Characterization of Novel Progression Factors in Castration-Resistant Prostate Cancer Based on Global Comparative Proteome Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Tissues of Patients with Prostate Cancer
2.2. Sample Preparation for Comparative Proteome Analysis
2.3. Peptide Fractionation by High-pH Reverse-Phase and Desalting
2.4. Nano-Liquid Chromatography–Tandem Mass Spectrometry Analysis
2.5. Peak Alignment and Database Search
2.6. Bioinformatics Analysis
2.7. Western Blotting
2.8. Indirect Enzyme-Linked Immunosorbent Assay
3. Results
3.1. Comparative Global Protein Profiling in Prostate Cancer Tissues
3.2. Bioinformatics Analysis of Prostate Tissues
3.3. Changes in Protein Expression Following ADT
3.4. Verification of Differentially Expressed Proteins in Clinical Tissues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Studer, U.E.; Hauri, D.; Hanselmann, S.; Chollet, D.; Leisinger, H.J.; Gasser, T.; Senn, E.; Trinkler, F.B.; Tscholl, R.M.; Thalmann, G.N.; et al. Immediate versus deferred hormonal treatment for patients with prostate cancer who are not suitable for curative local treatment: Results of the randomized trial SAKK 08/88. J. Clin. Oncol. 2004, 22, 4109–4118. [Google Scholar] [CrossRef]
- Harris, W.P.; Mostaghel, E.A.; Nelson, P.S.; Montgomery, B. Androgen deprivation therapy: Progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol. 2009, 6, 76–85. [Google Scholar] [CrossRef]
- Hussain, M.; Goldman, B.; Tangen, C.; Higano, C.S.; Petrylak, D.P.; Wilding, G.; Akdas, A.M.; Small, E.J.; Donnelly, B.J.; Sundram, S.K.; et al. Prostate-specific antigen progression predicts overall survival in patients with metastatic prostate cancer: Data from Southwest Oncology Group Trials 9346 (Intergroup Study 0162) and 9916. J. Clin. Oncol. 2009, 27, 2450–2456. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.M.; Howard, L.E.; Sourbeer, K.N.; Amarasekara, H.S.; Chow, L.C.; Cockrell, D.C.; Hanyok, B.T.; Aronson, W.J.; Kane, C.J.; Terris, M.K.; et al. Predictors of Time to Metastasis in Castration-resistant Prostate Cancer. Urology 2016, 96, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Barlow, L.J.; Shen, M.M. SnapShot: Prostate cancer. Cancer Cell 2013, 24, 400.e40. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekar, T.; Yang, J.C.; Gao, A.C.; Evans, C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol. 2015, 4, 365–380. [Google Scholar] [CrossRef] [PubMed]
- Crona, D.J.; Whang, Y.E. Androgen Receptor-Dependent and -Independent Mechanisms Involved in Prostate Cancer Therapy Resistance. Cancers 2017, 9, 67. [Google Scholar] [CrossRef]
- Tonry, C.L.; Leacy, E.; Raso, C.; Finn, S.P.; Armstrong, J.; Pennington, S.R. The Role of Proteomics in Biomarker Development for Improved Patient Diagnosis and Clinical Decision Making in Prostate Cancer. Diagnostics 2016, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Sung, E.; Kwon, O.K.; Lee, J.M.; Lee, S. Proteomics approach to identify novel metastatic bone markers from the secretome of PC-3 prostate cancer cells. Electrophoresis 2017, 38, 2638–2645. [Google Scholar] [CrossRef]
- Kmetova Sivonova, M.; Tatarkova, Z.; Jurecekova, J.; Kliment, J.; Hives, M.; Lichardusova, L.; Kaplan, P. Differential profiling of prostate tumors versus benign prostatic tissues by using a 2DE-MALDI-TOF-based proteomic approach. Neoplasma 2020, 68, 154–164. [Google Scholar] [CrossRef]
- Kwon, O.K.; Ha, Y.S.; Na, A.Y.; Chun, S.Y.; Kwon, T.G.; Lee, J.N.; Lee, S. Identification of Novel Prognosis and Prediction Markers in Advanced Prostate Cancer Tissues Based on Quantitative Proteomics. Cancer Genom. Proteom. 2020, 17, 195–208. [Google Scholar] [CrossRef]
- Kwon, O.K.; Ha, Y.S.; Lee, J.N.; Kim, S.; Lee, H.; Chun, S.Y.; Kwon, T.G.; Lee, S. Comparative Proteome Profiling and Mutant Protein Identification in Metastatic Prostate Cancer Cells by Quantitative Mass Spectrometry-based Proteogenomics. Cancer Genom. Proteom. 2019, 16, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A.; Grading, C. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Buttigliero, C.; Tucci, M.; Bertaglia, V.; Vignani, F.; Bironzo, P.; Di Maio, M.; Scagliotti, G.V. Understanding and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in castration resistant prostate cancer. Cancer Treat. Rev. 2015, 41, 884–892. [Google Scholar] [CrossRef]
- Imamura, Y.; Sadar, M.D. Androgen receptor targeted therapies in castration-resistant prostate cancer: Bench to clinic. Int. J. Urol. 2016, 23, 654–665. [Google Scholar] [CrossRef]
- Morote, J.; Orsola, A.; Planas, J.; Trilla, E.; Raventos, C.X.; Cecchini, L.; Catalan, R. Redefining clinically significant castration levels in patients with prostate cancer receiving continuous androgen deprivation therapy. J. Urol. 2007, 178, 1290–1295. [Google Scholar] [CrossRef]
- Montgomery, R.B.; Mostaghel, E.A.; Vessella, R.; Hess, D.L.; Kalhorn, T.F.; Higano, C.S.; True, L.D.; Nelson, P.S. Maintenance of intratumoral androgens in metastatic prostate cancer: A mechanism for castration-resistant tumor growth. Cancer Res. 2008, 68, 4447–4454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augello, M.A.; Hickey, T.E.; Knudsen, K.E. FOXA1: Master of steroid receptor function in cancer. EMBO J. 2011, 30, 3885–3894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirosevich, J.; Gao, N.; Matusik, R.J. Expression of Foxa transcription factors in the developing and adult murine prostate. Prostate 2005, 62, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tindall, D.J.; Huang, H. Modulation of androgen receptor by FOXA1 and FOXO1 factors in prostate cancer. Int. J. Biol. Sci. 2014, 10, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.K.; Mehta, R.J.; Nakshatri, H.; Idrees, M.T.; Badve, S.S. High-level expression of forkhead-box protein A1 in metastatic prostate cancer. Histopathology 2011, 58, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Nanduri, R.; Furusawa, T.; Bustin, M. Biological Functions of HMGN Chromosomal Proteins. Int. J. Mol. Sci. 2020, 21, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.Q.; Hou, Y.F.; Wu, J.; Chen, Y.; Lu, J.S.; Di, G.H.; Ou, Z.L.; Shen, Z.Z.; Ding, J.; Shao, Z.M. Gene expression profile analysis of an isogenic tumour metastasis model reveals a functional role for oncogene AF1Q in breast cancer metastasis. Eur. J. Cancer 2006, 42, 3274–3286. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, J.Y.; Song, I.H.; Park, I.A.; Yu, J.H.; Ahn, J.H.; Gong, G. High mobility group B1 and N1 (HMGB1 and HMGN1) are associated with tumor-infiltrating lymphocytes in HER2-positive breast cancers. Virchows Arch. 2015, 467, 701–709. [Google Scholar] [CrossRef]
- Kondos, H.; Anastasiadou, E.; Photopoulou, A.; Cary, P.; Aleporou-Marinou, V.; Pataryas, T. Elevated levels of the chromosomal protein HMG 17 in chronic myelogenic leukemia. Biochem. Mol. Biol. Int. 1995, 36, 803–809. [Google Scholar] [PubMed]
- Guo, Z.; Zhang, X.; Li, X.; Xie, F.; Su, B.; Zhang, M.; Zhou, L. Expression of oncogenic HMGN5 increases the sensitivity of prostate cancer cells to gemcitabine. Oncol. Rep. 2015, 33, 1519–1525. [Google Scholar] [CrossRef] [Green Version]
Protein Accession | Protein Description | Gene Name | Relative Ratio | ||
---|---|---|---|---|---|
T3GX/ T3G3 | CRPC/ T3GX | CRPC/ T3G3 | |||
Q99878 | Histone H2A type 1-J | HIST1H2AJ | 3.9 | 2.3 | 8.8 |
Q15651 | High mobility group nucleosome-binding domain-containing protein 3 | HMGN3 | 3.5 | 3.9 | 13.4 |
Q8IUE6 | Histone H2A type 2-B | HIST2H2AB | 3.4 | 2.1 | 7.1 |
P55317 | Hepatocyte nuclear factor 3-alpha | FOXA1 | 3.2 | 22.4 | 72.8 |
Q9NZN5 | Rho guanine nucleotide exchange factor 12 | ARHGEF12 | 3.1 | 3.7 | 11.9 |
P05204 | Non-histone chromosomal protein HMG-17 | HMGN2 | 3.1 | 4.8 | 14.6 |
Q14197 | Peptidyl-tRNA hydrolase ICT1, mitochondrial | MRPL58 | 3.0 | 6.0 | 17.9 |
Q16777 | Histone H2A type 2-C | HIST2H2AC | 2.9 | 2.0 | 5.8 |
Q30134 | HLA class II histocompatibility antigen, DRB1-8 beta chain | HLA-DRB1 | 2.7 | 3.2 | 8.7 |
P33241 | Lymphocyte-specific protein 1 | LSP1 | 2.4 | 2.1 | 5.0 |
P05114 | Non-histone chromosomal protein HMG-14 | HMGN1 | 2.4 | 2.7 | 6.5 |
Q8WU39 | Marginal zone B- and B1-cell-specific protein | MZB1 | 2.2 | 2.1 | 4.5 |
Q6RW13 | Type-1 angiotensin II receptor-associated protein | AGTRAP | 2.1 | 4.0 | 8.5 |
P12107 | Collagen alpha-1(XI) chain | COL11A1 | 2.0 | 4.2 | 8.4 |
Q9H7N4 | Splicing factor, arginine/serine-rich 19 | SCAF1 | 2.0 | 3.7 | 7.3 |
Protein Accession | Protein Description | Gene Name | Relative Ratio | ||
---|---|---|---|---|---|
T3GX/ T3G3 | CRPC/ T3GX | CRPC/ T3G3 | |||
Q5SRN2 | Testis-expressed basic protein 1 | TSBP1 | 0.30 | 0.08 | 0.02 |
P02788 | Lactotransferrin | LTF | 0.31 | 0.49 | 0.15 |
P38571 | Lysosomal acid lipase/cholesteryl ester hydrolase | LIPA | 0.47 | 0.44 | 0.21 |
P33947 | ER lumen protein-retaining receptor 2 | KDELR2 | 0.47 | 0.35 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, A.-Y.; Choi, S.; Yang, E.; Liu, K.-H.; Kim, S.; Jung, H.J.; Choe, Y.; Ha, Y.-S.; Kwon, T.G.; Lee, J.N.; et al. Characterization of Novel Progression Factors in Castration-Resistant Prostate Cancer Based on Global Comparative Proteome Analysis. Cancers 2021, 13, 3432. https://doi.org/10.3390/cancers13143432
Na A-Y, Choi S, Yang E, Liu K-H, Kim S, Jung HJ, Choe Y, Ha Y-S, Kwon TG, Lee JN, et al. Characterization of Novel Progression Factors in Castration-Resistant Prostate Cancer Based on Global Comparative Proteome Analysis. Cancers. 2021; 13(14):3432. https://doi.org/10.3390/cancers13143432
Chicago/Turabian StyleNa, Ann-Yae, Soyoung Choi, Eunju Yang, Kwang-Hyeon Liu, Sunghwan Kim, Hyun Jin Jung, Youngshik Choe, Yun-Sok Ha, Tae Gyun Kwon, Jun Nyung Lee, and et al. 2021. "Characterization of Novel Progression Factors in Castration-Resistant Prostate Cancer Based on Global Comparative Proteome Analysis" Cancers 13, no. 14: 3432. https://doi.org/10.3390/cancers13143432
APA StyleNa, A. -Y., Choi, S., Yang, E., Liu, K. -H., Kim, S., Jung, H. J., Choe, Y., Ha, Y. -S., Kwon, T. G., Lee, J. N., & Lee, S. (2021). Characterization of Novel Progression Factors in Castration-Resistant Prostate Cancer Based on Global Comparative Proteome Analysis. Cancers, 13(14), 3432. https://doi.org/10.3390/cancers13143432