Genetic Landscape of Male Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Epidemiology and Non-Genetic Risk Factors for MBC
3. MBC Disease Characteristics
4. Genomic and Epigenomic Landscape of MBC
5. Inherited Pathogenic Variants Contribution to MBC Development
5.1. BRCA2 and BRCA1
BRCA1 Pathogenic Variant | BRCA2 Pathogenic Variant | BRCA Wild-Type | |||||||
---|---|---|---|---|---|---|---|---|---|
Author, year (total participants) | Ottini 2012 (378) | Deb 2012 (60) | Gargiulo 2016 (47) | Ottini 2012 (378) | Deb 2012 (60) | Gargiulo 2016 (47) | Ottini 2012 (378) | Deb 2012 (60) | Gargiulo 2016 (47) |
Number of patients/Total evaluated (%) | 4/378 (1.1) | 3/60 (5) | 1/17 (5.9) | 46/378 (12.2) | 25/60 (41.6) | 5 (29.4) | 328/378 (86.7) | 32/60 (53.3) | 10/17 (58.8) |
Mean/Median age (years) | 62.0/NI | NI/65.6 | NI/40.0 | 58.9/NI | NI/61.0 | NI/72 | NI/NI | NI/63.2 | NI/61.0 |
FH of breast/ovarian cancer (%) | 3 (75) | 3 (100) | 1 (100) | 31 (67.4) | 25 (100) | 2 (40) | 105 (32) | 32 (100) | 5 (50) |
Personal history of other cancers (%) | 0 | 0 (0) | 1 (100) | 12 (26.1) 1 | 5 (8.3) 2 | 2 (40) | 44 (13.4) | 5 (8.3) | 2 (20) |
Contralateral BC (%) | 0 | 0 (0) | NI | 7 (15.2) | 1 (1.6) | NI | 9 (2.7) | 1 (1.6) | NI |
Histology (%) | (n = 4) | (n = 3) | (n = 1) | (n = 34) | (n = 25) | (n = 5) | (n = 254) | (n = 34) | (n = 10) |
Invasive ductal carcinoma | 4 (100) | 2 (66.6) | 1 (100) | 30 (88.3) | 24 (96) | 5 (100) | 220 (86.6) | 30 (88.2) | 10 (100) |
In situ ductal carcinoma | 0 (0) | 0 (0) | 0 (0) | 2 (5.9) | 0 (0) | 0 (0) | 20 (7.9) | 0 (0) | 0 (0) |
Invasive medullary carcinoma | 0 (0) | 0 (0) | 0 (0) | 1 (2.9) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Invasive lobular carcinoma | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 4 (1.6) | 2 (6.3) | 0 (0) |
Others | 0 (0) | 1 (33.3) | 0 (0) | 1 (2.9) | 1 (4) | 0 (0) | 10 (3.9) | 2 (6.3) | 0 (0) |
Molecular characteristics (%) | (n = 4) | (n = 3) | (n = 1) | (n = 19) | (n = 25) | (n = 5) | (n = 166) | (n = 30) | (n = 9) |
HR-positive | 3 (75) | 3 (100) | 1 (100) | 16 (84.2) | 23 (92.0) | 5 (100) | 159 (95.8) | 26 (86.7) | 9 (100) |
HER2-positive | 0 (0) | 0 (0) | 0 (0) | 3 (15.8) | 2 (8.0) | 1 (20) | 1 (0.6) | 3 (10.0) | 1 (11) |
Triple-negative | 1 (25) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 6 (3.6) | 1 (3.3) | 0 (0) |
Histological grade (%) | (n = 3) | (n = 3) | NI | (n = 31) | (n = 25) | NI | (n = 227) | (n = 32) | NI |
1 to 2 | 1 (33.3) | 0 (0) | 14 (45.2) | 13 (52) | 169 (74.4) | 20 (62.5) | |||
3 | 2 (66.7) | 3 (100) | 17 (54.8) | 12 (48) | 58 (25.6) | 12 (37.5) | |||
Staging (%) | (n = 3) | NI | (n = 1) | (n = 24) | NI | (n = 4) | (n = 187) | NI | (n = 10) |
I–II | 2 (66.7) | 1 (100) | 15 (62.5) | 2 (40) | 151 (80.7) | 9 (90) | |||
III–IV | 1 (33.3) | 0 (0) | 9 (37.5) | 2 (40) | 36 (19.3) | 1 (10) | |||
Node status, positive (%) | (n = 3) | (n = 3) | (n = 1) | (n = 30) | (n = 20) | (n = 5) | (n = 209) | (n = 23) | (n = 10) |
2 (66.7) | 2 (66.7) | 1 (100) | 17 (56.7) | 9 (45) | 2 (40) | 80 (38.3) | 9 (39.1) | 5 (50) |
5.2. PALB2
5.3. CHEK2
5.4. ATM
5.5. Pathogenic Variants in Other Moderate to High-Risk Genes
5.6. Low-Penetrance Variants and the Polygenic Risk
6. Multigene Panel Testing in MBC
Author, Year | Cohort | Panel Size | Detection Rate | Gene with PV (%) | Observations |
---|---|---|---|---|---|
Tedaldi et al. 2020 [97] | 70 patients selected from genetic counselling | 94 genes | 21.4% | BRCA2 (8.6), BRCA1 (4.3), PALB2 (1.4), CHEK2 (1.4), ATM (1.4), RAD51C (1.4), BAP1 (1.4), EGFR (1.4) | Two patients (2.9%) had a second contralateral MBC, and 16 (22.9%) had a second non-BC malignancy. Twenty-four patients (34.3%) had first- and/or second-degree relatives with BC/OC, and 17 patients (24.3%) had first- and/or second-degree relatives with other cancers. Three patients (4.3%) had a FH of MBC among first-degree relatives. |
Gaddam et al. 2020 [96] | 414 men who underwent MGPT for a variety of clinical indications. Eighteen patients had PH of BC. | Several commercial panels | 27.8% | BRCA2 (16.7), NBN (5.6), BARD1 (5.6) a | |
Scarpitta et al. 2019 [95] | 81 patients selected from genetic counselling | 24 genes involved in breast and ovarian cancer predisposition, maintenance of genome stability and DNA repair | 18.5% | BRCA2 (13.6), BRIP1 (2.5), MUTYH (1.2), PMS2 (1.2) | Twelve patients developed BC before 50, 10 had a diagnosis of another primitive cancer, and 1 had a bilateral BC. The most common additional cancer was prostate cancer, with a 40% (4/10) frequency rate. In this cohort, 37% (30/81) reported to have BC/OC history among first-degree relatives. |
Rizzolo et al. 2019 [120] | 523 patients, unselected for age at diagnosis and FH of cancer from 13 Italian Investigator Centers | 50 genes | 9.0% | BRCA2 (2.9), PALB2 (1.1), BRCA1 (1.0); ATM (0.6); APC (0.4), BARD1 (0.4), BLM (0.4), CHEK2 (0.4), FANCM (0.2), RAD51D (0.4), CASP8 (0.2), EPCAM (0.2), MUTYH (0.2), NF1 (0.2), RAD50 (0.2), RAD51C (0.2) | This study included 80 cases with no prior BRCA1/2 testing and 443 cases negative for BRCA1/2. Eighty-seven (16.7%) had first-degree FH of BC/OC and 230 (44.1%) of any cancer. PH of other cancers, mostly prostate, colorectal, and bladder cancer, was observed in 99 cases (18.9%). |
Fostira et al. 2018 [94] | 102 patients unselected for FH and age at diagnosis | 94 genes | 12.7% | BRCA2 (6.9), ATM (2.0), BRCA1 (1.0), CHEK2 (1.0), PMS2 (1.0), FANCL (1.0) | Fifteen percent (15/102) of the patients were diagnosed with a second primary cancer, of which colorectal and duodenal cancer represented one-third of them. Other cancer types involved are prostate, thyroid, pancreatic, bladder, laryngeal, and non-Hodgkin’s lymphoma. Two of these patients were diagnosed with a metachronous BC. |
Vogel Postula et al. 2018 [93] | 381 patients | 8 to 32 genes | 12.1% | BRCA2 (5.5); CHEK2 (4.5); PALB2 (1.0); BRCA1 (1.0); ATM (0.5) b | Three hundred and fifteen patients with no prior BRCA1/2 testing and 66 negatives for BRCA1/2. |
Pritzlaff et al. 2017 [92] | 708 patients (538 Caucasian or Ashkenazi Jewish) | 16 genes | 18.1% | BRCA2 (8.1), CHEK2 (3.8), ATM (1.0), BRCA1 (0.9), PALB2 (0.8), NF1 (0.6), BARD1 (0.4), BRIP1 (0.2), MRE11A (0.2), NBN (0.2), RAD51D (0.2) | The study included 551 cases with no prior BRCA1/2 testing and 197 cases negative for BRCA1/2. Four percent of MBC patients had a second primary BC, and additional non-breast primary cancers were reported for 23.4%. The most common additional cancer was prostate cancer (9.5%). A FH of MBC was reported for 6.4% of patients. |
Susswein et al. 2016 [91] | 10,030 individuals (men and women) referred for evaluation by an NGS hereditary cancer panel. Included 51 men with history of BC. | Several commercial panels (up to 29 genes) | 11.8% | CHEK2 (7.8), BRCA2 (2.0), PALB2 (2.0), BRCA1 (2.0) | |
Tung et al. 2015 [13] | 2158 individuals (men and women). Included 22 men with a PH of BC. | 25 genes | 31.8% | BRCA2 (13.6); CHEK2 (4.5); PALB2 (4.5); BRCA1 (4.5); ATM (4.5) c | The study included 1781 individuals who were referred for commercial BRCA1/2 testing and 377 individuals who previously tested negative for BRCA1/2 mutations through an academic high-risk program |
7. Effect of Family and Personal History on MBC Risk Estimates
8. MBC and Other Cancer Risks
9. Screening and Surveillance of High-Risk Men
Guideline (Year) | Recommendations |
---|---|
NCCN (2021) [157] |
|
ASCO (2019) [4] |
|
SEOM (2019) [169] |
|
ESMO (2016) [170] |
|
ICR (2015) [171] |
|
10. Implications for Systemic Treatment
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA A Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Miao, H.; Verkooijen, H.M.; Chia, K.-S.; Bouchardy, C.; Pukkala, E.; Larønningen, S.; Mellemkjaer, L.; Czene, K.; Hartman, M. Incidence and Outcome of Male Breast Cancer: An International Population-Based Study. J. Clin. Oncol. 2011, 29, 4381–4386. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.H.; Ha, K.S.; Jung, Y.H.; Won, H.S.; An, H.J.; Lee, G.J.; Kang, D.; Park, J.C.; Park, S.; Byun, J.H.; et al. Clinical Features of Male Breast Cancer: Experiences from Seven Institutions over 20 Years. Cancer Res. Treat. 2016, 48, 1389–1398. [Google Scholar] [CrossRef]
- Hassett, M.J.; Somerfield, M.R.; Baker, E.R.; Cardoso, F.; Kansal, K.J.; Kwait, D.C.; Plichta, J.K.; Ricker, C.; Roshal, A.; Ruddy, K.J.; et al. Management of Male Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2020, 38, 1849–1863. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Kearins, O.; Dodwell, D.; Horgan, K.; Hanby, A.M.; Speirs, V. Male Breast Carcinoma: Increased Awareness Needed. Breast Cancer Res. 2011, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Bishop, K.; Altekruse, S.F.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; et al. SEER Cancer Statistics Review 1975–2013. In SEER Cancer Statistics Review, 1975–2013; National Cancer Institute: Bethesda, MD, USA, 2016; pp. 1992–2013. Available online: http://seer.cancer.gov/csr/1975_2013/ (accessed on 22 August 2020).
- Speirs, V.; Shaaban, A.M. The Rising Incidence of Male Breast Cancer. Breast Cancer Res. Treat. 2009, 115, 429–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarmiento, S.; McColl, M.; Musavi, L.; Gani, F.; Canner, J.K.; Jacobs, L.; Fu, F.; Siotos, C.; Habibi, M. Male Breast Cancer: A Closer Look at Patient and Tumor Characteristics and Factors That Affect Survival Using the National Cancer Database. Breast Cancer Res. Treat. 2020, 180, 471–479. [Google Scholar] [CrossRef]
- Reddington, R.; Galer, M.; Hagedorn, A.; Liu, P.; Barrack, S.; Husain, E.; Sharma, R.; Speirs, V.; Masannat, Y. Incidence of Male Breast Cancer in Scotland over a Twenty-Five-Year Period (1992–2017). Eur. J. Surg. Oncol. 2020, 46, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Gucalp, A.; Traina, T.A.; Eisner, J.R.; Parker, J.S.; Selitsky, S.R.; Park, B.H.; Elias, A.D.; Baskin-Bey, E.S.; Cardoso, F. Male Breast Cancer: A Disease Distinct from Female Breast Cancer. Breast Cancer Res. Treat. 2019, 173, 37–48. [Google Scholar] [CrossRef]
- Duma, N.; Hoversten, K.P.; Ruddy, K.J. Exclusion of Male Patients in Breast Cancer Clinical Trials. JNCI Cancer Spectr. 2018, 2, pky018. [Google Scholar] [CrossRef]
- Korde, L.A.; Zujewski, J.A.; Kamin, L.; Giordano, S.H.; Domchek, S.; Anderson, W.F.; Bartlett, J.M.S.; Gelmon, K.; Nahleh, Z.; Bergh, J.; et al. Multidisciplinary Meeting on Male Breast Cancer: Summary and Research Recommendations. J. Clin. Oncol. 2010, 28, 2114–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tung, N.; Battelli, C.; Allen, B.; Kaldate, R.; Bhatnagar, S.; Bowles, K.; Timms, K.; Garber, J.E.; Herold, C.; Ellisen, L.; et al. Frequency of Mutations in Individuals with Breast Cancer Referred for BRCA 1 and BRCA 2 Testing Using next-Generation Sequencing with a 25-Gene Panel: Mutations in BRCA1/2-Tested Patients. Cancer 2015, 121, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Forbes, C.; Fayter, D.; de Kock, S.; Quek, R.G.W. A Systematic Review of International Guidelines and Recommendations for the Genetic Screening, Diagnosis, Genetic Counseling, and Treatment of BRCA-Mutated Breast Cancer. Cancer Manag. Res. 2019, 11, 2321–2337. [Google Scholar] [CrossRef] [Green Version]
- Liede, A.; Metcalfe, K.; Hanna, D.; Hoodfar, E.; Snyder, C.; Durham, C.; Lynch, H.T.; Narod, S.A. Evaluation of the Needs of Male Carriers of Mutations in BRCA1 or BRCA2 Who Have Undergone Genetic Counseling. Am. J. Hum. Genet. 2000, 67, 1494–1504. [Google Scholar] [CrossRef] [Green Version]
- McAllister, M.; Evans, G.; Ormiston, W.; Daly, P. Men in Breast Cancer Families: A Preliminary Qualitative Study of Awareness and Experience. J. Med. Genet. 1998, 35, 739–744. [Google Scholar] [CrossRef] [Green Version]
- Lobb, E.A.; Gaff, C.; Meiser, B.; Butow, P.N.; Osseiran-Moisson, R.; Hallowell, N. Attendance of Men at the Familial Cancer Clinic: What They Value from the Consultation. Genet. Med. 2009, 11, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Xu, L.; Shi, W.; Zeng, F.; Zhuo, R.; Hao, X.; Fan, P. Trends of Female and Male Breast Cancer Incidence at the Global, Regional, and National Levels, 1990–2017. Breast Cancer Res. Treat. 2020, 180, 481–490. [Google Scholar] [CrossRef]
- Ndom, P.; Um, G.; Bell, E.M.D.; Eloundou, A.; Hossain, N.M.; Huo, D. A Meta-Analysis of Male Breast Cancer in Africa. Breast 2012, 21, 237–241. [Google Scholar] [CrossRef]
- Ottini, L.; Palli, D.; Rizzo, S.; Federico, M.; Bazan, V.; Russo, A. Male Breast Cancer. Crit. Rev. Oncol. Hematol. 2010, 73, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.F.; Althuis, M.D.; Brinton, L.A.; Devesa, S.S. Is Male Breast Cancer Similar or Different than Female Breast Cancer? Breast Cancer Res. Treat. 2004, 83, 77–86. [Google Scholar] [CrossRef] [PubMed]
- D’Avanzo, B.; La Vecchia, C. Risk Factors for Male Breast Cancer. Br. J. Cancer 1995, 71, 1359–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laitman, Y.; Simeonov, M.; Herskovitz, L.; Kushnir, A.; Shimon-Paluch, S.; Kaufman, B.; Zidan, J.; Friedman, E. Recurrent Germline Mutations in BRCA1 and BRCA2 Genes in High Risk Families in Israel. Breast Cancer Res. Treat. 2012, 133, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Sverdlov, R.S.; Barshack, I.; Bar Sade, R.B.; Baruch, R.G.; Hirsh-Yehezkel, G.; Dagan, E.; Feinmesser, M.; Figer, A.; Friedman, E. Genetic Analyses of Male Breast Cancer in Israel. Genet. Test. 2000, 4, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Neben, C.L.; Zimmer, A.D.; Stedden, W.; Akker, J.V.D.; O’Connor, R.; Chan, R.C.; Chen, E.; Tan, Z.; Leon, A.; Ji, J.; et al. Multi-Gene Panel Testing of 23,179 Individuals for Hereditary Cancer Risk Identifies Pathogenic Variant Carriers Missed by Current Genetic Testing Guidelines. J. Mol. Diagn. 2019, 21, 646–657. [Google Scholar] [CrossRef] [Green Version]
- Ishii, T.; Nakano, E.; Watanabe, T.; Higashi, T. Epidemiology and Practice Patterns for Male Breast Cancer Compared with Female Breast Cancer in Japan. Cancer Med. 2020, 9, 6069–6075. [Google Scholar] [CrossRef]
- Yu, E.; Stitt, L.; Vujovic, O.; Joseph, K.; Assouline, A.; Younus, J.; Perera, F.; Tai, P. Male Breast Cancer Prognostic Factors Versus Female Counterparts with Propensity Scores and Matched-Pair Analysis. Cureus 2015, 7, e355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, W.F.; Jatoi, I.; Tse, J.; Rosenberg, P. Male Breast Cancer: A Population-Based Comparison with Female Breast Cancer. J. Clin. Oncol. 2010, 28, 232–239. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. SEER Cancer Statistics Review, 1975–2017, National Cancer Institute. In SEER Cancer Statistics Review, 1975–2017; National Cancer Institute: Bethesda, MD, USA, 2020. Available online: https://seer.cancer.gov/csr/1975_2017/ (accessed on 10 November 2020).
- O’Malley, C.; Shema, S.; White, E.; Glaser, S. Incidence of Male Breast Cancer in California, 1988–2000: Racial/Ethnic Variation in 1759 Men. Breast Cancer Res. Treat. 2005, 93, 145–150. [Google Scholar] [CrossRef]
- Sineshaw, H.M.; Freedman, R.A.; Ward, E.M.; Flanders, W.D.; Jemal, A. Black/White Disparities in Receipt of Treatment and Survival among Men with Early-Stage Breast Cancer. J. Clin. Oncol. 2015, 33, 2337–2344. [Google Scholar] [CrossRef]
- Brinton, L.A.; Key, T.J.; Kolonel, L.N.; Michels, K.B.; Sesso, H.D.; Ursin, G.; Eeden, S.K.V.D.; Wood, S.N.; Falk, R.T.; Parisi, D.; et al. Prediagnostic Sex Steroid Hormones in Relation to Male Breast Cancer Risk. J. Clin. Oncol. 2015, 33, 2041–2050. [Google Scholar] [CrossRef] [Green Version]
- Groth, K.A.; Skakkebæk, A.; Høst, C.; Gravholt, C.; Bojesen, A. Klinefelter Syndrome—A Clinical Update. J. Clin. Endocrinol. Metab. 2013, 98, 20–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swerdlow, A.J.; Schoemaker, M.J.; Higgins, C.D.; Wright, A.F.; Jacobs, P.A. Cancer Incidence and Mortality in Men with Klinefelter Syndrome: A Cohort Study. J. Natl. Cancer Inst. 2005, 97, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Rojas, A.P.; Vo, D.V.; Mwangi, L.; Rehman, S.; Peiris, A.N. Oncologic Manifestations of Klinefelter Syndrome. Hormones 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brinton, L.A. Breast Cancer Risk Among Klinefelter Syndrome Patients. Acta Peadiatr. 2011, 100, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.; Kirschner, M.A.; Berkowitz, R.; Ertel, N.H. Increased Estrogen Production in Obese Men. J. Clin. Endocrinol. Metab. 1979, 48, 633–638. [Google Scholar] [CrossRef]
- McClure, J.A.; Higgins, C.C. Bilateral Carcinoma of Male Breast after Estrogen Therapy. J. Am. Med Assoc. 1951, 146, 7–9. [Google Scholar] [CrossRef]
- Symmers, W.S. Carcinoma of Breast in Trans-Sexual Individuals after Surgical and Hormonal Interference with the Primary and Secondary Sex Characteristics. Br. Med. J. 1968, 2, 83–85. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.C.; Pan, S.; Mao, Y. Risk Factors for Male Breast Cancer in Canada, 1994-1998. Eur. J. Cancer Prev. 2002, 11, 253–263. [Google Scholar] [CrossRef]
- Furer, A.; Afek, A.; Sommer, A.; Keinan-Boker, L.; Derazne, E.; Levi, Z.; Tzur, D.; Tiosano, S.; Shina, A.; Glick, Y.; et al. Adolescent Obesity and Midlife Cancer Risk: A Population-Based Cohort Study of 2·3 Million Adolescents in Israel. Lancet Diabetes Endocrinol. 2020, 8, 216–225. [Google Scholar] [CrossRef]
- Mędraś, M.; Alicja, F.; Pawel, J.; Jacek, W.; Teresa, S.W. Breast Cancer and Long-Term Hormonal Treatment of Male Hypogonadism. Breast Cancer Res. Treat. 2006, 96, 263–265. [Google Scholar] [CrossRef]
- Barghouthi, N.; Turner, J.; Perini, J. Breast Cancer Development in a Transgender Male Receiving Testosterone Therapy. Case Rep. Endocrinol. 2018, 2018, 3652602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, S.H. Breast Cancer in Men. N. Engl. J. Med. 2018, 378, 2311–2320. [Google Scholar] [CrossRef]
- Laouali, N.; Pilorget, C.; Cyr, D.; Neri, M.; Kaerlev, L.; Sabroe, S.; Gorini, G.; Richiardi, L.; Morales-Suárez-Varela, M.; Llopis-González, A.; et al. Occupational Exposure to Organic Solvents and Risk of Male Breast Cancer: A European Multicenter Case-Control Study. Scand. J. Work. Environ. Health 2018, 44, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Midding, E.; Halbach, S.M.; Kowalski, C.; Weber, R.; Würstlein, R.; Ernstmann, N. Men with a “Woman’s Disease”: Stigmatization of Male Breast Cancer Patients—A Mixed Methods Analysis. Am. J. Mens Health 2018, 12, 2194–2207. [Google Scholar] [CrossRef] [Green Version]
- Co, M.; Lee, A.; Kwong, A. Delayed Presentation, Diagnosis, and Psychosocial Aspects of Male Breast Cancer. Cancer Med. 2020, 9, 3305–3309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halbach, S.M.; Midding, E.; Ernstmann, N.; Würstlein, R.; Weber, R.; Christmann, S.; Kowalski, C. Male Breast Cancer Patients’ Perspectives on Their Health Care Situation: A Mixed-Methods Study. Breast Care 2020, 15, 22–29. [Google Scholar] [CrossRef]
- Auvinen, A.; Curtis, R.E.; Ron, E. Risk of Subsequent Cancer Following Breast Cancer in Men. J. Natl. Cancer Inst. 2002, 94, 1330–1332. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, F.; Bartlett, J.; Slaets, L.; van Deurzen, C.; van Leeuwen-Stok, E.; Porter, P.; Linderholm, B.; Hedenfalk, I.; Schröder, C.; Martens, J.; et al. Characterization of Male Breast Cancer: Results of the EORTC 10085/TBCRC/BIG/NABCG International Male Breast Cancer Program. Ann. Oncol. 2018, 29, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Humphries, M.P.; Rajan, S.S.; Honarpisheh, H.; Cserni, G.; Dent, J.; Fulford, L.; Jordan, L.B.; Jones, J.L.; Kanthan, R.; Litwiniuk, M.; et al. Characterisation of Male Breast Cancer: A Descriptive Biomarker Study from a Large Patient Series. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Massarweh, S.A.; Sledge, G.W.; Miller, D.; McCullough, D.; Petkov, V.I.; Shak, S. Molecular Characterization and Mortality From Breast Cancer in Men. J. Clin. Oncol. 2018, 36, 1396–1404. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Weng, Y.M.; Hu, M.X.; Peng, M.; bin Song, Q. Effects of HER2 Status on the Prognosis of Male Breast Cancer: A Population-Based Study. Onco Targets Ther. 2019, 12, 7251–7260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Karam, D.; bin Riaz, I.; Xie, H.; Durani, U.; Duma, N.; Giridhar, K.V.; Hieken, T.J.; Boughey, J.C.; Mutter, R.W.; et al. Male Breast Cancer in the United States: Treatment Patterns and Prognostic Factors in the 21st Century. Cancer 2020, 126, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leone, J.P.; Leone, J.; Zwenger, A.O.; Iturbe, J.; Vallejo, C.T.; Leone, B.A. Prognostic Significance of Tumor Subtypes in Male Breast Cancer: A Population-Based Study. Breast Cancer Res. Treat. 2015, 152, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Johnson, K.J.; Ma, C.X. Male Breast Cancer: An Updated Surveillance, Epidemiology, and End Results Data Analysis. Clin. Breast Cancer 2018, 18, e997–e1002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, K.; Yang, Y.; Tan, L.; Chen, L.; Zhu, L.; Su, F.; Liu, X.; Li, S. Incidence and Survival Outcomes of Early Male Breast Cancer: A Population-Based Comparison with Early Female Breast Cancer. Ann. Trans. Med. 2019, 7, 536. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Network. Comprehensive Molecular Portraits of Human Breast Tumors. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Piscuoglio, S.; Ng, C.K.Y.; Murray, M.P.; Guerini-Rocco, E.; Martelotto, L.G.; Geyer, F.C.; Bidard, F.-C.; Berman, S.; Fusco, N.; Sakr, R.A.; et al. The Genomic Landscape of Male Breast Cancers. Clin. Cancer Res. 2016, 22, 4045–4056. [Google Scholar] [CrossRef] [Green Version]
- Moelans, C.B.; de Ligt, J.; van der Groep, P.; Prins, P.; Besselink, N.J.M.; Hoogstraat, M.; Hoeve, N.D.T.; Lacle, M.M.; Kornegoor, R.; van der Pol, C.C.; et al. The Molecular Genetic Make-up of Male Breast Cancer. Endocr. Relat. Cancer 2019, 26, 779–794. [Google Scholar] [CrossRef]
- Benvenuti, S.; Frattini, M.; Arena, S.; Zanon, C.; Cappelletti, V.; Coradini, D.; Daidone, M.G.; Pilotti, S.; Pierotti, M.A.; Bardelli, A. PIK3CACancer Mutations Display Gender and Tissue Specificity Patterns. Hum. Mutat. 2008, 29, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Do, H.; Byrne, D.; Jene, N.; Dobrovic, A.; Fox, S.B. PIK3CA Mutations Are Frequently Observed in BRCAX but Not BRCA2 -Associated Male Breast Cancer. Breast Cancer Res. 2013, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Johansson, I.; Nilsson, C.; Berglund, P.; Lauss, M.; Ringnér, M.; Olsson, H.; Luts, L.; Sim, E.; Thorstensson, S.; Fjällskog, M.-L.; et al. Gene Expression Profiling of Primary Male Breast Cancers Reveals Two Unique Subgroups and Identifies N-Acetyltransferase-1 (NAT1) as a Novel Prognostic Biomarker. Breast Cancer Res. 2012, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Johansson, I.; Ringner, M.; Hedenfalk, I. The Landscape of Candidate Driver Genes Differs between Male and Female Breast Cancer. PLoS ONE 2013, 8, e78299. [Google Scholar] [CrossRef] [Green Version]
- Callari, M.; Cappelletti, V.; de Cecco, L.; Musella, V.; Miodini, P.; Veneroni, S.; Gariboldi, M.; Pierotti, M.A.; Daidone, M.G. Gene Expression Analysis Reveals a Different Transcriptomic Landscape in Female and Male Breast Cancer. Breast Cancer Res. Treat. 2011, 127, 601–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tommasi, S.; Mangia, A.; Iannelli, G.; Chiarappa, P.; Rossi, E.; Ottini, L.; Mottolese, M.; Zoli, W.; Zuffardi, O.; Paradiso, A. Gene Copy Number Variation in Male Breast Cancer by ACGH. Anal. Cell Pathol. 2010, 33, 113–119. [Google Scholar] [CrossRef]
- Tirkkonen, M.; Kainu, T.; Loman, N.; Kallioniemi, O. Somatic Genetic Alterations in BRCA2-Associated and Sporadic Male Breast Cancer. Genes Chromosomes Cancer 1999, 24, 56–61. [Google Scholar] [CrossRef]
- Rudlowski, C.; Schulten, H.-J.; Golas, M.M.; Sander, B.; Barwing, R.; Palandt, J.-E.; Schlehe, B.; Lindenfelser, R.; Moll, R.; Liersch, T.; et al. Comparative Genomic Hybridization Analysis on Male Breast Cancer. Int. J. Cancer 2006, 118, 2455–2460. [Google Scholar] [CrossRef] [PubMed]
- Johansson, I.; Nilsson, C.; Berglund, P.; Strand, C.; Jönsson, G.; Staaf, J.; Ringnér, M.; Nevanlinna, H.; Barkardottir, R.B.; Borg, A.; et al. High-Resolution Genomic Profiling of Male Breast Cancer Reveals Differences Hidden behind the Similarities with Female Breast Cancer. Breast Cancer Res. Treat. 2011, 129, 747–760. [Google Scholar] [CrossRef]
- Kornegoor, R.; Moelans, C.; Verschuur-Maes, A.H.J.; Hogenes, M.C.H.; De Bruin, P.C.; Oudejans, J.J.; Marchionni, L.; Van Diest, P.J. Oncogene Amplification in Male Breast Cancer: Analysis by Multiplex Ligation-Dependent Probe Amplification. Breast Cancer Res. Treat. 2012, 135, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Bärlund, M.; Kuukasjärvi, T.; Syrjäkoski, K.; Auvinen, A.; Kallioniemi, A. Frequent Amplification and Overexpression of CCND1 in Male Breast Cancer. Int. J. Cancer 2004, 111, 968–971. [Google Scholar] [CrossRef]
- Kornegoor, R.; Moelans, C.B.; Verschuur-Maes, A.H.J.; Hogenes, M.C.H.; de Bruin, P.C.; Oudejans, J.J.; van Diest, P.J. Promoter Hypermethylation in Male Breast Cancer: Analysis by Multiplex Ligation-Dependent Probe Amplification. Breast Cancer Res. 2012, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pinto, R.; Pilato, B.; Ottini, L.; Lambo, R.; Simone, G.; Paradiso, A.; Tommasi, S. Different Methylation and MicroRNA Expression Pattern in Male and Female Familial Breast Cancer. J. Cell Physiol. 2013, 228, 1264–1269. [Google Scholar] [CrossRef]
- Lehmann, U.; Streichert, T.; Otto, B.; Albat, C.; Hasemeier, B.; Christgen, H.; Schipper, E.; Hille, U.; Kreipe, H.H.; Länger, F. Identification of Differentially Expressed MicroRNAs in Human Male Breast Cancer. BMC Cancer 2010, 10, 109. [Google Scholar] [CrossRef] [Green Version]
- Fassan, M.; Baffa, R.; Palazzo, J.P.; Lloyd, J.; Crosariol, M.; Liu, C.-G.; Volinia, S.; Alder, H.; Rugge, M.; Croce, C.M.; et al. MicroRNA Expression Profiling of Male Breast Cancer. Breast Cancer Res. 2009, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- André, S.; Nunes, S.P.; Silva, F.; Henrique, R.; Félix, A.; Jerónimo, C. Analysis of Epigenetic Alterations in Homologous Recombination DNA Repair Genes in Male Breast Cancer. Int. J. Mol. Sci. 2020, 21, 2715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stratton, M.R.; Ford, D.; Neuhasen, S.; Seal, S.; Wooster, R.; Friedman, L.S.; King, M.-C.; Egilsson, V.; Devilee, P.; McManus, R.; et al. Familial Male Breast Cancer Is Not Linked to the BRCA1 Locus on Chromosome 17q. Nat. Genet. 1994, 7, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Thorlacius, S.; Ogmundsdottir, H.; Eyfjörd, J.; Tryggvadottir, L.; Olafsdottir, G.; Tulinius, H.; Jonasson, J. Linkage to BRCA2 Region in Hereditary Male Breast Cancer. Lancet 1995, 346, 544–545. [Google Scholar] [CrossRef]
- Rizzolo, P.; Silvestri, V.; Tommasi, S.; Pinto, R.; Danza, K.; Falchetti, M.; Gulino, M.; Frati, P.; Ottini, L. Male Breast Cancer: Genetics, Epigenetics, and Ethical Aspects. Ann. Oncol. 2013, 24, viii75–viii82. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.R.; Taylor, M.R.G.; Boulton, S.J. Playing the End Game: DNA Double-Strand Break Repair Pathway Choice. Mol. Cell 2012, 47, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Moran, A.; O’Hara, C.; Khan, S.; Shack, L.; Woodward, E.; Maher, E.R.; Lalloo, F.; Evans, D.G.R. Risk of Cancer Other than Breast or Ovarian in Individuals with BRCA1 and BRCA2 Mutations. Fam. Cancer 2012, 11, 235–242. [Google Scholar] [CrossRef]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.-A.; Mooij, T.M.; Roos-Blom, M.-J.; Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, N.; Ryder, S.; Forbes, C.; Ross, J.; Quek, R.G. A Systematic Review of the International Prevalence of BRCA Mutation in Breast Cancer. Clin. Epidemiol. 2019, 11, 543–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, M.; Yadav, S.; Ogunleye, F.; Zakalik, D. Male BRCA Mutation Carriers: Clinical Characteristics and Cancer Spectrum. BMC Cancer 2018, 18, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easton, D.F.; Thompson, D.; McGuffog, L. Breast Cancer Linkage Consortium Cancer Risks in BRCA2 Mutation Carriers. J. Natl. Cancer Inst. 1999, 91, 1310–1316. [Google Scholar] [CrossRef]
- Tai, Y.C.; Domchek, S.; Parmigiani, G.; Chen, S. Breast Cancer Risk among Male BRCA1 and BRCA2 Mutation Carriers. J. Natl. Cancer Inst. 2007, 99, 1811–1814. [Google Scholar] [CrossRef]
- Evans, D.G.R.; Susnerwala, I.; Dawson, J.; Woodward, E.; Maher, E.R.; Lalloo, F. Risk of Breast Cancer in Male BRCA2 Carriers. J. Med. Genet. 2010, 47, 710–711. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, N.; Warner, E.; Seminsky, M.F.; Futreal, A.; Narod, S.A. Prevalence of BRCA1 and BRCA2 Mutations in Male Breast Cancer Patients in Canada. Clin. Breast Cancer 2000, 1, 57–63. [Google Scholar] [CrossRef]
- Basham, V.M.; Lipscombe, J.M.; Ward, J.M.; Gayther, S.A.; Ponder, B.A.J.; Easton, D.F.; Pharoah, P.D.P. BRCA1 and BRCA2 Mutations in a Population-Based Study of Male Breast Cancer. Breast Cancer Res. 2002, 4, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousef, A.J.A. Male Breast Cancer: Epidemiology and Risk Factors. Semin. Oncol. 2017, 44, 267–272. [Google Scholar] [CrossRef]
- Susswein, L.R.; Marshall, M.L.; Nusbaum, R.; Postula, K.J.V.; Weissman, S.M.; Yackowski, L.; Vaccari, E.M.; Bissonnette, J.; Booker, J.K.; Cremona, M.L.; et al. Pathogenic and Likely Pathogenic Variant Prevalence among the First 10,000 Patients Referred for next-Generation Cancer Panel Testing. Genet. Med. 2016, 18, 823–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritzlaff, M.; Summerour, P.; McFarland, R.; Li, S.; Reineke, P.; Dolinsky, J.S.; Goldgar, D.E.; Shimelis, H.; Couch, F.J.; Chao, E.C.; et al. Male Breast Cancer in a Multi-Gene Panel Testing Cohort: Insights and Unexpected Results. Breast Cancer Res. Treat. 2017, 161, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Postula, K.J.V.; Andolina, L.M.; Theobald, K.; McGill, A.K.; Sutcliffe, E.; Arvai, K.J.; Murphy, P.D.; Klein, R.T.; Hruska, K.S. Abstract PD7-11: The Role of Multi-Gene Hereditary Cancer Panels in Male Patients with Breast Cancer. Cancer Res. 2018, 78 (Suppl. S4), PD7-11. [Google Scholar] [CrossRef]
- Fostira, F.; Saloustros, E.; Apostolou, P.; Vagena, A.; Kalfakakou, D.; Mauri, D.; Tryfonopoulos, D.; Georgoulias, V.; Yannoukakos, D.; Fountzilas, G.; et al. Germline Deleterious Mutations in Genes Other than BRCA2 Are Infrequent in Male Breast Cancer. Breast Cancer Res. Treat. 2018, 169, 105–113. [Google Scholar] [CrossRef]
- Scarpitta, R.; Zanna, I.; Aretini, P.; Gambino, G.; Scatena, C.; Mei, B.; Ghilli, M.; Rossetti, E.; Roncella, M.; Congregati, C.; et al. Germline Investigation in Male Breast Cancer of DNA Repair Genes by Next-Generation Sequencing. Breast Cancer Res. Treat. 2019, 178, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Gaddam, S.; Heller, S.L.; Babb, J.S.; Gao, Y. Male Breast Cancer Risk Assessment and Screening Recommendations in High-Risk Men Who Undergo Genetic Counseling and Multigene Panel Testing. Clin. Breast Cancer 2020, 1–6. [Google Scholar] [CrossRef]
- Tedaldi, G.; Tebaldi, M.; Zampiga, V.; Cangini, I.; Pirini, F.; Ferracci, E.; Danesi, R.; Arcangeli, V.; Ravegnani, M.; Martinelli, G.; et al. Male Breast Cancer: Results of the Application of Multigene Panel Testing to an Italian Cohort of Patients. Diagnostics 2020, 10, 269. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, V.; kConFab Investigators; Barrowdale, D.; Mulligan, A.M.; Neuhausen, S.L.; Fox, S.; Karlan, B.Y.; Mitchell, G.; James, P.; Thull, D.L.; et al. Male Breast Cancer in BRCA1 and BRCA2 Mutation Carriers: Pathology Data from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Res. 2016, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ottini, L.; Silvestri, V.; Rizzolo, P.; Falchetti, M.; Zanna, I.; Saieva, C.; Masala, G.; Bianchi, S.; Manoukian, S.; Barile, M.; et al. Clinical and Pathologic Characteristics of BRCA-Positive and BRCA-Negative Male Breast Cancer Patients: Results from a Collaborative Multicenter Study in Italy. Breast Cancer Res. Treat. 2012, 134, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Jene, N.; kConFab Investigators; Fox, S.B. Genotypic and Phenotypic Analysis of Familial Male Breast Cancer Shows under Representation of the HER2 and Basal Subtypes in BRCA-Associated Carcinomas. BMC Cancer 2012, 12. [Google Scholar] [CrossRef] [Green Version]
- Gargiulo, P.; Pensabene, M.; Milano, M.; Arpino, G.; Giuliano, M.; Forestieri, V.; Condello, C.; Lauria, R.; De Placido, S. Long-Term Survival and BRCA Status in Male Breast Cancer: A Retrospective Single-Center Analysis. BMC Cancer 2016, 16, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavaddat, N.; Barrowdale, D.; Andrulis, I.L.; Domchek, S.M.; Eccles, D.; Nevanlinna, H.; Ramus, S.J.; Spurdle, A.; Robson, M.; Sherman, M.; et al. Pathology of Breast and Ovarian Cancers among BRCA1 and BRCA2 Mutation Carriers: Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol. Biomark. Prev. 2012, 21, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.C.; Steele, L.; Kuan, C.J.; Greilac, S.; Neuhausen, S.L. Mutations in BRCA2 and PALB2 in Male Breast Cancer Cases from the United States. Breast Cancer Res. Treat. 2011, 126, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhou, J.; Zhang, K.; Chen, H.; Luo, M.; Lu, Y.; Sun, Y.; Chen, Y. Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front. Oncol. 2020, 28, 301. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, V.; Rizzolo, P.; Zanna, I.; Falchetti, M.; Masala, G.; Bianchi, S.; Papi, L.; Giannini, G.; Palli, D.; Ottini, L. PALB2 Mutations in Male Breast Cancer: A Population-Based Study in Central Italy. Breast Cancer Res. Treat. 2010, 122, 299–301. [Google Scholar] [CrossRef]
- Silvestri, V.; Zelli, V.; Msc, V.V.; Rizzolo, P.; Navazio, A.S.; Coppa, A.; Agata, S.; Oliani, C.; Barana, D.; Castrignanò, T.; et al. Whole-Exome Sequencing and Targeted Gene Sequencing Provide Insights into the Role of PALB2 as a Male Breast Cancer Susceptibility Gene. Cancer 2017, 123, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Leslie, G.; Doroszuk, A.; Schneider, S.; Allen, J.; Decker, B.; Dunning, A.M.; Redman, J.; Scarth, J.; Plaskocinska, I.; et al. Cancer Risks Associated with Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2020, 38, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Meijers-Heijboer, H.; Ouweland, A.V.D.; Klijn, J.; Wasielewski, M.; De Snoo, A.; Oldenburg, R.; Hollestelle, A.; Houben, M.; Crepin, E.; Van Veghel-Plandsoen, M.; et al. Low-Penetrance Susceptibility to Breast Cancer Due to CHEK2(*)1100delC in Noncarriers of BRCA1 or BRCA2 Mutations: The CHEK2-Breast Cancer Consortium. Nat. Genet. 2002, 31, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Shieh, S.-Y.; Ahn, J.; Tamai, K.; Taya, Y.; Prives, C. The Human Homologs of Checkpoint Kinases Chk1 and Cds1 (Chk2) Phosphorylate, P53 at Multiple DNA Damage-Inducible Sites. Genes Dev. 2000, 14, 289–300. [Google Scholar] [PubMed]
- Wasielewski, M.; Bakker, M.A.D.; Ouweland, A.V.D.; Gelder, M.E.M.-V.; Portengen, H.; Klijn, J.G.M.; Meijers-Heijboer, H.; Foekens, J.A.; Schutte, M. CHEK2 1100delC and Male Breast Cancer in the Netherlands. Breast Cancer Res. Treat. 2009, 116, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Neuhausen, S.; Dunning, A.M.; Steele, L.; Yakumo, K.; Hoffman, M.; Szabo, C.; Tee, L.; Baines, C.; Pharoah, P.; Goldgar, D.; et al. Role of CHEK2*1100delC in Unselected Series of Non-BRCA1/2 Male Breast Cancers. Int. J. Cancer 2004, 108, 477–478. [Google Scholar] [CrossRef]
- Ohayon, T.; Gal, I.; Baruch, R.G.; Szabo, C.; Friedman, E. CHEK2*1100delC and Male Breast Cancer Risk in Israel. Int. J. Cancer 2004, 108, 479–480. [Google Scholar] [CrossRef]
- Jekimovs, C.R.; kConFab Investigators; Chen, X.; Arnold, J.; Gatei, M.; Richard, D.J.; Spurdle, A.B.; Khanna, K.K.; Chenevix-Trench, G. Low Frequency of CHEK2 1100delC Allele in Australian Multiple-Case Breast Cancer Families: Functional Analysis in Heterozygous Individuals. Br. J. Cancer 2005, 92, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Liang, M.; Zhang, Y.; Sun, C.; Rizeq, F.K.; Min, M.; Shi, T.; Sun, Y. Association Between CHEK2*1100delC and Breast Cancer: A Systematic Review and Meta-Analysis. Mol. Diagn. Ther. 2018, 22, 397–407. [Google Scholar] [CrossRef]
- Hallamies, S.; Pelttari, L.M.; Poikonen-Saksela, P.; Jekunen, A.; Jukkola-Vuorinen, A.; Auvinen, P.; Blomqvist, C.; Aittomäki, K.; Mattson, J.; Nevanlinna, H. CHEK2 c.1100delC Mutation Is Associated with an Increased Risk for Male Breast Cancer in Finnish Patient Population. BMC Cancer 2017, 17, 620. [Google Scholar] [CrossRef]
- Jette, N.R.; Kumar, M.; Radhamani, S.; Arthur, G.; Goutam, S.; Yip, S.; Kolinsky, M.; Williams, G.J.; Bose, P.; Lees-Miller, S.P. ATM-Deficient Cancers Provide New Opportunities for Precision Oncology. Cancers 2020, 12, 687. [Google Scholar] [CrossRef] [Green Version]
- Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Luccarini, C.; Wahlström, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; Wang, Q.; et al. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Cunha, R.; Nejo, P.; Bento, S.; Vaz, F. ATM Germline Variants and Male Breast Cancer. BMJ Case Rep. 2021, 14, e238100. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.J.; Bernhisel, R.; Hughes, E.; Larson, K.; Rosenthal, E.T.; Singh, N.A.; Lancaster, J.M.; Kurian, A.W. Germline Pathogenic Variants in the Ataxia Telangiectasia Mutated (ATM) Gene Are Associated with High and Moderate Risks for Multiple Cancers. Cancer Prev. Res. 2021, 14, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Rizzolo, P.; Zelli, V.; Silvestri, V.; Valentini, V.; Zanna, I.; Bianchi, S.; Masala, G.; Spinelli, A.M.; Tibiletti, M.G.; Russo, A.; et al. Insight into Genetic Susceptibility to Male Breast Cancer by Multigene Panel Testing: Results from a Multicenter Study in Italy. Int. J. Cancer 2019, 145, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Venkateshwari, A.; Clark, D.W.; Nallari, P.; Vinod, C.; Kumarasamy, T.; Reddy, G.; Jyothy, A.; Kumar, M.V.; Ramaiyer, R.; Palle, K. BRIP1/FANCJ Mutation Analysis in a Family with History of Male and Female Breast Cancer in India. J. Breast Cancer 2017, 20, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Fackenthala, J.D.; Marshb, D.J.; Richardsonb, A.; Cummingsa, S.A.; Engc, C.; Robinsonb, B.G.; Olopadea, O.I. Male Breast Cancer in Cowden Syndrome Patients with Germline PTEN Mutations. J. Med. Genet. 2001, 38, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Lobaccaro, J.-M.; Lumbroso, S.; Belon, C.; Galtier-Dereure, F.; Bringer, J.; Lesimple, T.; Namer, M.; Cutuli, B.F.; Pujol, H.; Sultan, C.; et al. Androgen Receptor Gene Mutation in Male Breast Cancer. Hum. Mol. Genet. 1993, 2, 1799–1802. [Google Scholar] [CrossRef]
- Silvestri, V.; Rizzolo, P.; Zelli, V.; Valentini, V.; Zanna, I.; Bianchi, S.; Tibiletti, M.G.; Varesco, L.; Russo, A.; Tommasi, S.; et al. A Possible Role of FANCM Mutations in Male Breast Cancer Susceptibility: Results from a Multicenter Study in Italy. Breast 2018, 38, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Lakshmaiah, K.C.; Kumar, A.N.; Purohit, S.; Viveka, B.K.; Rajan, K.R.; Zameer, M.A.L.; Namitha, P.; Saini, M.L.; A Azim, H.; Saini, K.S. Neurofibromatosis Type I with Breast Cancer: Not Only for Women! Hered. Cancer Clin. Pract. 2014, 12, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Rizzolo, P.; Silvestri, V.; Bucalo, A.; Zelli, V.; Valentini, V.; Catucci, I.; Zanna, I.; Masala, G.; Bianchi, S.; Spinelli, A.M.; et al. Contribution of MUTYH Variants to Male Breast Cancer Risk: Results from a Multicenter Study in Italy. Front. Oncol. 2018, 8, 583. [Google Scholar] [CrossRef] [Green Version]
- Boyd, J.; Rhei, E.; Federici, M.G.; Borgen, P.I.; Watson, P.; Franklin, B.; Karr, B.; Lynch, J.; Lemon, S.J.; Lynch, H.T. Male Breast Cancer in the Hereditary Nonpolyposis Colorectal Cancer Syndrome. Breast Cancer Res. Treat. 1999, 53, 87–91. [Google Scholar] [CrossRef]
- Venkitaraman, A.R. Cancer Susceptibility and the Functions of BRCA1 and BRCA2. Cell 2002, 108, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Maguire, S.; Perraki, E.; Tomczyk, K.; Jones, M.E.; Fletcher, O.; Pugh, M.; Winter, T.; Thompson, K.; Cooke, R.; Trainer, A.; et al. Common Susceptibility Loci for Male Breast Cancer. JNCI J. Natl. Cancer Inst. 2021, 113, 453–461. [Google Scholar] [CrossRef]
- Orr, N.; Lemnrau, A.; Cooke, R.; Fletcher, O.; Tomczyk, K.; Jones, M.; Johnson, N.; Lord, C.J.; Mitsopoulos, C.; Zvelebil, M.; et al. Genome-Wide Association Study Identifies a Common Variant in RAD51B Associated with Male Breast Cancer Risk. Nat. Genet. 2012, 44, 1182–1184. [Google Scholar] [CrossRef] [Green Version]
- Lecarpentier, J.; Kuchenbaecker, K.B.; Barrowdale, D.; Dennis, J.; McGuffog, L.; Leslie, G.; Lee, A.; Olama, A.A.A.; Tyrer, J.P.; Frost, D.; et al. Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores. J. Clin. Oncol. 2017, 35, 2240–2250. [Google Scholar] [CrossRef]
- Silvestri, V.; Rizzolo, P.; Scarnò, M.; Chillemi, G.; Navazio, A.S.; Valentini, V.; Zelli, V.; Zanna, I.; Saieva, C.; Masala, G.; et al. Novel and Known Genetic Variants for Male Breast Cancer Risk at 8q24.21, 9p21.3, 11q13.3 and 14q24.1: Results from a Multicenter Study in Italy. Eur. J. Cancer 2015, 51, 2289–2295. [Google Scholar] [CrossRef]
- Ottini, L.; Rizzolo, P.; Zanna, I.; Silvestri, V.; Saieva, C.; Falchetti, M.; Masala, G.; Navazio, A.S.; Capalbo, C.; Bianchi, S.; et al. Association of SULT1A1 Arg213His Polymorphism with Male Breast Cancer Risk: Results from a Multicenter Study in Italy. Breast Cancer Res. Treat. 2014, 148, 623–628. [Google Scholar] [CrossRef]
- Young, I.E.; Kurian, K.M.; Annink, C.; Kunkler, I.H.; Anderson, V.A.; Cohen, B.B.; Hooper, M.L.; Wyllie, A.H.; Steel, C.M. A Polymorphism in the CYP17 Gene Is Associated with Male Breast Cancer. Br. J. Cancer 1999, 81, 141–143. [Google Scholar] [CrossRef] [Green Version]
- Rizzolo, P.; Silvestri, V.; Valentini, V.; Zelli, V.; Bucalo, A.; Zanna, I.; Bianchi, S.; Tibiletti, M.G.; Russo, A.; Varesco, L.; et al. Evaluation of CYP17A1 and CYP1B1 Polymorphisms in Male Breast Cancer Risk. Endocr. Connect. 2019, 8, 1224–1229. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, S.; Hughes, E.; Wagner, S.; Tshiaba, P.; Rosenthal, E.; Roa, B.B.; Kurian, A.W.; Domchek, S.M.; Garber, J.; Lancaster, J.; et al. Association of a Polygenic Risk Score with Breast Cancer Among Women Carriers of High- and Moderate-Risk Breast Cancer Genes. JAMA Netw. Open 2020, 3, e208501. [Google Scholar] [CrossRef]
- Catana, A.; Apostu, A.P.; Antemie, R.-G. Multi Gene Panel Testing for Hereditary Breast Cancer—Is It Ready to Be Used? Med. Pharm. Rep. 2019, 92, 220–225. [Google Scholar] [CrossRef]
- Kurian, A.W.; Ward, K.C.; Hamilton, A.S.; Deapen, D.M.; Abrahamse, P.; Bondarenko, I.; Li, Y.; Hawley, S.T.; Morrow, M.; Jagsi, R.; et al. Uptake, Results, and Outcomes of Germline Multiple-Gene Sequencing After Diagnosis of Breast Cancer. JAMA Oncol. 2018, 4, 1066–1072. [Google Scholar] [CrossRef]
- Nielsen, S.M.; Eccles, D.M.; Romero, I.L.; Al-Mulla, F.; Balmaña, J.; Biancolella, M.; Blok, R.; Caligo, M.A.; Calvello, M.; Capone, G.L.; et al. Genetic Testing and Clinical Management Practices for Variants in Non-BRCA1/2 Breast (and Breast/Ovarian) Cancer Susceptibility Genes: An International Survey by the Evidence-Based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) Clinical Working Group. JCO Precis. Oncol. 2018, 2, 1–42. [Google Scholar] [CrossRef]
- Angeli, D.; Salvi, S.; Tedaldi, G. Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test? Int. J. Mol. Sci. 2020, 21, 1128. [Google Scholar] [CrossRef] [Green Version]
- Robson, M.; Domchek, S. Broad Application of Multigene Panel Testing for Breast Cancer Susceptibility—Pandora’s Box Is Opening Wider. JAMA Oncol. 2019, 5, 1687–1688. [Google Scholar] [CrossRef]
- Rosenblatt, K.A.; Thomas, D.B.; McTiernan, A.; Austin, M.A.; Stalsberg, H.; Stemhagen, A.; Thompson, W.D.; Curnen, M.G.M.; Satariano, W.; Austin, D.F.; et al. Breast Cancer in Men: Aspects of Familial Aggregation. J. Natl. Cancer Inst. 1991, 83, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Lesueur, F.; Mebirouk, N.; Jiao, Y.; Barjhoux, L.; Belotti, M.; Laurent, M.; Léone, M.; Houdayer, C.; Bressac-de Paillerets, B.; Vaur, D.; et al. GEMO, a National Resource to Study Genetic Modifiers of Breast and Ovarian Cancer Risk in BRCA1 and BRCA2 Pathogenic Variant Carriers. Front. Oncol. 2018, 8, 490. [Google Scholar] [CrossRef]
- Williams, W.R. Cancer of the Male Breast, Based on the Records of One Hundred Cases; with Remarks. Lancet 1889, 2, 261–263. [Google Scholar] [CrossRef]
- Schottenfeld, D.; Lilienfeld, A.M.; Diamond, H. Some Observations on the Epidemiology of Breast Cancer among Males. Am. J. Public Health Nations Health 1963, 53, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Everson, R.; Fraumeni, J.F., Jr.; Wilson, R.; Li, F.; Fishman, J.; Stout, D.; Norris, H. Familial Male Breast Cancer. Lancet 1976, 307, 9–12. [Google Scholar] [CrossRef]
- Kozak, F.K.; Hall, J.G.; Baird, P.A. Familial Breast Cancer in Males. Cancer 1986, 58, 2736–2739. [Google Scholar] [CrossRef]
- Brewer, H.R.; Jones, M.; Schoemaker, M.; Ashworth, A.; Swerdlow, A. Family History and Risk of Breast Cancer: An Analysis Accounting for Family Structure. Breast Cancer Res. Treat. 2017, 165, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Bevier, M.; Sundquist, K.; Hemminki, K. Risk of Breast Cancer in Families of Multiple Affected Women and Men. Breast Cancer Res. Treat. 2012, 132, 723–728. [Google Scholar] [CrossRef]
- Brinton, L.A.; Richesson, D.A.; Gierach, G.L.; Lacey, J.J.V.; Park, Y.; Hollenbeck, A.R.; Schatzkin, A. Prospective Evaluation of Risk Factors for Male Breast Cancer. J. Natl. Cancer Inst. 2008, 100, 1477–1481. [Google Scholar] [CrossRef] [Green Version]
- Calip, G.S.; Kidd, J.; Bernhisel, R.; Cox, H.C.; Saam, J.; Rauscher, G.H.; Lancaster, J.M.; Hoskins, K.F. Family History of Breast Cancer in Men with Non-BRCA Male Breast Cancer: Implications for Cancer Risk Counseling. Breast Cancer Res. Treat. 2021, 185, 195–204. [Google Scholar] [CrossRef]
- Dong, C.; Hemminki, K. Second Primary Breast Cancer in Men. Breast Cancer Res. Treat. 2001, 66, 171–172. [Google Scholar] [CrossRef]
- Hemminki, K.; Scélo, G.; Boffetta, P.; Mellemkjaer, L.; Tracey, E.; Andersen, A.; Brewster, D.; Pukkala, E.; McBride, M.; Kliewer, E.V.; et al. Second Primary Malignancies in Patients with Male Breast Cancer. Br. J. Cancer 2005, 92, 1288–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.; Yu, H.; Hemminki, A.; Försti, A.; Sundquist, K.; Hemminki, K. Familial Associations of Male Breast Cancer with Other Cancers. Breast Cancer Res. Treat. 2017, 166, 897–902. [Google Scholar] [CrossRef]
- Silvestri, V.; Leslie, G.; Barnes, D.R.; Agnarsson, B.A.; Aittomäki, K.; Alducci, E.; Andrulis, I.L.; Barkardottir, R.B.; Barroso, A.; Barrowdale, D.; et al. Characterization of the Cancer Spectrum in Men with Germline BRCA1 and BRCA2 Pathogenic Variants: Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). JAMA Oncol. 2020, 6, 1218–1230. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Prostate Cancer Early Detection (Version 2.2020). Available online: https://www.nccn.org/guidelines/guidelines-detail?category=2&id=1460 (accessed on 4 November 2020).
- National Comprehensive Cancer Network. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic (Version 1.2021). Available online: https://www.nccn.org/guidelines/guidelines-detail?category=2&id=1503 (accessed on 4 November 2020).
- Bleyer, A.; Welch, H.G. Effect of Three Decades of Screening Mammography on Breast-Cancer Incidence. N. Engl. J. Med. 2012, 367, 1998–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, H.G.; Passow, H.J. Quantifying the Benefits and Harms of Screening Mammography. JAMA Intern. Med. 2014, 174, 448–454. [Google Scholar] [CrossRef]
- Mainiero, M.B.; Moy, L.; Baron, P.; Didwania, A.D.; Diflorio, R.M.; Green, E.D.; Heller, S.L.; Holbrook, A.I.; Lee, S.-J.; Lewin, A.; et al. ACR Appropriateness Criteria® Breast Cancer Screening. J. Am. Coll. Radiol. 2017, 14, S383–S390. [Google Scholar] [CrossRef]
- Gondusky, C.J.; Kim, M.J.; Kalantari, B.N.; Khalkhali, I.; Dauphine, C.E. Examining the Role of Screening Mammography in Men at Moderate Risk for Breast Cancer: Two Illustrative Cases. Breast J. 2015, 21, 316–317. [Google Scholar] [CrossRef]
- Patterson, S.K.; Helvie, M.A.; Aziz, K.; Nees, A.V. Outcome of Men Presenting with Clinical Breast Problems: The Role of Mammography and Ultrasound. Breast J. 2006, 12, 418–423. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, R.M.; Benito, M.Á.; Gomariz, E.M.; Povedano, J.L.R.; Paredes, M.M. Mammography and Ultrasound in the Evaluation of Male Breast Disease. Eur. Radiol. 2010, 20, 2797–2805. [Google Scholar] [CrossRef]
- Rong, X.; Zhu, Q.; Jia, W.; Ma, T.; Wang, X.; Guo, N.; Ji, H. Ultrasonographic Assessment of Male Breast Diseases. Breast J. 2018, 24, 599–605. [Google Scholar] [CrossRef]
- Gao, Y.; Goldberg, J.E.; Young, T.K.; Babb, J.; Moy, L.; Heller, S.L. Breast Cancer Screening in High-Risk Men: A 12-Year Longitudinal Observational Study of Male Breast Imaging Utilization and Outcomes. Radiology 2019, 293, 282–291. [Google Scholar] [CrossRef]
- Marino, M.A.; Gucalp, A.; Leithner, D.; Keating, D.; Avendano, D.; Bernard-Davila, B.; Morris, E.A.; Pinker, K.; Jochelson, M.S. Mammographic Screening in Male Patients at High Risk for Breast Cancer: Is It Worth It? Breast Cancer Res. Treat. 2019, 177, 705–711. [Google Scholar] [CrossRef]
- Bearelly, P.; Oates, R. Recent Advances in Managing and Understanding Klinefelter Syndrome. F1000Research 2019, 8, 112. [Google Scholar] [CrossRef]
- Zitzmann, M.; Aksglaede, L.; Corona, G.; Isidori, A.M.; Juul, A.; T’Sjoen, G.; Kliesch, S.; D’Hauwers, K.; Toppari, J.; Słowikowska-Hilczer, J.; et al. European Academy of Andrology Guidelines on Klinefelter Syndrome: Endorsing Organization: European Society of Endocrinology. Andrology 2020, 1–23. [Google Scholar] [CrossRef]
- González-Santiago, S.; Ramón y Cajal, T.; Aguirre, E.; Alés-Martínez, J.E.; Andrés, R.; Balmaña, J.; Graña, B.; Herrero, A.; Llort, G.; González-del-Alba, A.; et al. SEOM Clinical Guidelines in Hereditary Breast and Ovarian Cancer (2019). Clin. Transl. Oncol. 2020, 22, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Paluch-Shimon, S.; Cardoso, F.; Sessa, C.; Balmana, J.; Cardoso, M.J.; Gilbert, F.; Senkus, E. Prevention and Screening in BRCA Mutation Carriers and Other Breast/Ovarian Hereditary Cancer Syndromes: ESMO Clinical Practice Guidelines for Cancer Prevention and Screening. Ann. Oncol. 2016, 27, v103–v110. [Google Scholar] [CrossRef]
- The Royal Marsden NHS Foundation Trust. Protocol 3: BRCA Mutation Carrier Guidelines. 2015. Available online: https://D1ijoxngr27nfi.Cloudfront.Net/Research-Divisions/Protocol-3-Brca-Mutation-Carrier-20150209-v4.Pdf?Sfvrsn=2 (accessed on 18 January 2021).
- Rottenberg, S.; Disler, C.; Perego, P. The Rediscovery of Platinum-Based Cancer Therapy. Nat. Rev. Cancer 2020, 21, 37–50. [Google Scholar] [CrossRef]
- Tutt, A.; Tovey, H.; Cheang, M.C.U.; Kernaghan, S.; Kilburn, L.; Gazinska, P.; Owen, J.; Abraham, J.; Barrett, S.; Barrett-Lee, P.; et al. A Randomised Phase III Trial of Carboplatin Compared with Docetaxel in BRCA1/2 Mutated and Pre-Specified Triple Negative Breast Cancer “BRCAness” Subgroups: The TNT Trial. Nat. Med. 2018, 24, 628–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.; Martens, J.W.M.; Van Hoeck, A.; Cuppen, E. Pan-Cancer Landscape of Homologous Recombination Deficiency. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Tung, N.M.; Boughey, J.C.; Pierce, L.J.; Robson, M.E.; Bedrosian, I.; Dietz, J.R.; Dragun, A.; Gelpi, J.B.; Hofstatter, E.W.; Isaacs, C.J.; et al. Management of Hereditary Breast Cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Guideline. J. Clin. Oncol. 2020, 38, 2080–2106. [Google Scholar] [CrossRef]
- Robson, M.; Im, S.-A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.-H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef]
- Min, A.; Im, S.-A. PARP Inhibitors as Therapeutics: Beyond Modulation of PARylation. Cancers 2020, 12, 394. [Google Scholar] [CrossRef] [Green Version]
- Mateo, J.; Carreira, S.; Sandhu, S.; Miranda, S.; Mossop, H.; Perez-Lopez, R.; Rodrigues, D.N.; Robinson, D.; Omlin, A.; Tunariu, N.; et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N. Engl. J. Med. 2015, 373, 1697–1708. [Google Scholar] [CrossRef]
- Tung, N.M.; Robson, M.E.; Ventz, S.; Santa-Maria, C.A.; Marcom, P.K.; Nanda, R.; Shah, P.D.; Ballinger, T.J.; Yang, E.S.-H.; Melisko, M.E.; et al. TBCRC 048: A Phase II Study of Olaparib Monotherapy in Metastatic Breast Cancer Patients with Germline or Somatic Mutations in DNA Damage Response (DDR) Pathway Genes (Olaparib Expanded). J. Clin. Oncol. 2020, 38 (Suppl. S15), 1002. [Google Scholar] [CrossRef]
- Stoepker, C.; Faramarz, A.; Rooimans, M.A.; Van Mil, S.E.; Balk, J.A.; Velleuer, E.; Ameziane, N.; Riele, H.T.; De Winter, J.P. DNA Helicases FANCM and DDX11 Are Determinants of PARP Inhibitor Sensitivity. DNA Repair 2015, 26, 54–64. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, F.A.B.; Rouleau, E.; Torrezan, G.T.; Carraro, D.M.; Casali da Rocha, J.C.; Mantovani, H.K.; da Silva, L.R.; Osório, C.A.B.d.T.; Moraes Sanches, S.; Caputo, S.M.; et al. Genetic Landscape of Male Breast Cancer. Cancers 2021, 13, 3535. https://doi.org/10.3390/cancers13143535
Campos FAB, Rouleau E, Torrezan GT, Carraro DM, Casali da Rocha JC, Mantovani HK, da Silva LR, Osório CABdT, Moraes Sanches S, Caputo SM, et al. Genetic Landscape of Male Breast Cancer. Cancers. 2021; 13(14):3535. https://doi.org/10.3390/cancers13143535
Chicago/Turabian StyleCampos, Fernando Augusto Batista, Etienne Rouleau, Giovana Tardin Torrezan, Dirce Maria Carraro, José Claudio Casali da Rocha, Higor Kassouf Mantovani, Leonardo Roberto da Silva, Cynthia Aparecida Bueno de Toledo Osório, Solange Moraes Sanches, Sandrine M. Caputo, and et al. 2021. "Genetic Landscape of Male Breast Cancer" Cancers 13, no. 14: 3535. https://doi.org/10.3390/cancers13143535
APA StyleCampos, F. A. B., Rouleau, E., Torrezan, G. T., Carraro, D. M., Casali da Rocha, J. C., Mantovani, H. K., da Silva, L. R., Osório, C. A. B. d. T., Moraes Sanches, S., Caputo, S. M., & Santana dos Santos, E. (2021). Genetic Landscape of Male Breast Cancer. Cancers, 13(14), 3535. https://doi.org/10.3390/cancers13143535