Combination of the G-8 Screening Tool and Hand-Grip Strength to Predict Long-Term Overall Survival in Non-Small Cell Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Approach
2.2.1. Geriatric 8
2.2.2. Hand-Grip Strength Test
2.2.3. Chair-Stand Test
2.2.4. Eastern Cooperative Oncology Group Performance Status, Charlson Comorbidity Index, and Barthel-20
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Patient Characteristics | G-8, 2 Groups | G-8, 3 Groups 1 | G-8 + HGST 2 | |||||
---|---|---|---|---|---|---|---|---|
Normal | Abnormal | High | Intermediate | Low | Fit | Vulnerable | Frail | |
Sex | ||||||||
Female | 4 (31%) | 21 (64%) | 4 (31%) | 17 (68%) | 4 (50%) | 6 (60%) | 10 (36%) | 5 (62.5%) |
Male | 9 (69%) | 12 (36%) | 9 (69%) | 8 (32%) | 4 (50%) | 4 (40%) | 18 (64%) | 3 (37.5%) |
Age | ||||||||
Median (range) | 72 (52–79) | 72 (56–87) | 72 (52–79) | 72 (56–87) | 71 (57–83) | 72 (52–79) | 73 (58–87) | 71 (57–80) |
≥70 years (%) | 9 (69%) | 25 (74%) | 9 (69%) | 19 (76%) | 5 (63%) | 6 (60%) | 21 (75%) | 6 (75%) |
Reason of SBRT referral | ||||||||
Unfit for surgery 3 | 13 (100%) | 29 (88%) | 13 (100%) | 22 (88%) | 7 (88%) | 10 (100%) | 26 (93%) | 6 (75%) |
Declined surgery | 0 (0%) | 4 (12%) | 0 (0%) | 3 (12%) | 1 (12%) | 0 (0%) | 2 (7%) | 2 (25%) |
Lung cancer stage | ||||||||
1A | 8 (61%) | 22 (68%) | 8 (61%) | 16 (64%) | 6 (75%) | 6 (60%) | 18 (64%) | 6 (75%) |
1B | 4 (31%) | 11 (32%) | 4 (31%) | 9 (36%) | 2 (25%) | 3 (30%) | 10 (36%) | 2 (25%) |
Synchronous NSCLC | 1 (8%) | 0 (0%) | 1 (8%) | 0 (0%) | 0 (0%) | 1 (10%) | 0 (0%) | 0 (0%) |
Histology | ||||||||
Adeno | 7 (54%) | 16 (47%) | 7 (54%) | 11 (44%) | 5 (63%) | 7 (70%) | 12 (43%) | 4 (50%) |
Non-adeno | 6 (46%) | 18 (53%) | 6 (46%) | 14 (56%) | 3 (37%) | 3 (30%) | 16 (57%) | 4 (50%) |
Prescribed radiation dose | ||||||||
45Gy/3F(BED 112Gy) | 2 (15%) | 2 (6%) | 2 (15%) | 2 (8%) | 0 (0%) | 2 (20%) | 2 (7%) | 0 (0%) |
66Gy/3F (BED 211Gy) | 11 (85%) | 31 (94%) | 11 (85%) | 23 (92%) | 8 (100%) | 8 (80%) | 26 (93%) | 8 (100%) |
ECOG Performance status | ||||||||
0–1 | 11 (85%) | 17 (50%) | 11 (85%) | 14 (56%) | 3 (37%) | 9 (90%) | 16 (57%) | 3 (37%) |
≥2 | 2 (15%) | 17 (50%) | 2 (15%) | 11 (44%) | 5 (63%) | 1 (10%) | 12 (43%) | 5 (65% |
CCI | ||||||||
0–1 | 7 (54%) | 13 (38%) | 7 (54%) | 9 (36%) | 3 (37%) | 6 (60%) | 10 (36%) | 3 (37%) |
2–3 | 4 (31%) | 17 (50%) | 4 (31%) | 13 (52%) | 4 (50%) | 2 (20%) | 14 (50%) | 5 (63%) |
>3 | 2 (15%) | 4 (12%) | 2 (15%) | 3 (12%) | 1 (13%) | 2 (20%) | 4 (14%) | 0 (0%) |
Barthel 20 | ||||||||
Normal (20–19) | 10 (77%) | 22 (65%) | 10 (77%) | 19 (79%) | 3 (37%) | 8 (80%) | 20 (71%) | 4 (50%) |
Disability (≤18) | 3 (23%) | 12 (35%) | 3 (23%) | 6 (24%) | 5 (63%) | 2 (20%) | 8 (29%) | 4 (50%) |
G-8 total | ||||||||
Normal (>14) | 13 (100%) | 0 (0%) | 13 (100%) | 0 (0%) | 0 (0%) | 10 (100%) | 3 (11%) | 0 (0%) |
Abnormal (≤14) | 0 (0%) | 43 (100%) | 0 (0%) | 25 (100%) | 8 (100%) | 0 (0%) | 25 (89%) | 8 (100%) |
CST | ||||||||
Normal (≥10) | 1 (25%) | 2 (22%) | 1 (25%) | 1 (12%) | 1 (100%) | 0 (0%) | 3 (27%) | 0 (0%) |
Abnormal (<10) | 3 (75%) | 7 (78%) | 3 (75%) | 7 (88%) | 0 (0%) | 2 (100%) | 8 (73%) | 0 (0%) |
HGST | ||||||||
Normal (♂ ≥ 21 kg/♀ ≥ 15 kg) | 10 (77%) | 25 (76%) | 10 (77%) | 20 (80%) | 5 (63%) | 10 (100%) | 25 (89%) | 0 (0%) |
Abnormal (♂ < 21 kg/♀ < 15 kg) | 3 (23%) | 8 (24%) | 3 (23%) | 5 (20%) | 3 (37%) | 0 (0%) | 3 (11%) | 8 (100%) |
CGA 4 | ||||||||
Yes | 6 (46%) | 19 (56%) | 6 (46%) | 15 (60%) | 3 (37%) | 6 (60%) | 12 (43%) | 4 (50%) |
No | 7 (54%) | 15 (44%) | 7 (54%) | 10 (40%) | 5 (63%) | 4 (40%) | 16 (57%) | 4 (50%) |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021. [Google Scholar] [CrossRef] [PubMed]
- Divo, M.J.; Martinez, C.H.; Mannino, D.M. Ageing and the epidemiology of multimorbidity. Eur. Respir. J. 2014, 44, 1055–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owonikoko, T.K.; Ragin, C.C.; Belani, C.P.; Oton, A.B.; Gooding, W.E.; Taioli, E.; Ramalingam, S.S. Lung cancer in elderly patients: An analysis of the surveillance, epidemiology, and end results database. J. Clin. Oncol. 2007, 25, 5570–5577. [Google Scholar] [CrossRef] [PubMed]
- Donington, J.; Ferguson, M.; Mazzone, P.; Handy, J., Jr.; Schuchert, M.; Fernando, H.; Loo, B., Jr.; Lanuti, M.; de Hoyos, A.; Detterbeck, F.; et al. American College of Chest Physicians and Society of Thoracic Surgeons consensus statement for evaluation and management for high-risk patients with stage I non-small cell lung cancer. Chest 2012, 142, 1620–1635. [Google Scholar] [CrossRef] [Green Version]
- Nyman, J.; Hallqvist, A.; Lund, J.A.; Brustugun, O.T.; Bergman, B.; Bergstrom, P.; Friesland, S.; Lewensohn, R.; Holmberg, E.; Lax, I. SPACE—A randomized study of SBRT vs conventional fractionated radiotherapy in medically inoperable stage I NSCLC. Radiother. Oncol. 2016, 121, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Guckenberger, M.; Andratschke, N.; Dieckmann, K.; Hoogeman, M.S.; Hoyer, M.; Hurkmans, C.; Tanadini-Lang, S.; Lartigau, E.; Mendez Romero, A.; Senan, S.; et al. ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother. Oncol. 2017, 124, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Soto-Perez-de-Celis, E.; Li, D.; Yuan, Y.; Lau, Y.M.; Hurria, A. Functional versus chronological age: Geriatric assessments to guide decision making in older patients with cancer. Lancet Oncol. 2018, 19, e305–e316. [Google Scholar] [CrossRef]
- Jeppesen, S.S.; Hansen, N.C.G.; Schytte, T.; Hansen, O. Survival of localized NSCLC patients without active treatment or treated with SBRT. Acta Oncol. 2018, 57, 219–225. [Google Scholar] [CrossRef]
- Martinez-Tapia, C.; Paillaud, E.; Liuu, E.; Tournigand, C.; Ibrahim, R.; Fossey-Diaz, V.; Culine, S.; Canoui-Poitrine, F.; Audureau, E.; Group, E.S. Prognostic value of the G8 and modified-G8 screening tools for multidimensional health problems in older patients with cancer. Eur. J. Cancer 2017, 83, 211–219. [Google Scholar] [CrossRef]
- Soubeyran, P.; Bellera, C.; Goyard, J.; Heitz, D.; Cure, H.; Rousselot, H.; Albrand, G.; Servent, V.; Jean, O.S.; van Praagh, I.; et al. Screening for vulnerability in older cancer patients: The ONCODAGE Prospective Multicenter Cohort Study. PLoS ONE 2014, 9, e115060. [Google Scholar] [CrossRef]
- Pottel, L.; Lycke, M.; Boterberg, T.; Pottel, H.; Goethals, L.; Duprez, F.; Rottey, S.; Lievens, Y.; Van Den Noortgate, N.; Geldhof, K.; et al. G-8 indicates overall and quality-adjusted survival in older head and neck cancer patients treated with curative radiochemotherapy. BMC Cancer 2015, 15, 875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Extermann, M.; Aapro, M.; Bernabei, R.; Cohen, H.J.; Droz, J.P.; Lichtman, S.; Mor, V.; Monfardini, S.; Repetto, L.; Sorbye, L.; et al. Use of comprehensive geriatric assessment in older cancer patients: Recommendations from the task force on CGA of the International Society of Geriatric Oncology (SIOG). Crit. Rev. Oncol. Hematol. 2005, 55, 241–252. [Google Scholar] [CrossRef]
- Bellera, C.A.; Rainfray, M.; Mathoulin-Pelissier, S.; Mertens, C.; Delva, F.; Fonck, M.; Soubeyran, P.L. Screening older cancer patients: First evaluation of the G-8 geriatric screening tool. Ann. Oncol. 2012, 23, 2166–2172. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Takahashi, M.; Komine, K.; Yamada, H.; Kasahara, Y.; Chikamatsu, S.; Okita, A.; Ito, S.; Ouchi, K.; Okada, Y.; et al. The G8 screening tool enhances prognostic value to ECOG performance status in elderly cancer patients: A retrospective, single institutional study. PLoS ONE 2017, 12, e0179694. [Google Scholar] [CrossRef] [Green Version]
- Winther, S.B.; Liposits, G.; Skuladottir, H.; Hofsli, E.; Shah, C.H.; Poulsen, L.O.; Ryg, J.; Osterlund, P.; Berglund, A.; Qvortrup, C.; et al. Reduced-dose combination chemotherapy (S-1 plus oxaliplatin) versus full-dose monotherapy (S-1) in older vulnerable patients with metastatic colorectal cancer (NORDIC9): A randomised, open-label phase 2 trial. Lancet Gastroenterol. Hepatol. 2019, 4, 376–388. [Google Scholar] [CrossRef]
- Rassam, Y.; Schindler, A.; Willschrei, P.; Horstmann, M. The G8 questionnaire as a geriatric screening tool in urooncology. Aktuelle Urol. 2020, 51, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Bruijnen, C.P.; van Harten-Krouwel, D.G.; Koldenhof, J.J.; Emmelot-Vonk, M.H.; Witteveen, P.O. Predictive value of each geriatric assessment domain for older patients with cancer: A systematic review. J. Geriatr. Oncol. 2019, 10, 859–873. [Google Scholar] [CrossRef]
- Bohannon, R.W. Muscle strength: Clinical and prognostic value of hand-grip dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef]
- Jeppesen, S.S.; Matzen, L.E.; Brink, C.; Bliucukiene, R.; Kasch, S.; Schytte, T.; Kristiansen, C.; Hansen, O. Impact of comprehensive geriatric assessment on quality of life, overall survival, and unplanned admission in patients with non-small cell lung cancer treated with stereotactic body radiotherapy. J. Geriatr. Oncol. 2018, 9, 575–582. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederiksen, H.; Hjelmborg, J.; Mortensen, J.; McGue, M.; Vaupel, J.W.; Christensen, K. Age trajectories of grip strength: Cross-sectional and longitudinal data among 8,342 Danes aged 46 to 102. Ann. Epidemiol. 2006, 16, 554–562. [Google Scholar] [CrossRef]
- Csuka, M.; McCarty, D.J. Simple method for measurement of lower extremity muscle strength. Am. J. Med. 1985, 78, 77–81. [Google Scholar] [CrossRef]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Collin, C.; Wade, D.T.; Davies, S.; Horne, V. The Barthel ADL Index: A reliability study. Int. Disabil. Stud. 1988, 10, 61–63. [Google Scholar] [CrossRef]
- Kenis, C.; Decoster, L.; Van Puyvelde, K.; De Greve, J.; Conings, G.; Milisen, K.; Flamaing, J.; Lobelle, J.P.; Wildiers, H. Performance of two geriatric screening tools in older patients with cancer. J. Clin. Oncol. 2014, 32, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Liuu, E.; Canoui-Poitrine, F.; Tournigand, C.; Laurent, M.; Caillet, P.; Le Thuaut, A.; Vincent, H.; Culine, S.; Audureau, E.; Bastuji-Garin, S.; et al. Accuracy of the G-8 geriatric-oncology screening tool for identifying vulnerable elderly patients with cancer according to tumour site: The ELCAPA-02 study. J. Geriatr. Oncol. 2014, 5, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Maebayashi, T.; Ishibashi, N.; Aizawa, T.; Sakaguchi, M.; Saito, T.; Kawamori, J.; Tanaka, Y. Significance of stereotactic body radiotherapy in older patients with early stage non-small cell lung cancer. J. Geriatr. Oncol. 2018, 9, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Cuccia, F.; Mortellaro, G.; Mazzola, R.; Donofrio, A.; Valenti, V.; Tripoli, A.; Matranga, D.; Lo Casto, A.; Failla, G.; Di Miceli, G.; et al. Prognostic value of two geriatric screening tools in a cohort of older patients with early stage Non-Small Cell Lung Cancer treated with hypofractionated stereotactic radiotherapy. J. Geriatr. Oncol. 2020, 11, 475–481. [Google Scholar] [CrossRef]
- Decoster, L.; Van Puyvelde, K.; Mohile, S.; Wedding, U.; Basso, U.; Colloca, G.; Rostoft, S.; Overcash, J.; Wildiers, H.; Steer, C.; et al. Screening tools for multidimensional health problems warranting a geriatric assessment in older cancer patients: An update on SIOG recommendations. Ann. Oncol. 2015, 26, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Rijk, J.M.; Roos, P.R.; Deckx, L.; van den Akker, M.; Buntinx, F. Prognostic value of handgrip strength in people aged 60 years and older: A systematic review and meta-analysis. Geriatr. Gerontol. Int. 2016, 16, 5–20. [Google Scholar] [CrossRef]
- Norman, K.; Stobaus, N.; Gonzalez, M.C.; Schulzke, J.D.; Pirlich, M. Hand grip strength: Outcome predictor and marker of nutritional status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef]
- Versteeg, K.S.; Blauwhoff-Buskermolen, S.; Buffart, L.M.; de van der Schueren, M.A.E.; Langius, J.A.E.; Verheul, H.M.W.; Maier, A.B.; Konings, I.R. Higher Muscle Strength Is Associated with Prolonged Survival in Older Patients with Advanced Cancer. Oncologist 2018, 23, 580–585. [Google Scholar] [CrossRef] [Green Version]
- Kilgour, R.D.; Vigano, A.; Trutschnigg, B.; Lucar, E.; Borod, M.; Morais, J.A. Handgrip strength predicts survival and is associated with markers of clinical and functional outcomes in advanced cancer patients. Support. Care Cancer 2013, 21, 3261–3270. [Google Scholar] [CrossRef]
- Lycke, M.; Ketelaars, L.; Martens, E.; Lefebvre, T.; Pottel, H.; Van Eygen, K.; Cool, L.; Pottel, L.; Kenis, C.; Schofield, P.; et al. The added value of an assessment of the patient’s hand grip strength to the comprehensive geriatric assessment in G8-abnormal older patients with cancer in routine practice. J. Geriatr. Oncol. 2019, 10, 931–936. [Google Scholar] [CrossRef]
- Mancini, B.R.; Park, H.S.; Harder, E.M.; Rutter, C.E.; Corso, C.D.; Decker, R.H.; Husain, Z.A. Elderly patients undergoing SBRT for inoperable early-stage NSCLC achieve similar outcomes to younger patients. Lung Cancer 2016, 97, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Kreinbrink, P.; Blumenfeld, P.; Tolekidis, G.; Sen, N.; Sher, D.; Marwaha, G. Lung stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer in the very elderly (>/=80years old): Extremely safe and effective. J. Geriatr. Oncol. 2017, 8, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Detterbeck, F.C.; Gibson, C.J. Turning gray: The natural history of lung cancer over time. J. Thorac. Oncol. 2008, 3, 781–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wao, H.; Mhaskar, R.; Kumar, A.; Miladinovic, B.; Djulbegovic, B. Survival of patients with non-small cell lung cancer without treatment: A systematic review and meta-analysis. Syst. Rev. 2013, 2, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klement, R.J.; Belderbos, J.; Grills, I.; Werner-Wasik, M.; Hope, A.; Giuliani, M.; Ye, H.; Sonke, J.J.; Peulen, H.; Guckenberger, M. Prediction of Early Death in Patients with Early-Stage NSCLC-Can We Select Patients without a Potential Benefit of SBRT as a Curative Treatment Approach? J. Thorac. Oncol. 2016, 11, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Franco, I.; Chen, Y.H.; Chipidza, F.; Agrawal, V.; Romano, J.; Baldini, E.; Chen, A.; Colson, Y.; Hou, Y.; Kozono, D.; et al. Use of frailty to predict survival in elderly patients with early stage non-small-cell lung cancer treated with stereotactic body radiation therapy. J. Geriatr. Oncol. 2018, 9, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient Characteristics | Patients (n = 46) |
---|---|
Sex | |
Female | 25 (54%) |
Male | 21 (46%) |
Age (years) | |
Median (range) | 72 (52–87) |
≥70 years | 33 (72%) |
Reason of SBRT referral | |
Unfit for surgery 1 | 42 (91%) |
Declined surgery | 4 (9%) |
Histology | |
Adenocarcinoma | 23 (50%) |
Non-adenocarcinoma | 23 (50%) |
Lung cancer stage | |
1A | 30 (65%) |
1B | 15 (33%) |
Synchronous NSCLC | 1 (2%) |
Prescribed radiation dose | |
45Gy/3F (BED 112Gy) | 4 (9%) |
66Gy/3F (BED 211Gy) | 42 (91%) |
ECOG Performance Status | |
0–1 | 28 (61%) |
≥2 | 18 (39%) |
Charlson Comorbidity Index | |
0–1 | 19 (41%) |
2–3 | 21 (46%) |
>3 | 6 (13%) |
Barthel-20 | |
Normal (20–19) | 32 (70%) |
Disability (≤18) | 14 (30%) |
G-8 total (Abnormal ≤14) | |
High (>14) | 13 (28%) |
Intermediate (11–14) | 25 (54%) |
Low (<11) | 8 (18%) |
CST (n = 13) | |
Normal (≥10) | 3 (23%) |
Abnormal (<10) | 10 (77%) |
HGST 2 | |
Normal (♂ ≥ 21 kg/♀ ≥ 15 kg) | 35 (76%) |
Abnormal (♂ < 21 kg/♀ < 15 kg) | 11 (24%) |
G-8 + HGST | |
Fit (normal G-8 and HGST) | 10 (22%) |
Vulnerable (abnormal G-8 or abnormal HGST) | 26 (61%) |
Frail (abnormal G-8 and HGST) | 8 (17%) |
CGA 3 | |
Yes | 24 (50%) |
No | 22 (48%) |
Patient Characteristics | Univariate Model | Multivariate Model | ||||
---|---|---|---|---|---|---|
HR | p-Value | 95% CI | HR | p-Value | 95%CI | |
Male gender | 1.55 | 0.26 | 0.72–3.32 | 1.35 | 0.49 | 0.58–3.15 |
Age ≥70 years | 3.10 | 0.04 | 1.07–8.99 | 3.28 | 0.07 | 0.92–11.78 |
Adenocarcinoma | 0.65 | 0.27 | 0.31–1.39 | 1.00 | 0.99 | 0.45–2.26 |
G-8 score ≤14 | 3.24 | 0.03 | 1.12–9.39 | |||
HGST score ♂ < 21 kg/♀ < 15 kg 1 | 1.64 | 0.24 | 0.72–3.72 | |||
HGST+G-8 combination 2 | ||||||
Fit (reference) | - | - | - | - | - | - |
Vulnerable | 2.77 | 0.10 | 0.81–9.44 | 2.03 | 0.32 | 0.50–8.18 |
Frail | 5.24 | 0.02 | 1.34–20.40 | 3.80 | 0.09 | 0.80–18.01 |
ECOG Performance Status ≥2 | 1.94 | 0.08 | 0.92–4.08 | 1.12 | 0.84 | 0.37–3.40 |
Charlson Comorbidity Index | ||||||
0–1 (reference) | - | - | - | - | - | - |
2–3 | 1.89 | 0.13 | 0.83–4.33 | 1.45 | 0.42 | 0.59–3.56 |
>3 | 1.92 | 0.28 | 0.58–6.32 | 3.89 | 0.06 | 0.96–15.81 |
Barthel-20 score <19 | 1.56 | 0.26 | 0.72–3.40 | 1.06 | 0.92 | 0.35–3.17 |
CGA 3 | 0.66 | 0.28 | 0.31–1.40 | 0.70 | 0.44 | 0.28–1.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bentsen, K.K.; Hansen, O.; Ryg, J.; Giger, A.-K.W.; Jeppesen, S.S. Combination of the G-8 Screening Tool and Hand-Grip Strength to Predict Long-Term Overall Survival in Non-Small Cell Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy. Cancers 2021, 13, 3363. https://doi.org/10.3390/cancers13133363
Bentsen KK, Hansen O, Ryg J, Giger A-KW, Jeppesen SS. Combination of the G-8 Screening Tool and Hand-Grip Strength to Predict Long-Term Overall Survival in Non-Small Cell Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy. Cancers. 2021; 13(13):3363. https://doi.org/10.3390/cancers13133363
Chicago/Turabian StyleBentsen, Kristian Kirkelund, Olfred Hansen, Jesper Ryg, Ann-Kristine Weber Giger, and Stefan Starup Jeppesen. 2021. "Combination of the G-8 Screening Tool and Hand-Grip Strength to Predict Long-Term Overall Survival in Non-Small Cell Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy" Cancers 13, no. 13: 3363. https://doi.org/10.3390/cancers13133363
APA StyleBentsen, K. K., Hansen, O., Ryg, J., Giger, A. -K. W., & Jeppesen, S. S. (2021). Combination of the G-8 Screening Tool and Hand-Grip Strength to Predict Long-Term Overall Survival in Non-Small Cell Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy. Cancers, 13(13), 3363. https://doi.org/10.3390/cancers13133363