | 22.8 | 140 | 21 | 17 | 32.1 | 3 | 113 | 6.1 | 49 | 5 | 10 | 8.5 | ||
IV | 19 | 1.8 | 14 | 2.1 | 1 | 1.9 | 4 | 8 | 0.4 | 3 | 0.3 | 1 | 0.8 | ||
Unknown | 24 | 2.2 | 15 | 2.2 | 2 | 3.8 | Unknown | 504 | 27 | 238 | 24.3 | 35 | 29.7 | ||
Estrogen receptor | Estrogen receptor | ||||||||||||||
positive | 794 | 73.5 | 478 | 71.6 | 45 | 84.9 | 0.062 | positive | 1431 | 76.7 | 714 | 72.9 | 106 | 89.8 | 0 |
negative | 237 | 21.9 | 159 | 23.8 | 7 | 13.2 | negative | 435 | 23.3 | 265 | 27.1 | 12 | 10.2 | ||
Unknown | 50 | 4.6 | 31 | 4.6 | 1 | 1.9 | Unknown | 0 | 0 | 0 | 0 | 0 | 0 | ||
Progesterone receptor | Progesterone receptor | ||||||||||||||
positive | 688 | 63.6 | 418 | 62.6 | 34 | 64.2 | 0.973 | positive | 993 | 53.2 | 507 | 51.8 | 61 | 51.7 | 0.985 |
negative | 340 | 31.5 | 219 | 32.8 | 18 | 34 | negative | 873 | 46.8 | 472 | 48.2 | 57 | 48.3 | ||
Unknown | 53 | 4.9 | 31 | 4.6 | 1 | 1.9 | Unknown | 0 | 0 | 0 | 0 | 0 | 0 | ||
HER2 | HER2 | ||||||||||||||
positive | 179 | 16.6 | 109 | 16.3 | 8 | 15.1 | 0.649 | positive | 230 | 12.3 | 143 | 14.6 | 10 | 8.5 | 0.069 |
negative | 762 | 70.5 | 477 | 71.4 | 42 | 79.2 | negative | 1636 | 87.7 | 836 | 85.4 | 108 | 91.5 | ||
Unknown | 140 | 13 | 82 | 12.3 | 3 | 5.7 | Unknown | 0 | 0 | 0 | 0 | 0 | 0 | ||
Histology | Histology | ||||||||||||||
Infiltrating Ductal | 771 | 71.3 | 482 | 72.2 | 34 | 64.2 | 0.195 | Infiltrating Ductal | 1475 | 79 | 744 | 76 | 94 | 79.7 | 0.247 |
Infiltrating Lobular | 203 | 18.8 | 130 | 19.5 | 13 | 24.5 | Infiltrating Lobular | 137 | 7.3 | 79 | 8.1 | 11 | 9.3 | ||
Others | 107 | 9.9 | 56 | 8.4 | 6 | 11.3 | Others | 252 | 13.5 | 156 | 15.9 | 13 | 11 | ||
Histological Grade | Unknown | 2 | 0.1 | 0 | 0 | 0 | 0 | ||||||||
1 | 77 | 7.1 | 52 | 7.8 | 4 | 7.5 | 0.088 | Histological Grade | |||||||
2 | 268 | 24.8 | 170 | 25.4 | 15 | 28.3 | 1 | 159 | 8.5 | 99 | 10.1 | 11 | 9.3 | 0.073 | |
3 | 232 | 21.5 | 154 | 23.1 | 12 | 22.6 | 2 | 723 | 38.7 | 356 | 36.4 | 57 | 48.3 | ||
Unknown | 450 | 41.6 | 258 | 38.6 | 20 | 37.7 | 3 | 912 | 48.9 | 488 | 49.8 | 43 | 36.4 | ||
PAM50 subtype | Unknown | 72 | 3.9 | 36 | 3.7 | 7 | 5.9 | ||||||||
Luminal A | 303 | 28 | 179 | 26.8 | 21 | 39.6 | 0 | claudin subtype | |||||||
Luminal B | 244 | 22.6 | 133 | 19.9 | 16 | 30.2 | Luminal A | 673 | 36.1 | 343 | 35 | 53 | 44.9 | 0.012 | |
HER2 | 144 | 13.3 | 98 | 14.7 | 6 | 11.3 | Luminal B | 454 | 24.3 | 203 | 20.7 | 37 | 31.4 | ||
Basal-like | 227 | 21 | 154 | 23.1 | 8 | 15.1 | HER2 | 218 | 11.7 | 125 | 12.8 | 12 | 10.2 | ||
normal-like | 136 | 12.6 | 88 | 13.2 | 2 | 3.8 | Basal-like | 198 | 10.6 | 111 | 11.3 | 9 | 7.6 | ||
Unknown | 27 | 2.5 | 16 | 2.4 | 0 | 0 | claudin-low | 182 | 9.8 | 108 | 11 | 2 | 1.7 | ||
Race | normal-like | 135 | 7.2 | 88 | 9 | 5 | 4.2 | ||||||||
White | 745 | 68.9 | 476 | 71.3 | 33 | 62.3 | 0.626 | Unknown | 6 | 0.3 | 1 | 0.1 | 0 | 0 | |
Black | 180 | 16.7 | 108 | 16.2 | 6 | 11.3 | |||||||||
other | 156 | 14.4 | 84 | 12.6 | 14 | 26.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okano, M.; Oshi, M.; Mukhopadhyay, S.; Qi, Q.; Yan, L.; Endo, I.; Ohtake, T.; Takabe, K. Octogenarians’ Breast Cancer Is Associated with an Unfavorable Tumor Immune Microenvironment and Worse Disease-Free Survival. Cancers 2021, 13, 2933. https://doi.org/10.3390/cancers13122933
Okano M, Oshi M, Mukhopadhyay S, Qi Q, Yan L, Endo I, Ohtake T, Takabe K. Octogenarians’ Breast Cancer Is Associated with an Unfavorable Tumor Immune Microenvironment and Worse Disease-Free Survival. Cancers. 2021; 13(12):2933. https://doi.org/10.3390/cancers13122933
Chicago/Turabian StyleOkano, Maiko, Masanori Oshi, Swagoto Mukhopadhyay, Qianya Qi, Li Yan, Itaru Endo, Toru Ohtake, and Kazuaki Takabe. 2021. "Octogenarians’ Breast Cancer Is Associated with an Unfavorable Tumor Immune Microenvironment and Worse Disease-Free Survival" Cancers 13, no. 12: 2933. https://doi.org/10.3390/cancers13122933
APA StyleOkano, M., Oshi, M., Mukhopadhyay, S., Qi, Q., Yan, L., Endo, I., Ohtake, T., & Takabe, K. (2021). Octogenarians’ Breast Cancer Is Associated with an Unfavorable Tumor Immune Microenvironment and Worse Disease-Free Survival. Cancers, 13(12), 2933. https://doi.org/10.3390/cancers13122933