Tumor Growth Rate Decline despite Progressive Disease May Predict Improved Nivolumab Treatment Outcome in mRCC: When RECIST Is Not Enough
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Patient Population
- Eighteen years or older;
- Histological confirmation of RCC (both clear cell and non-clear cell);
- Stage IV disease;
- Available computer tomography (CT) scans for radiological evaluation (within 30 days from treatment onset, and 2–4 months before and after);
- Patients could have received previous lines of therapy with tyrosine kinase inhibitors, but could not have received a previous immune-checkpoint inhibitor.
2.2. Tumor Volume and Tumor Growth Rate Calculation
- Disease control (DC): Patients that did not present PD;
- Lower velocity PD (LvPD): Progressive disease but TGR2 was lower than TGR1;
- Higher velocity PD (HvPD): Progressive disease but TGR2 was higher than TGR1.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Janzen, N.K.; Kim, H.L.; Figlin, R.A.; Belldegrun, A.S. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol. Clin. N. Am. 2003, 30, 843–852. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Kidney Cancer, Version 1.2021—15 July 2020; Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1440 (accessed on 11 July 2021).
- Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 WHO classification of tumours of the urinary system and male genital organs—part A: Renal, penile, and testicular tumours. Eur. Urol. 2016, 70, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Massari, F.; Di Nunno, V.; Santoni, M.; Gatto, L.; Caserta, C.; Morelli, F.; Zafarana, E.; Carrozza, F.; Mosca, A.; Mollica, V.; et al. Toward a genome-based treatment landscape for renal cell carcinoma. Crit. Rev. Oncol. Hematol. 2019, 142, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Heng, D.Y.; Xie, W.; Regan, M.M.; Warren, M.A.; Golshayan, A.R.; Sahi, C.; Eigl, B.J.; Ruether, J.D.; Cheng, T.; North, S.; et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: Results from a large, multicenter study. J. Clin. Oncol. 2009, 27, 5794–5799. [Google Scholar] [CrossRef]
- Heng, D.Y.; Xie, W.; Regan, M.M.; Harshman, L.C.; Bjarnason, G.A.; Vaishampayan, U.N.; Mackenzie, M.; Wood, L.; Donskov, F.; Tan, M.H.; et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: A population-based study. Lancet Oncol. 2013, 14, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Choueiri, T.K.; Motzer, R.J. Systemic Therapy for Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2017, 376, 354–366. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. CheckMate 025 Investigators. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Plimack, E.R.; Procopio, G.; McDermott, D.F.; et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: Updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer 2020, 126, 4156–4167. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. CheckMate 214 Investigators. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Motzer, R.J.; Rini, B.I.; McDermott, D.F.; Arén Frontera, O.; Hammers, H.J.; Carducci, M.A.; Salman, P.; Escudier, B.; Beuselinck, B.; Amin, A.; et al. CheckMate 214 investigators. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: Extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019, 20, 1370–1385. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. KEYNOTE-426 Investigators. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. CheckMate 9ER Investigators. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [Green Version]
- Queirolo, P.; Spagnolo, F. Atypical responses in patients with advanced melanoma, lung cancer, renal-cell carcinoma and other solid tumors treated with anti-PD-1 drugs: A systematic review. Cancer Treat. Rev. 2017, 59, 71–78. [Google Scholar] [CrossRef]
- Chiou, V.L.; Burotto, M. Pseudoprogression and Immune-Related Response in Solid Tumors. J. Clin. Oncol. 2015, 33, 3541–3543. [Google Scholar] [CrossRef] [Green Version]
- Champiat, S.; Dercle, L.; Ammari, S.; Massard, C.; Hollebecque, A.; Postel-Vinay, S.; Chaput, N.; Eggermont, A.; Marabelle, A.; Soria, J.C.; et al. Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1. Clin. Cancer Res. 2017, 23, 1920–1928. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.; Park, I.; Yoon, S.K.; Lee, J.L. Hyperprogressive Disease in Patients With Urothelial Carcinoma or Renal Cell Carcinoma Treated With PD-1/PD-L1 Inhibitors. Clin. Genitourin. Cancer 2020, 18, e122–e133. [Google Scholar] [CrossRef]
- Soria, F.; Beleni, A.I.; D’Andrea, D.; Resch, I.; Gust, K.M.; Gontero, P.; Shariat, S.F. Pseudoprogression and hyperprogression during immune checkpoint inhibitor therapy for urothelial and kidney cancer. World J. Urol. 2018, 36, 1703–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Roca, C.; Koscielny, S.; Ribrag, V.; Dromain, C.; Marzouk, I.; Bidault, F.; Bahleda, R.; Ferté, C.; Massard, C.; Soria, J.C. Tumour growth rates and RECIST criteria in early drug development. Eur. J. Cancer 2011, 47, 2512–2516. [Google Scholar] [CrossRef]
- Ferté, C.; Fernandez, M.; Hollebecque, A.; Koscielny, S.; Levy, A.; Massard, C.; Balheda, R.; Bot, B.; Gomez-Roca, C.; Dromain, C.; et al. Tumor growth rate is an early indicator of antitumor drug activity in phase I clinical trials. Clin. Cancer Res. 2014, 20, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Le Tourneau, C.; Servois, V.; Diéras, V.; Ollivier, L.; Tresca, P.; Paoletti, X. Tumour growth kinetics assessment: Added value to RECIST in cancer patients treated with molecularly targeted agents. Br. J. Cancer 2012, 106, 854–857. [Google Scholar] [CrossRef]
- Ferté, C.; Koscielny, S.; Albiges, L.; Rocher, L.; Soria, J.C.; Iacovelli, R.; Loriot, Y.; Fizazi, K.; Escudier, B. Tumor growth rate provides useful information to evaluate sorafenib and everolimus treatment in metastatic renal cell carcinoma patients: An integrated analysis of the TARGET and RECORD phase 3 trial data. Eur. Urol. 2014, 65, 713–720. [Google Scholar] [CrossRef]
- Saâda-Bouzid, E.; Defaucheux, C.; Karabajakian, A.; Coloma, V.P.; Servois, V.; Paoletti, X.; Even, C.; Fayette, J.; Guigay, J.; Loirat, D.; et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 2017, 28, 1605–1611. [Google Scholar] [CrossRef] [PubMed]
- de Velasco, G.; Krajewski, K.M.; Albiges, L.; Awad, M.M.; Bellmunt, J.; Hodi, F.S.; Choueiri, T.K. Radiologic Heterogeneity in Responses to Anti-PD-1/PD-L1 Therapy in Metastatic Renal Cell Carcinoma. Cancer Immunol. Res. 2016, 4, 12–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhorn, D.; Jacobi, O.; Icht, O.; Dudnik, E.; Rotem, O.; Zer, A.; Goldstein, D.A. Treatment beyond progression with immune checkpoint inhibitors in non-small-cell lung cancer. Immunotherapy 2020, 12, 235–243. [Google Scholar] [CrossRef]
- Masi, G.; Salvatore, L.; Boni, L.; Loupakis, F.; Cremolini, C.; Fornaro, L.; Schirripa, M.; Cupini, S.; Barbara, C.; Safina, V.; et al. Continuation or reintroduction of bevacizumab beyond progression to first-line therapy in metastatic colorectal cancer: Final results of the randomized BEBYP trial. Ann. Oncol. 2015, 26, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Escudier, B.; Motzer, R.J.; Sharma, P.; Wagstaff, J.; Plimack, E.R.; Hammers, H.J.; Donskov, F.; Gurney, H.; Sosman, J.A.; Zalewski, P.G.; et al. Treatment Beyond Progression in Patients with Advanced Renal Cell Carcinoma Treated with Nivolumab in CheckMate 025. Eur. Urol. 2017, 72, 368–376. [Google Scholar] [CrossRef] [PubMed]
- George, S.; Motzer, R.J.; Hammers, H.J.; Redman, B.G.; Kuzel, T.M.; Tykodi, S.S.; Plimack, E.R.; Jiang, J.; Waxman, I.M.; Rini, B.I. Safety and Efficacy of Nivolumab in Patients with Metastatic Renal Cell Carcinoma Treated Beyond Progression: A Subgroup Analysis of a Randomized Clinical Trial. JAMA Oncol. 2016, 2, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.A. Use of modified RECIST criteria to improve response assessment in targeted therapies: Challenges and opportunities. Cancer Biol. Ther. 2010, 9, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Inman, B.A.; George, D.J. Is tumor response important for renal carcinoma? Eur. Urol. 2011, 5, 16–17. [Google Scholar] [CrossRef] [PubMed]
- Santoni, M.; Buti, S.; Conti, A.; Porta, C.; Procopio, G.; Sternberg, C.N.; Bracarda, S.; Basso, U.; De Giorgi, U.; Rizzo, M.; et al. Prognostic significance of host immune status in patients with late relapsing renal cell carcinoma treated with targeted therapy. Target Oncol. 2015, 10, 517–522. [Google Scholar] [CrossRef]
- Stein, W.D.; Wilkerson, J.; Kim, S.T.; Huang, X.; Motzer, R.J.; Fojo, A.T.; Bates, S.E. Analyzing the pivotal trial that compared sunitinib and IFN-α in renal cell carcinoma, using a method that assesses tumor regression and growth. Clin. Cancer Res. 2012, 18, 2374–2381. [Google Scholar] [CrossRef] [Green Version]
- Mazza, C.; Arfi-Rouche, J.; Koscielny, S.; Caramella, C.; Lahmar, J.; Escudier, B.J.; Albiges, L. Effect of nivolumab on tumor growth rate (TGR) in metastatic renal cell carcinoma (mRCC). J. Clin. Oncol. 2017, 35 (Suppl. S6), 481. [Google Scholar] [CrossRef]
- Berge, D.T.; Hurkmans, D.P.; den Besten, I.; Kloover, J.S.; Mathijssen, R.; Debets, R.; Smit, E.F.; Aerts, J. Tumour growth rate as a tool for response evaluation during PD-1 treatment for non-small cell lung cancer: A retrospective analysis. ERJ Open Res. 2019, 5, 00179. [Google Scholar]
HvPD (n = 10) | LvPD (n = 8) | DC (n = 9) | All Patients (n = 27) | p-Value | ||
---|---|---|---|---|---|---|
Age (mean) | 57.5 | 68 | 44 | 56 | 0.063 | |
Sex n (%) | Male | 7 (70%) | 5 (62.5%) | 6 (66.5%) | 18 (66%) | 0.945 |
Female | 3 (30%) | 3 (37.5%) | 3 (33.5%) | 9 (33%) | ||
Histology n (%) | Clear cell | 8 (80%) | 7 (87.5%) | 7 (78%) | 22 (81%) | 0.866 |
Non-clear cell | 2 (20%) | 1 (12.5%) | 2 (22%) | 5 (19%) | ||
Sarcomatoid component n (%) | Yes | 2 (20%) | 3 (37.5%) | 4 (44.4%) | 9 (33%) | 0.959 |
No | 2 (20%) | 3 (37.5%) | 3 (33.3%) | 8 (30%) | ||
NA | 6 (60%) | 2 (25%) | 2 (22.2%) | 10 (37%) | ||
IMDC risk groups n (%) | Good | 6 (60%) | 3 (37.5%) | 2 (22.5%) | 11 (41%) | 0.398 |
Intermediate | 4 (40%) | 4 (50%) | 5 (55%) | 13 (48%) | ||
Poor | 0 (0%) | 1 (12.5) | 2 (22.5%) | 3 (11%) | ||
ECOG PS n (%) | 0 | 6 (60%) | 4 (50%) | 6 (66.5%) | 16 (59%) | 0.782 |
1 | 4 (40%) | 4 (50%) | 3 (33.5%) | 11 (41%) | ||
Number of prior therapies n (%) | 1 | 2 (20%) | 5 (62.5%) | 6 (66.5%) | 0.05 | |
2 | 4 (40%) | 3 (37.5%) | 3 (33.5%) | |||
3 | 4 (40%) | 0 (0%) | 0 (0%) | |||
Number of subsequent lines n (%) | 0 | 6 (60%) | 4 (50%) | 5 (56%) | 0.380 | |
1 | 3 (30%) | 3 (37.5%) | 3 (33%) | |||
2 | 1 (10%) | 1 (12.5%) | 1 (11%) | |||
Bone metastases n (%) | Yes | 4 (40%) | 3 (37.5%) | 3 (33.5%) | 10 (37%) | 0.955 |
No | 6 (60%) | 5 (62.5%) | 6 (66.5%) | 17 (63%) | ||
Liver metastases n (%) | Yes | 2 (20%) | 3 (37.5%) | 3 (33.5%) | 8 (29.6%) | 0.690 |
No | 8 (80%) | 5 (62.5%) | 6 (66.5%) | 19 (70.4%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollica, V.; Brocchi, S.; Dall’Olio, F.G.; Marcolin, L.; Paccapelo, A.; Santoni, M.; Rizzo, A.; Montironi, R.; Golfieri, R.; Massari, F.; et al. Tumor Growth Rate Decline despite Progressive Disease May Predict Improved Nivolumab Treatment Outcome in mRCC: When RECIST Is Not Enough. Cancers 2021, 13, 3492. https://doi.org/10.3390/cancers13143492
Mollica V, Brocchi S, Dall’Olio FG, Marcolin L, Paccapelo A, Santoni M, Rizzo A, Montironi R, Golfieri R, Massari F, et al. Tumor Growth Rate Decline despite Progressive Disease May Predict Improved Nivolumab Treatment Outcome in mRCC: When RECIST Is Not Enough. Cancers. 2021; 13(14):3492. https://doi.org/10.3390/cancers13143492
Chicago/Turabian StyleMollica, Veronica, Stefano Brocchi, Filippo Gustavo Dall’Olio, Laura Marcolin, Alexandro Paccapelo, Matteo Santoni, Alessandro Rizzo, Rodolfo Montironi, Rita Golfieri, Francesco Massari, and et al. 2021. "Tumor Growth Rate Decline despite Progressive Disease May Predict Improved Nivolumab Treatment Outcome in mRCC: When RECIST Is Not Enough" Cancers 13, no. 14: 3492. https://doi.org/10.3390/cancers13143492
APA StyleMollica, V., Brocchi, S., Dall’Olio, F. G., Marcolin, L., Paccapelo, A., Santoni, M., Rizzo, A., Montironi, R., Golfieri, R., Massari, F., & Ardizzoni, A. (2021). Tumor Growth Rate Decline despite Progressive Disease May Predict Improved Nivolumab Treatment Outcome in mRCC: When RECIST Is Not Enough. Cancers, 13(14), 3492. https://doi.org/10.3390/cancers13143492