Immune Checkpoint Inhibition in Advanced Non-Clear Cell Renal Cell Carcinoma: Leveraging Success from Clear Cell Histology into New Opportunities
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immunotherapy Alone in nccRCC
2.1. Immunotherapy with Cytokine Therapy
2.2. Immune Checkpoint Blockade: Nivolumab
2.3. Combination Immune Checkpoint Blockade: Ipilimumab and Nivolumab
2.4. Immune Checkpoint Blockade: Pembrolizumab
2.5. Immune Checkpoint Blockade in Select Populations: Papillary Type
2.6. Immune Checkpoint Blockade in Select Populations: Chromophobe and Translocation Subtypes
3. Combination Therapies in nccRCC
3.1. Targeted Therapies
3.2. Combination Therapy: Improved Outcomes with ICI Plus Targeted Therapy
4. Future Potential Immunotherapeutic Avenues
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Mohammadian, M.; Pakzad, R.; Towhidi, F.; Makhsosi, B.R.; Ahmadi, A.; Salehiniya, H. Incidence and mortality of kidney cancer and its relationship with HDI (Human Development Index) in the world in 2012. Clujul. Med. 2017, 90, 286–293. [Google Scholar] [CrossRef] [Green Version]
- De Velasco, G.; McKay, R.R.; Lin, X.; Moreira, R.B.; Simantov, R.; Choueiri, T.K. Comprehensive Analysis of Survival Outcomes in Non-Clear Cell Renal Cell Carcinoma Patients Treated in Clinical Trials. Clin. Genitourin. Cancer 2017, 15, 652–660.e651. [Google Scholar] [CrossRef]
- Zoumpourlis, P.; Genovese, G.; Tannir, N.M.; Msaouel, P. Systemic Therapies for the Management of Non–Clear Cell Renal Cell Carcinoma: What Works, What Doesn’t, and What the Future Holds. Clin. Genitourin. Cancer 2021, 19, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Treatment of Metastatic Non-Clear Cell RCC. Available online: https://www.urotoday.com/library-resources/kidney-cancer-today/108718-treatment-of-metastatic-non-clear-cell-rcc.html (accessed on 1 May 2021).
- Motzer, R.J.; Bacik, J.; Mariani, T.; Russo, P.; Mazumdar, M.; Reuter, V. Treatment Outcome and Survival Associated with Metastatic Renal Cell Carcinoma of Non–Clear-Cell Histology. J. Clin. Oncol. 2002, 20, 2376–2381. [Google Scholar] [CrossRef] [PubMed]
- Negrier, S.; Perol, D.; Ravaud, A.; Chevreau, C.; Bay, J.O.; Delva, R.; Sevin, E.; Caty, A.; Escudier, B. Medroxyprogesterone, interferon alfa-2a, interleukin 2, or combination of both cytokines in patients with metastatic renal carcinoma of intermediate prognosis: Results of a randomized controlled trial. Cancer 2007, 110, 2468–2477. [Google Scholar] [CrossRef] [PubMed]
- Upton, M.P.; Parker, R.A.; Youmans, A.; McDermott, D.F.; Atkins, M.B. Histologic Predictors of Renal Cell Carcinoma Response to Interleukin-2-Based Therapy. J. Immunother. 2005, 28, 488–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choueiri, T.K.; Fay, A.P.; Gray, K.P.; Callea, M.; Ho, T.H.; Albiges, L.; Bellmunt, J.; Song, J.; Carvo, I.; Lampron, M.; et al. PD-L1 expression in nonclear-cell renal cell carcinoma. Ann. Oncol. 2014, 25, 2178–2184. [Google Scholar] [CrossRef]
- Schwartzman, W.; Elias, R.; Patel, V.M.; Bowman, A.I.; Chintalapati, S.; Kapur, P.; Hammers, H.J.; Brugarolas, J. Safety and efficacy of immune checkpoint inhibitors (ICI) in metastatic non-clear cell renal cell carcinoma (nccRCC): An institutional experience. J. Clin. Oncol. 2020, 38, 640. [Google Scholar] [CrossRef]
- McKay, R.R.; Bossé, D.; Xie, W.; Wankowicz, S.; Flaifel, A.; Brandao, R.; Lalani, A.-K.A.; Martini, D.; Wei, X.X.; Braun, D.A.; et al. The Clinical Activity of PD-1/PD-L1 Inhibitors in Metastatic Non–Clear Cell Renal Cell Carcinoma. Cancer Immunol. Res. 2018, 6, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Moreira, R.B.; McKay, R.R.; Xie, W.; Heng, D.Y.C.; de Velasco, G.; Castellano, D.E.; Fay, A.P.; Schutz, F.A.B.; Wells, C.; Hsu, J.; et al. Clinical activity of PD1/PDL1 inhibitors in metastatic non-clear cell renal cell carcinoma (nccRCC). Am. J. Clin. Oncol. 2017, 6, 758–765. [Google Scholar] [CrossRef]
- Koshkin, V.S.; Barata, P.C.; Zhang, T.; George, D.J.; Atkins, M.B.; Kelly, W.J.; Vogelzang, N.J.; Pal, S.K.; Hsu, J.; Appleman, L.J.; et al. Clinical activity of nivolumab in patients with non-clear cell renal cell carcinoma. J. Immunother. Cancer 2018, 6, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Chahoud, J.; Msaouel, P.; Campbell, M.T.; Bathala, T.K.; Xiao, L.; Gao, J.; Zurita, A.J.; Shah, A.Y.; Jonasch, E.; Sharma, P.; et al. Nivolumab for the Treatment of Patients with Metastatic Non-Clear Cell Renal Cell Carcinoma (nccRCC): A Single-Institutional Experience and Literature Meta-Analysis. Oncologist 2019, 25, 252–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelzang, N.J.; Olsen, M.R.; McFarlane, J.J.; Arrowsmith, E.; Bauer, T.M.; Jain, R.K.; Somer, B.; Lam, E.T.; Kochenderfer, M.D.; Molina, A.; et al. Safety and Efficacy of Nivolumab in Patients with Advanced Non–Clear Cell Renal Cell Carcinoma: Results From the Phase IIIb/IV CheckMate 374 Study. Clin. Genitourin. Cancer 2020, 18, 461–468.e3. [Google Scholar] [CrossRef] [PubMed]
- Tannir, N.M.; McDermott, D.F.; Escudier, B.; Hammers, H.J.; Aren, O.R.; Plimack, E.R.; Barthelemy, P.; Neiman, V.; George, S.; Porta, C.; et al. Overall survival and independent review of response in CheckMate 214 with 42-month follow-up: First-line nivolumab + ipilimumab (N+I) versus sunitinib (S) in patients (pts) with advanced renal cell carcinoma (aRCC). J. Clin. Oncol. 2020, 38, 609. [Google Scholar] [CrossRef]
- Gupta, R.; Ornstein, M.C.; Li, H.; Allman, K.D.; Wood, L.S.; Gilligan, T.; Garcia, J.A.; Merveldt, D.V.; Hammers, H.J.; Rini, B.I. Clinical Activity of Ipilimumab Plus Nivolumab in Patients with Metastatic Non-Clear Cell Renal Cell Carcinoma. Clin. Genitourin. Cancer 2020, 18, 429–435. [Google Scholar] [CrossRef]
- Atkins, M.B.; Jegede, O.; Haas, N.B.; McDermott, D.F.; Bilen, M.A.; Hawley, J.; Sosman, J.A.; Alter, R.S.; Plimack, E.R.; Ornstein, M.C.; et al. Phase II study of nivolumab and salvage nivolumab + ipilimumab in treatment-naïve patients (pts) with advanced non-clear cell renal cell carcinoma (nccRCC) (HCRN GU16-260-Cohort B). J. Clin. Oncol. 2021, 39, 4510. [Google Scholar] [CrossRef]
- McDermott, D.F.; Lee, J.L.; Ziobro, M.; Suarez, C.; Langiewicz, P.; Matveev, V.B.; Wiechno, P.; Gafanov, R.A.; Tomczak, P.; Pouliot, F.; et al. Open-Label, Single-Arm, Phase II Study of Pembrolizumab Monotherapy as First-Line Therapy in Patients with Advanced Non-Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2021, 39, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- De Vries-Brilland, M.; Gross-Goupil, M.; Seegers, V.; Boughalem, E.; Beuselinck, B.; Thibault, C.; Chevreau, C.; Ladoire, S.; Barthelemy, P.; Negrier, S.; et al. Are immune checkpoint inhibitors a valid option for papillary renal cell carcinoma? A multicentre retrospective study. Eur. J. Cancer 2020, 136, 76–83. [Google Scholar] [CrossRef]
- Barata, P.; Hatton, W.; Desai, A.; Koshkin, V.; Jaeger, E.; Manogue, C.; Cotogno, P.; Light, M.; Lewis, B.; Layton, J.; et al. Outcomes with First-Line PD-1/PD-L1 Inhibitor Monotherapy for Metastatic Renal Cell Carcinoma (mRCC): A Multi-Institutional Cohort. Front. Oncol. 2020, 10, 581189. [Google Scholar] [CrossRef]
- Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal cell carcinoma. Nat. Rev. Dis. Primers 2017, 3, 17009. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.; Pfanzelter, N.; Kuzel, T.M. The Efficacy of Lenvatinib and Everolimus in Chromophobe-type Non–Clear-Cell Renal Cell Carcinoma: A Case Report and Literature Review. Clin. Genitourin. Cancer 2017, 15, e903–e906. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, D.; Ioannidou, P.; Koukourikis, P.; Moysidis, K.; Meditskou, S.; Koutsoumparis, D.; Hatzimouratidis, K.; Hatzivassiliou, E. Systemic therapy for chromophobe renal cell carcinoma: A systematic review. Urol. Oncol. Semin. Orig. Investig. 2020, 38, 137–149. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Boilève, A.; Carlo, M.I.; Barthélémy, P.; Oudard, S.; Borchiellini, D.; Voss, M.H.; George, S.; Chevreau, C.; Landman-Parker, J.; Tabone, M.-D.; et al. Immune checkpoint inhibitors in MITF family translocation renal cell carcinomas and genetic correlates of exceptional responders. J. Immunother. Cancer 2018, 6, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakouny, Z.; Sadagopan, A.; Ravi, P.; Metaferia, N.Y.; Li, J.; AbuHammad, S.; Tang, S.; Denize, T.; Garner, E.R.; Gao, X.; et al. Integrative Clinical and Molecular Characterization of Translocation Renal Cell Carcinoma. bioRxiv 2021. [Google Scholar] [CrossRef]
- Motzer, R.J.; Jonasch, E.; Boyle, S.; Carlo, M.I.; Manley, B.; Agarwal, N.; Alva, A.; Beckermann, K.; Choueiri, T.K.; Costello, B.A.; et al. NCCN Guidelines Insights: Kidney Cancer, Version 1.2021. J. Natl. Compr. Cancer Netw. 2020, 18, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Kadowaki, N. Combination of Targeted Therapy and Immunotherapy for Cancer. Cancer Chemother. 2015, 42, 1046–1049. [Google Scholar]
- Shrimali, R.K.; Yu, Z.; Theoret, M.R.; Chinnasamy, D.; Restifo, N.P.; Rosenberg, S.A. Antiangiogenic Agents Can Increase Lymphocyte Infiltration into Tumor and Enhance the Effectiveness of Adoptive Immunotherapy of Cancer. Cancer Res. 2010, 70, 6171–6180. [Google Scholar] [CrossRef] [Green Version]
- Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12, 237–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGregor, B.A.; McKay, R.R.; Braun, D.A.; Werner, L.; Gray, K.; Flaifel, A.; Signoretti, S.; Hirsch, M.S.; Steinharter, J.A.; Bakouny, Z.; et al. Results of a Multicenter Phase II Study of Atezolizumab and Bevacizumab for Patients with Metastatic Renal Cell Carcinoma With Variant Histology and/or Sarcomatoid Features. J. Clin. Oncol. 2020, 38, 63–70. [Google Scholar] [CrossRef]
- Bergerot, P.; Lamb, P.; Wang, E.; Pal, S.K. Cabozantinib in Combination with Immunotherapy for Advanced Renal Cell Carcinoma and Urothelial Carcinoma: Rationale and Clinical Evidence. Mol. Cancer Ther. 2019, 18, 2185–2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGregor, B.A.; Suarez, N.A.C.; Tsao, C.-K. 709P Cabozantinib (C) in combination with atezolizumab (A) in non-clear cell renal cell carcinoma (nccRCC): Results from cohort 10 of the COSMIC-021 study. Ann. Oncol. 2020, 31, S558. [Google Scholar] [CrossRef]
- Lee, C.-H.; Voss, M.H.; Carlo, M.I.; Chen, Y.-B.; Reznik, E.; Knezevic, A.; Lefkowitz, R.A.; Shapnik, N.; Tassone, D.; Dadoun, C.; et al. Nivolumab plus cabozantinib in patients with non-clear cell renal cell carcinoma: Results of a phase 2 trial. J. Clin. Oncol. 2021, 39, 4509. [Google Scholar] [CrossRef]
- Linehan, W.M.; Spellman, P.T.; Ricketts, C.J.; Creighton, C.J.; Fei, S.S.; Davis, C.; Wheeler, D.A.; Murray, B.A.; Schmidt, L.; Cancer Genome Atlas Research Network; et al. Faculty Opinions recommendation of Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 374, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Powles, T.; Larkin, J.; Patel, P.; Pérez-Valderrama, B.; Rodriguez-Vida, A.; Glen, H.; Thistlethwaite, F.; Ralph, C.; Srinivasan, G.; Mendez-Vidal, M.J.; et al. A phase II study investigating the safety and efficacy of savolitinib and durvalumab in metastatic papillary renal cancer (CALYPSO). J. Clin. Oncol. 2019, 37, 545. [Google Scholar] [CrossRef]
- Barthélémy, P.; Rioux-Leclercq, N.; Thibault, C.; Saldana, C.; Borchiellini, D.; Chevreau, C.; Desmoulins, I.; Gobert, A.; Hilgers, W.; Khalil, A.; et al. Non-clear cell renal carcinomas: Review of new molecular insights and recent clinical data. Cancer Treat. Rev. 2021, 97, 102191. [Google Scholar] [CrossRef]
- Malouf, G.; Monzon, F.A.; Couturier, J.; Molinié, V.; Escudier, B.; Camparo, P.; Su, X.; Yao, H.; Tamboli, P.; Lopez-Terrada, D.; et al. Genomic Heterogeneity of Translocation Renal Cell Carcinoma. Clin. Cancer Res. 2013, 19, 4673–4684. [Google Scholar] [CrossRef] [Green Version]
- Choueiri, T.K.; Heng, D.Y.C.; Lee, J.L.; Cancel, M.; Verheijen, R.B.; Mellemgaard, A.; Ottesen, L.H.; Frigault, M.M.; L’Hernault, A.; Szijgyarto, Z.; et al. Efficacy of Savolitinib vs Sunitinib in Patients With MET-Driven Papillary Renal Cell Carcinoma: The SAVOIR Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1247–1255. [Google Scholar] [CrossRef]
- Hellstrand, K.; Brüne, M.; Dahlgren, C.; Hansson, M.; Hermodsson, S.; Lindner, P.; Mellqvist, U.-H.; Naredi, P. Alleviating oxidative stress in cancer immunotherapy: A role for histamine? Med. Oncol. 2000, 17, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Aboelella, N.; Brandle, C.; Kim, T.; Ding, Z.-C.; Zhou, G. Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy. Cancers 2021, 13, 986. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Xiong, Y.; Zhao, X.; Liu, Y.; Yu, L.Q. Effect of the Nrf2-ARE signaling pathway on biological characteristics and sensitivity to sunitinib in renal cell carcinoma. Oncol. Lett. 2019, 17, 5175–5186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clerici, S.; Boletta, A. Role of the KEAP1-NRF2 Axis in Renal Cell Carcinoma. Cancers 2020, 12, 3458. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.B.T.; Papadopoulos, K.P.; Plimack, E.R.; Merchan, J.R.; McDermott, D.F.; Michaelson, M.D.; Appleman, L.J.; Thamake, S.; Perini, R.F.; Zojwalla, N.J.; et al. Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: A phase 1 trial and biomarker analysis. Nat. Med. 2021, 27, 802–805. [Google Scholar] [CrossRef]
- Srinivasan, R.; Donskov, F.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.K.; Welsh, S.J.; et al. Phase 2 study of belzutifan (MK-6482), an oral hypoxia-inducible factor 2α (HIF-2α) inhibitor, for Von Hippel-Lindau (VHL) disease-associated clear cell renal cell carcinoma (ccRCC). J. Clin. Oncol. 2021, 39, 4555. [Google Scholar] [CrossRef]
- Vaishampayan, U. Evolving Treatment Paradigms in Non-clear Cell Kidney Cancer. Curr. Treat. Options Oncol. 2018, 19, 5. [Google Scholar] [CrossRef]
- McDermott, D.F.; Lee, J.-L.; Donskov, F.; Tykodi, S.S.; Bjarnason, G.A.; Larkin, J.M.G.; Gafanov, R.; Kochenderfer, M.D.; Malik, J.; Poprach, A.; et al. Association of gene expression with clinical outcomes in patients with renal cell carcinoma treated with pembrolizumab in KEYNOTE-427. J. Clin. Oncol. 2020, 38, 5024. [Google Scholar] [CrossRef]
- Braun, D.A.; Ishii, Y.; Walsh, A.; Van Allen, E.M.; Wu, C.J.; Shukla, S.A.; Choueiri, T.K. Clinical Validation of PBRM1 Alterations as a Marker of Immune Checkpoint Inhibitor Response in Renal Cell Carcinoma. JAMA Oncol. 2019, 5, 1631–1633. [Google Scholar] [CrossRef]
- Miron, B.; Xu, D.; Zibelman, M. Biomarker Development for Metastatic Renal Cell Carcinoma: Omics, Antigens, T-cells, and Beyond. J. Pers. Med. 2020, 10, 225. [Google Scholar] [CrossRef]
Trial | Therapy | Sample Size, by Subtype | Prior Systemic Therapy Allowed? | Outcomes |
---|---|---|---|---|
CheckMate-374 Phase III/IV | Nivolumab | Total n = 44 Papillary, n = 24 Chromophobe, n = 7 Unclassified, n = 8 Other, n = 5 | Yes | ORR 13.6% Papillary, 2 responses Chromophobe, 2 responses Collecting Duct, 1 response Unclassified, 1 response Median PFS 2.2 months Median OS 16.3 months |
KEYNOTE-427 Cohort B Phase II | Pembrolizumab | Total n = 165 Papillary, n = 118 Chromophobe, n = 21 Unclassified, n = 26 | No | ORR 26.7% Papillary—28.8% Chromophobe—9.5% Unclassified—30.8% |
NCT02724878 Phase II | Bevacizumab + Atezolizumab | Total n = 60 Clear cell w/sarcomatoid, n = 18 Papillary, n = 12 Chromophobe, n = 10 Unclassified, n = 9 TFE3 Translocation, n = 5 Collecting duct, n = 5 Medullary, n = 1 | Yes | ORR 33% Clear cell w/sarcomatoid—55% Papillary—25% Chromophobe—10% Unclassified—33% TFE3 Translocation—20% Collecting duct—40% Medullary—100% |
CALYPSO Phase I/II | Durvalumab + Savolitinib | Total n = 41 * Papillary, n = 40 * 1 patient did not receive treatment | Yes | ORR 27% Median PFS 4.9 months Median OS 12.3 months * non-treated patient excluded from analysis |
COSMIC-021 Phase Ib/II | Cabozantinib + Atezolizumab | Total n = 30 Papillary, n = 15 Chromophobe, n = 7 Other, n = 8 | Yes | ORR 33% Papillary—40% Chromophobe—14% Other—60% |
Trial | Disease Setting | Comparator Arm | Treatment | Study Phase | Estimated Completion |
---|---|---|---|---|---|
NCT02724878 | Advanced nccRCC | N/A | Atezolizumab + Bevacizumab | Phase II | October 2023 |
NCT04704219 (KEYNOTE-B61) | Untreated advanced nccRCC | N/A | Pembrolizumab + Lenvatinib | Phase II | October 2025 |
NCT04267120 (LENKYN Trial) | Untreated advanced nccRCC | N/A | Pembrolizumab + Lenvatinib | Phase II | July 2024 |
NCT04385654 | Neoadjuvant Therapy for advanced nccRCC | N/A | Toripalimab + Axitinib | Phase II | June 2022 |
NCT04118855 | Non-metastatic Locally Advanced nccRCC | N/A | Phase II | March 2026 | |
NCT03177239 (UNISoN) | Unresectable or metastatic nccRCC -Papillary -Chromophobe - Sarcomatoid -Xp11 Translocation | N/A | Nivolumab monotherapy, if no response, Ipi + Nivo | Phase II | December 2022 |
NCT04413123 | Unresectable or metastatic nccRCC -Papillary -Chromophobe -Unclassified -Translocation -Collecting Duct -Renal Medullary | N/A | Ipilimumab + Nivolumab + Cabozantinib | Phase II | December 2022 |
NCT03075423 (SUNIFORCAST) | Untreated advanced nccRCC | Sunitinib | Ipilimuab + Nivolumab | Phase II | December 2023 |
NCT04644432 (INDIGO) | Untreated locally advanced or metastatic nccRCC | N/A | Study includes Pembrolizumab and Nivolumab. (Patients stratified by molecular targets and biomarker profiles) | Phase II | September 2022 |
NCT03274258 | Treated or untreated locally advanced or metastatic nccRCC -Renal medullary | N/A | Ipilimuab + Nivolumab | Phase II | July 2022 |
NCT03866382 | Rare Genitourinary Tumors -Chromophobe -Collecting Duct -Renal Medullary -Papillary | N/A | Ipilimumab + Nivolumab + Cabozantinib | Phase II | February 2023 |
NCT02721732 | Rare unresectable or metastatic tumors -Renal Medullary | N/A | Pembrolizumab | Phase II | December 2021 |
NCT02496208 | Metastatic Genitourinary Tumors -Renal Medullary -Rare Kidney Cancer Histology | N/A | Nivolumab + Cabozantinib +/− Ipilimumab | Phase I | September 2021 |
NCT02626130 | Metastatic Kidney Cancer, including nccRCC | N/A | Tremelimumab +/− cryoablation | N/A | March 2022 |
NCT02819596 (CALYPSO) | Metastatic ccRCC, including Papillary RCC | N/A | Durvalumab +/− Savolitinib +/− Tremelimumab | Phase II | N/R |
NCT03117309 | Untreated advanced RCC of any histology | Nivolumab | Ipilimumab + Nivolumab | Phase II | September 2022 |
NCT03595124 | Metastatic Translocation/TFE3 | Nivolumab | Axitnib + Nivolumab | Phase II | June 2031 |
NCT04338269 | Advanced RCC -Clear cell -Papillary -Chromophobe -Unclassified | Cabozantinib | Cabozantinib + Atezolizumab | Phase III | December 2024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarrabi, K.; Walzer, E.; Zibelman, M. Immune Checkpoint Inhibition in Advanced Non-Clear Cell Renal Cell Carcinoma: Leveraging Success from Clear Cell Histology into New Opportunities. Cancers 2021, 13, 3652. https://doi.org/10.3390/cancers13153652
Zarrabi K, Walzer E, Zibelman M. Immune Checkpoint Inhibition in Advanced Non-Clear Cell Renal Cell Carcinoma: Leveraging Success from Clear Cell Histology into New Opportunities. Cancers. 2021; 13(15):3652. https://doi.org/10.3390/cancers13153652
Chicago/Turabian StyleZarrabi, Kevin, Emily Walzer, and Matthew Zibelman. 2021. "Immune Checkpoint Inhibition in Advanced Non-Clear Cell Renal Cell Carcinoma: Leveraging Success from Clear Cell Histology into New Opportunities" Cancers 13, no. 15: 3652. https://doi.org/10.3390/cancers13153652
APA StyleZarrabi, K., Walzer, E., & Zibelman, M. (2021). Immune Checkpoint Inhibition in Advanced Non-Clear Cell Renal Cell Carcinoma: Leveraging Success from Clear Cell Histology into New Opportunities. Cancers, 13(15), 3652. https://doi.org/10.3390/cancers13153652