How May Ramucirumab Help Improve Treatment Outcome for Patients with Gastrointestinal Cancers?
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Gastrointestinal (GI) Cancers
1.2. Targeting Angiogenesis for the Treatment of GI Cancers
1.3. Objective
2. Materials and Methods
2.1. Literature Review and Selection for GI Cancers
2.1.1. Randomized Control Trials (RCTs)and Secondary Analyses
2.1.2. Real World Evidence
2.2. Statistical Methods
3. Results
3.1. Ramucirumab
3.2. Gastric Cancer
3.2.1. Incidence, Mortality, and Treatment
3.2.2. REGARD
3.2.3. RAINBOW
Subgroup Analysis from RAINBOW and REGARD–the East Asian Subpopulation
Subgroup Analysis from RAINBOW and REGARD— Human Epidermal Growth Receptor 2 (HER-2) + GC
Subgroup Analysis from RAINBOW and REGARD—Patients with Ascites
Subgroup Analysis from RAINBOW and REGARD—Age Subgroups
3.2.4. Inconclusive Trials
3.2.5. Ramucirumab for GC in the Real World
3.2.6. Ramucirumab-FOLFIRI in Second Line
3.3. Colorectal Cancer
3.3.1. Incidence, Mortality and Treatment
3.3.2. RAISE
RAISE Subgroup Analyses—Tumor Mutational Status
RAISE Subgroup Analyses—Primary Tumor Location
RAISE Subgroup Analyses—Age
RAISE Subgroup Analyses–Progression Status
RAISE Subgroup Analyses—TEAEs
3.4. Hepatocellular Carcinoma (HCC)
3.4.1. Incidence, Mortality, and Treatment
3.4.2. REACH 2
3.4.3. REACH
3.4.4. REACH and REACH-2 Pooled Analyses
REACH and REACH-2 Pooled Subgroup Analyses—Age
REACH and REACH-2 Pooled Subgroup Analyses—South Asian Subpopulation
REACH and REACH-2 Pooled Subgroup Analyses—BCLC Stage
REACH and REACH-2 Pooled Subgroup Analyses—Liver Disease Etiology
3.4.5. REACH-2 Open Label Expansion
3.5. Unanswered Questions
3.5.1. Angiogenesis Biomarkers
Serum AFP in HCC
Other Biomarkers—GC
Other Biomarkers—CRC
3.5.2. Ramucirumab and Immunotherapy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Wadhwa, R.; Taketa, T.; Sudo, K.; Blum, M.A.; Ajani, J.A. Modern oncological approaches to gastric adenocarcinoma. Gastroenterol. Clin. N. Am. 2013, 42, 359–369. (In English) [Google Scholar] [CrossRef] [PubMed]
- van Cutsem, E.; Arends, J. The causes and consequences of cancer-associated malnutrition. Eur. J. Oncol. Nurs. 2005, 9, S51–S63. (In English) [Google Scholar] [CrossRef]
- Sarfati, D.; Koczwara, B.; Jackson, C. The impact of comorbidity on cancer and its treatment. CA Cancer J. Clin. 2016, 66, 337–350. (In English) [Google Scholar] [CrossRef]
- Lv, X.-P. Gastrointestinal tract cancers: Genetics, heritability and germ line mutations. Oncol. Lett. 2017, 13, 1499–1508. (In English) [Google Scholar] [CrossRef] [Green Version]
- Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020, 77, 1745–1770. [Google Scholar] [CrossRef] [Green Version]
- Veikkola, T.; Karkkainen, M.; Claesson-Welsh, L.; Alitalo, K. Regulation of Angiogenesis via Vascular Endothelial Growth Factor Receptors. Cancer Res. 2000, 60, 203–212. [Google Scholar]
- Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005, 69, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Baeriswyl, V.; Christofori, G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 2009, 19, 329–337. (In English) [Google Scholar] [CrossRef]
- Lapeyre-Prost, A.; Terme, M.; Pernot, S.; Pointet, A.L.; Voron, T.; Tartour, E.; Taieb., J. Immunomodulatory Activity of VEGF in Cancer. Int. Rev. Cell Mol. Biol. 2017, 330, 295–342. [Google Scholar] [PubMed]
- Meijer, E.F.J.; Blatter, C.; Chen, I.X.; Bouta, E.; Jones, D.; Pereira, E.R.; Jung, K.; Vakoc, B.J.; Baish, J.W.; Padera, T.P. Lymph node effective vascular permeability and chemotherapy uptake. Microcirculation 2017, 24. (In English) [Google Scholar] [CrossRef]
- Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer 2013, 13, 871–882. (In English) [Google Scholar] [CrossRef] [PubMed]
- Vasudev, N.S.; Reynolds, A.R. Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions. Angiogenesis 2014, 17, 471–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, D.; Jimenez, X.; Zhang, H.; Bohlen, P.; Witte, L.; Zhu, Z. Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapy. Int. J. Cancer 2002, 97, 393–399. (In English) [Google Scholar] [CrossRef] [PubMed]
- Miao, H.Q.; Hu, K.; Jimenez, X.; Navarro, E.; Zhang, H.; Lu, D.; Ludwig, D.L.; Balderes, P.; Zhu, Z. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2. Biochem. Biophys. Res. Commun. 2006, 345, 438–445. [Google Scholar] [CrossRef]
- Aprile, G.; Rijavec, E.; Fontanella, C.; Rihawi, K.; Grossi, F. Ramucirumab: Preclinical research and clinical development. OncoTargets Ther. 2014, 7, 1997–2006. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruns, C.J.; Liu, W.; Davis, D.W.; Shaheen, R.M.; McConkey, D.J.; Wilson, M.R.; Bucana, C.D.; Hicklin, D.J.; Ellis, L.M. Vascular endothelial growth factor is an in vivo survival factor for tumor endothelium in a murine model of colorectal carcinoma liver metastases. Cancer 2000, 89, 488–499. (In English) [Google Scholar] [CrossRef]
- Spratlin, J.L.; Cohen, R.B.; Eadens, M.; Gore, L.; Camidge, D.R.; Diab, S.; Leong, S.; O’Bryant, C.; Chow, L.Q.M.; Serkova, N.J.; et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J. Clin. Oncol. 2010, 28, 780–787. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 2020. Available online: https://www.nccn.org/professionals/physician_gls/pdf/gastric.pdf. (accessed on 2 August 2020).
- Oba, M.; Chin, K.; Kawazoe, Y.; Takagi, K.; Ogura, M.; Shinozaki, E.; Suenaga, M.; Matsusaka, S.; Mizunuma, N.; Hatake, K. Irinotecan monotherapy offers advantage over combination therapy with irinotecan plus cisplatin in second-line setting for treatment of advanced gastric cancer following failure of fluoropyrimidine-based regimens. Oncol. Lett. 2011, 2, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, H.J.; Kim, S.Y.; Kim, T.Y.; Lee, K.W.; Baek, S.K.; Kim, T.Y.; Ryu, M.H.; Nam, B.H.; Zang, D.Y. Second-line chemotherapy versus supportive cancer treatment in advanced gastric cancer: A meta-analysis. Ann. Oncol. 2013, 24, 2850–2854. (In English) [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014, 383, 31–39. (In English) [Google Scholar] [CrossRef]
- Chau, I.; Passalacqua, R.; Zalcberg, J.R.; Fuchs, C.S.; Liepa, A.M.; Hsu, Y.; Schwartz, J.D.; Koshiji, M.; Tabernero, J. Tolerability and quality-of-life (QoL) results from the phase 3 REGARD study: Ramucirumab versus placebo in patients with previously treated gastric or gastroesophageal junction (GEJ) adenocarcinoma. Eur. J. Cancer 2013, 49, S615. [Google Scholar]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Shitara, K.; Di Bartolomeo, M.; Lonardi, S.; Al-Batran, S.-E.; Van Cutsem, E.; Ilson, D.H.; Alsina, M.; Chau, I.; Lacy, J.; et al. Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 420–435. [Google Scholar] [CrossRef]
- Tabernero, J.; Yoshino, T.; Cohn, A.L.; Obermannova, R.; Bodoky, G.; Garcia-Carbonero, R.; Ciuleanu, T.E.; Portnoy, D.C.; Van Cutsem, E.; Grothey, A.; et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): A randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 2015, 16, 499–508. [Google Scholar] [PubMed]
- Zhu, A.X.; Park, J.O.; Ryoo, B.-Y.; Yen, C.-J.; Poon, R.; Pastorelli, D.; Blanc, J.-F.; Chung, H.C.; Baron, A.D.; Pfiffer, T.E.F.; et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015, 16, 859–870. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kang, Y.-K.; Yen, C.-J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Chung, H.C.; Kok, V.C.; Cheng, R.; Hsu, Y.; Orlando, M.; Fuchs, C.; Cho, J.Y. Subgroup analysis of East Asian patients in REGARD: A phase III trial of ramucirumab and best supportive care for advanced gastric cancer. Asia Pac. J. Clin. Oncol. 2018, 14, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Muro, K.; Cho, J.Y.; Bodoky, G.; Goswami, C.; Chao, Y.; Dos Santos, L.V.; Shimada, Y.; Topuzov, E.; Van Cutsem, E.; Tabernero, J.; et al. Age does not influence efficacy of ramucirumab in advanced gastric cancer: Subgroup analyses of REGARD and RAINBOW. J. Gastroenterol. Hepatol. 2018, 33, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.S.; Tabernero, J.; Tomášek, J.; Chau, I.; Melichar, B.; Safran, H.; Tehfe, M.A.; Filip, D.; Topuzov, E.; Schlittler, L.; et al. Biomarker analyses in REGARD gastric/GEJ carcinoma patients treated with VEGFR2-targeted antibody ramucirumab. Br. J. Cancer. 2016, 115, 974–982. [Google Scholar] [CrossRef] [Green Version]
- Muro, K.; Oh, S.C.; Shimada, Y.; Lee, K.W.; Yen, C.J.; Chao, Y.; Cho, J.Y.; Cheng, R.; Carlesi, R.; Chandrawansa, K.; et al. Subgroup analysis of East Asians in RAINBOW: A phase 3 trial of ramucirumab plus paclitaxel for advanced gastric cancer. J Gastroenterol. Hepatol. 2016, 31, 581–589. [Google Scholar] [CrossRef]
- Muro, K.; Jen, M.H.; Cheng, R. Is ramucirumab and paclitaxel therapy beneficial for second-line treatment of metastatic gastric or junctional adenocarcinoma for patients with ascites? Analysis of RAINBOW phase 3 trial data. Cancer Manag. Res. 2019, 11, 2261–2267. [Google Scholar] [CrossRef] [Green Version]
- De Vita, F.; Borg, C.; Farina, G.; Geva, R.; Carton, I.; Cuku, H.; Wei, R.; Muro, K. Ramucirumab and paclitaxel in patients with gastric cancer and prior trastuzumab: Subgroup analysis from RAINBOW study. Future Oncol. 2019, 15, 2723–2731. [Google Scholar] [CrossRef]
- Obermannová, R.; Van Cutsem, E.; Yoshino, T.; Bodoky, G.; Prausová, J.; Garcia-Carbonero, R.; Ciuleanu, T.; García-Alfonso, P.; Portnoy, D.; Cohn, A.; et al. Subgroup analysis in RAISE: A randomized, double-blind phase III study of irinotecan, folinic acid, and 5-fluorouracil (FOLFIRI] plus ramucirumab or placebo in patients with metastatic colorectal carcinoma progression. Ann Oncol. 2016, 27, 2082–2090. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Portnoy, D.C.; Obermannová, R.; Bodoky, G.; Prausová, J.; Garcia-Carbonero, R.; Ciuleanu, T.; García-Alfonso, P.; Cohn, A.L.; Van Cutsem, E.; et al. Biomarker analysis beyond angiogenesis: RAS/RAF mutation status, tumour sidedness, and second-line ramucirumab efficacy in patients with metastatic colorectal carcinoma from RAISE-a global phase III study. Ann Oncol. 2019, 30, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.J.; Kudo, M.; Lim, H.Y.; Hsu, C.H.; Vogel, A.; Brandi, G.; Cheng, R.; Nitu, I.S.; Abada, P.; Hsu, Y.; et al. Efficacy and Safety of Ramucirumab in Asian and Non-Asian Patients with Advanced Hepatocellular Carcinoma and Elevated Alpha-Fetoprotein: Pooled Individual Data Analysis of Two Randomized Studies. Liver Cancer 2020, 9, 440–454. [Google Scholar] [CrossRef]
- Galle, P.; Kudo, M.; Llovet, J.M.; Finn, R.; Karwal, M.; Denis, P.; Kim, T.-Y.; Yang, T.-S.; Zagonel, V.; Tomasek, J.; et al. GS-09-Ramucirumab for patients with advanced hepatocellular carcinoma and elevated alpha-fetoprotein following sorafenib: Outcomes by liver disease aetiology from two randomised, placebo-controlled phase 3 studies (REACH-2 and REACH). J. Hepatolo. 2019, 70, e46. [Google Scholar] [CrossRef]
- Llovet, J.M.; Yen, C.-J.; Finn, R.S.; Kang, Y.-K.; Kudo, M.; Galle, P.R.; Assenat, E.; Pracht, M.; Lim, H.Y.; Rau, K.-M.; et al. Ramucirumab (RAM) for sorafenib intolerant patients with hepatocellular carcinoma (HCC) and elevated baseline alpha fetoprotein (AFP): Outcomes from two randomized phase 3 studies (REACH, REACH2). J. Clin. Oncol. 2019, 37, 4073. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Morimoto, M.; Rau, K.-M.; Ikeda, M.; Yen, C.-J.; Galle, P.R.; Llovet, J.M.; Daniele, B.; Lim, H.Y.; et al. Ramucirumab for patients with intermediate-stage hepatocellular carcinoma (HCC) and elevated alpha fetoprotein (AFP): Pooled results from two phase III studies (REACH and REACH-2). J. Clin. Oncol. 2020, 38, 549. [Google Scholar] [CrossRef]
- Meyer, T.; Finn, R.; Kudo, M.; Kang, Y.; Yen, C.; Galle, P.; Llovet, J.; Assenat, E.; Brandi, G.; Motomura, K.; et al. Ramucirumab in advanced hepatocellular carcinoma and elevated alpha-fetoprotein following sorafenib: Outcomes by prior transarterial chemoembolisation from two randomised, double-blind, placebo-controlled phase 3 studies (REACH-2 and REACH). Ann. Oncol. 2019, 30, iv133. [Google Scholar] [CrossRef] [Green Version]
- Al-Batran, S.-E.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.N.; Kim, T.-Y.; Cunningham, D.; et al. Quality-of-life and performance status results from the phase III RAINBOW study of ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated gastric or gastroesophageal junction adenocarcinoma. Ann. Oncol. 2016, 27, 673–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer WHO. All-Cancers-Fact-Sheet: WHO; 2020. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf (accessed on 10 July 2021).
- Matsumoto, H.; Kawazoe, A.; Shimada, K.; Fukuoka, S.; Kuboki, Y.; Bando, H.; Kojima, T.; Ohtsu, A.; Yoshino, T.; Doi, T.; et al. A retrospective study of the safety and efficacy of paclitaxel plus ramucirumab in patients with advanced or recurrent gastric cancer with ascites. BMC Cancer 2018, 18, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murahashi, S.; Takahari, D.; Wakatsuki, T.; Fukuda, N.; Ichimura, T.; Ogura, M.; Ozaka, M.; Shinozaki, E.; Nakayama, I.; Matsushima, T.; et al. A retrospective analysis of ramucirumab monotherapy in previously treated Japanese patients with advanced or metastatic gastric adenocarcinoma. Int. J. Clin. Oncol. 2017, 23, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, T.; Uehara, H.; Hashimoto, K.; Fujinaka, Y.; Yoshinaga, K.; Kusumoto, E.; Shinzato, C.; Sakaguchi, Y.; Ikejiri, K.; Maehara, Y. Paclitaxel combined with ramucirumab as the second-line chemotherapy for elderly patients with advanced gastric cancer. J. Clin. Oncol. 2018, 36, e16088. [Google Scholar] [CrossRef]
- Shoji, A.; Hasegawa, H.; Kato, S.; Kiyota, R.; Shinkai, K.; Tashiro, T.; Ishihara, A.; Iwasaki, T.; Tanaka, S.; Akasaka, T.; et al. Efficacy and prognostic factor analysis in second-line chemotherapy for elderly patients with metastatic gastric cancer. J. Clin. Oncol. 2018, 36, 143. [Google Scholar] [CrossRef]
- Sakata, Y.; Nakajima, H.; Ariga, H.; Hatanaka, K.; Yamazoe, M. Comparison of administration status and adverse events in each cancer type using ramucirumab. Ann. Oncol. 2018, 29, vii77. [Google Scholar] [CrossRef]
- Kashiwada, T.; Nishioka, A.; Aragane, N.; Kimura, S. Paclitaxel plus ramucirumab combination therapy as second-line therapy in elderly patients with metastatic advanced gastric cancer: A single-center retrospective study. Ann. Oncol. 2019, 30, iv91. [Google Scholar] [CrossRef]
- Kimura, A.; Sakai, D.; Kudo, T.; Nishida, N.; Katou, A.; Inagaki, C.; Otsuru, T.; Tanaka, K.; Miyazaki, Y.; Makino, T.; et al. The real-world data in patients with advanced gastric cancer treated with ramucirumab combination chemotherapy. J. Clin. Oncol. 2019, 37, 156. [Google Scholar] [CrossRef]
- Fukuda, N.; Takahari, D.; Wakatsuki, T.; Osumi, H.; Nakayama, I.; Matsushima, T.; Ichimura, T.; Ogura, M.; Ozaka, M.; Suenaga, M.; et al. Early hypertension is associated with better clinical outcomes in gastric cancer patients treated with ramucirumab plus paclitaxel. Oncotarget 2018, 9, 15219–15227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayase, S.; Yamada, L.; Ujiie, D.; Nirei, A.; Tada, T.; Hanayama, H.; Monma, T.; Saze, Z.; Ohki, S.; Kono, K. Clinical usefulness of ramucirumab plus paclitaxel for unresectable and recurrent gastric cancer. FUKUSHIMA J. Med Sci. 2019, 65, 6–12. [Google Scholar] [CrossRef]
- Kanada, K.K.K.; Kobayashi, S.; Yoneda, M.; Okada, A.; Sakimura, C.; Hisayoshi, S.; Kosaka, T.; Adachi, T.; Torashima, Y.; Ito, S. O28-5 Does Ramucirumab Contribute to Improving the Prognosis of Gastric Cancer Patients? In Japanese Society for Cancer Treatment; 2018. Available online: http://archive.jsco.or.jp/detail.php?session_unique_id=56-O28&sess_id=12831&strong=1 (accessed on 10 July 2021).
- Yamaguchi, K.; Fujitani, K.; Nagashima, F.; Omuro, Y.; Machida, N.; Nishina, T.; Koue, T.; Tsujimoto, M.; Maeda, K.; Satoh, T. Ramucirumab for the treatment of metastatic gastric or gastroesophageal junction adenocarcinoma following disease progression on first-line platinum- or fluoropyrimidine-containing combination therapy in Japanese patients: A phase 2, open-label study. Gastric. Cancer 2018, 21, 1041–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimitsu, S.Y.K.; Arigami, T.; Matsushita, D.; Okubo, K.; Kijima, T.; Shimonosono, M.; Uenosono, Y.; Ishigami, S.; Hokita, S.; Natsugoe, S.; et al. IGCC 2019 Abstract Book, Published Abstract 2019. Available online: igcc2019-prague.org (accessed on 10 July 2021).
- Jung, M.; Ryu, M.-H.; Oh, D.Y.; Kang, M.; Zang, D.Y.; Hwang, I.G.; Lee, K.-W.; Kim, K.H.; Shim, B.Y.; Song, E.K.; et al. Efficacy and tolerability of ramucirumab monotherapy or in combination with paclitaxel in gastric cancer patients from the Expanded Access Program Cohort by the Korean Cancer Study Group (KCSG). Gastric. Cancer 2018, 21, 819–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner, M.; Hollmén, M.; Junttila, T.T.; Kapanen, A.I.; Tommola, S.; Soini, Y.; Helin, H.; Salo, J.; Joensuu, H.; Sihvo, E.; et al. Amplification of HER-2 in gastric carcinoma: Association with Topoisomerase IIalpha gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol. 2005, 16, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Grillo, F.; Fassan, M.; Sarocchi, F.; Fiocca, R.; Mastracci, L. HER2 heterogeneity in gastric/gastroesophageal cancers: From benchside to practice. World J. Gastroenterol. 2016, 22, 5879–5887. [Google Scholar] [CrossRef] [PubMed]
- Grabsch, H.; Sivakumar, S.; Gray, S.; Gabbert, H.E.; Müller, W. HER2 expression in gastric cancer: Rare, heterogeneous and of no prognostic value—conclusions from 924 cases of two independent series. Cell Oncol. 2010, 32, 57–65. [Google Scholar]
- Li, K.; Li, J. Current Molecular Targeted Therapy in Advanced Gastric Cancer: A Comprehensive Review of Therapeutic Mechanism, Clinical Trials, and Practical Application. Gastroenterol. Res. Pr. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makiyama, A.; Sukawa, Y.; Kashiwada, T.; Kawada, J.; Hosokawa, A.; Horie, Y.; Tsuji, A.; Moriwaki, T.; Tanioka, H.; Shinozaki, K.; et al. Randomized, Phase II Study of Trastuzumab Beyond Progression in Patients With HER2-Positive Advanced Gastric or Gastroesophageal Junction Cancer: WJOG7112G (T-ACT Study). J. Clin. Oncol. 2020, 38, 1919–1927. [Google Scholar] [CrossRef] [PubMed]
- Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; et al. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin. Cancer Res. 2016, 22, 5097–5108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shitara, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.-C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef] [PubMed]
- Tehfe, M.; Tabchi, S.; Laterza, M.M.; De Vita, F. Ramucirumab in HER-2-positive gastroesophageal adenocarcinoma: An argument for overcoming trastuzumab resistance. Futur. Oncol. 2018, 14, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Fushida, S.; Oyama, K.; Kinoshita, J.; Yagi, Y.; Okamoto, K.; Tajima, H.; Ninomiya, I.; Fujimura, T.; Ohta, T. VEGF is a target molecule for peritoneal metastasis and malignant ascites in gastric cancer: Prognostic significance of VEGF in ascites and efficacy of anti-VEGF monoclonal antibody. OncoTargets Ther. 2013, 6, 1445–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.S.; Kim, J.H.; Kim, J.W.; Kim, B.C. Chemotherapy in Elderly Patients with Gastric Cancer. J. Cancer 2016, 7, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Gastric Cancer in Young Adults: A Different Clinical Entity from Carcinogenesis to Prognosis. Gastroenterol Res Pract. 2020, 2020, 9512707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo-Munoz, F.; Jorge-Fernandez, M.; Yaya-Tur, R.; Diaz, S.; Ortega, M.; Dilla, T.; Molero, A.; Cervera, J.M. Ramucirumab use in patients with advanced gastric cancer (AGC) or gastro-oesophageal junction (GEJ) adenocarcinoma in Spain: RAMIS observational study. Ann. Oncol. 2019, 30, v305. [Google Scholar] [CrossRef]
- Di Bartolomeo, M.; Niger, M.; Tirino, G.; Petrillo, A.; Berenato, R.; Laterza, M.M.; Pietrantonio, F.; Morano, F.; Antista, M.; Lonardi, S.; et al. Ramucirumab as Second-Line Therapy in Metastatic Gastric Cancer: Real-World Data from the RAMoss Study. Target. Oncol. 2018, 13, 227–234. [Google Scholar] [CrossRef]
- Roviello, G.; Corona, S.P.; Multari, A.G.; Paganini, G.; Chiriacò, G.; Conca, R.; Petrioli, R.; Generali, D.; Rosellini, P.; Aieta, M. Association between ramucirumab-related hypertension and response to treatment in patients with metastatic gastric cancer. Oncotarget 2018, 9, 22332–22339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisi, A.; Cortellini, A.; Roberto, M.; Venditti, O.; Santini, D.; Dell’Aquila, E.; Stellato, M.; Marchetti, P.; Occhipinti, M.A.; Zoratto, F.; et al. Weight loss and body mass index in advanced gastric cancer patients treated with second-line ramucirumab: A real-life multicentre study. J. Cancer Res. Clin. Oncol. 2019, 145, 2365–2373. [Google Scholar] [CrossRef] [PubMed]
- Manikhas, G.M.; Orlova, R.; Beliak, N.P.; Kutukova, S.I.; Erdniev, S.; Zhukova, N.V.; Popova, N.V.; Ivanova, A.; Antimonik, N.; Avramenko, I.; et al. Is it possible to effectively treat second-line gastric cancer, given the prognosis factors? J. Clin. Oncol. 2019, 37, e15570. [Google Scholar] [CrossRef]
- Fanotto, V.; Uccello, M.; Pecora, I.; Rimassa, L.; Leone, F.; Rosati, G.; Santini, D.; Giampieri, R.; Di Donato, S.; Tomasello, G.; et al. Outcomes of Advanced Gastric Cancer Patients Treated with at Least Three Lines of Systemic Chemotherapy. Oncology. 2018, 23, 272. [Google Scholar] [CrossRef] [Green Version]
- Al-Batran, S.-E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.-G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef]
- Lorenzen, S.; Thuss-Patience, P.C.; Pauligk, C.; Goekkurt, E.; Ettrich, T.J.; Lordick, F.; Stahl, M.; Reichardt, P.; Soekler, M.; Pink, D.; et al. FOLFIRI plus ramucirumab versus paclitaxel plus ramucirumab as second-line therapy for patients with advanced or metastatic gastroesophageal adenocarcinoma with or without prior docetaxel: Results from the phase II RAMIRIS Study of the AIO. J. Clin. Oncol. 2020, 38, 4514. [Google Scholar] [CrossRef]
- Klempner, S.J.; Maron, S.B.; Chase, L.; Lomnicki, S.; Wainberg, Z.A.; Catenacci, D.V. Initial Report of Second-Line FOLFIRI in Combination with Ramucirumab in Advanced Gastroesophageal Adenocarcinomas: A Multi-Institutional Retrospective Analysis. Oncology 2018, 24, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Network NCC. Colon, Version 4. 2020. Available online: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. (accessed on 10 July 2021).
- Garcia-Carbonero, R.; Obermannova, R.; Bodoky, G.; Prausova, J.; Ciuleanu, T.-E.; Alfonso, P.G.; Portnoy, D.; Cohn, A.; Van Cutsem, E.; Yamazaki, K.; et al. O-020 Quality-of-life results from RAISE: Randomized, double-blind phase III study of FOLFIRI plus ramucirumab or placebo in patients with metastatic colorectal carcinoma after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine. Ann. Oncol. 2015, 26, iv115. [Google Scholar] [CrossRef] [Green Version]
- Arnold, D.; Lueza, B.; Douillard, J.-Y.; Peeters, M.; Lenz, H.-J.; Venook, A.; Heinemann, V.; Van Cutsem, E.; Pignon, J.-P.; Tabernero, J.; et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann. Oncol. 2017, 28, 1713–1729. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- FDA, FDA Approves Atezolizumab Plus Bevacizumab for Unresectable Hepatocellular Carcinoma [Press Release]. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-atezolizumab-plus-bevacizumab-unresectable-hepatocellular-carcinoma (accessed on 10 July 2021).
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H., 3rd; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- FAD, FDA Grants Accelerated Approval to Nivolumab for HCC Previously Treated with Sorafenib. 2017. Available online: https://ascopost.com/issues/october-10-2017/fda-grants-accelerated-approval-to-nivolumab-for-hepatocellular-carcinoma-previously-treated-with-sorafenib/ (accessed on 10 July 2021).
- Administration UFaD. FDA Grants Accelerated Approval to Pembrolizumab for Hepatocellular Carcinoma. 2018. Available online: https://www.fda.gov/drugs/fda-grants-accelerated-approval-pembrolizumab-hepatocellular-carcinoma (accessed on 10 July 2021).
- Administration UFaD. FDA Grants Accelerated Approval to Nivolumab and Ipilimumab Combination for Hepatocellular Carcinoma. 2020. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-and-ipilimumab-combination-hepatocellular-carcinoma (accessed on 10 July 2021).
- Shan, Y.-F.; Huang, Y.-L.; Xie, Y.-K.; Tan, Y.-H.; Chen, B.-C.; Zhou, M.-T.; Shi, H.-Q.; Yu, Z.-P.; Song, Q.-T.; Zhang, Q.-Y. Angiogenesis and clinicopathologic characteristics in different hepatocellular carcinoma subtypes defined by EpCAM and α-fetoprotein expression status. Med Oncol. 2010, 28, 1012–1016. [Google Scholar] [CrossRef]
- Meng, W.; Li, X.; Bai, Z.; Li, Y.; Yuan, J.; Liu, T.; Yan, J.; Zhou, W.; Zhu, K.; Zhang, H.; et al. Silencing alpha-fetoprotein inhibits VEGF and MMP-2/9 production in human hepatocellular carcinoma cell. PLoS ONE 2014, 9, e90660. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef]
- Kudo, M.; Galle, P.R.; Llovet, J.M.; Finn, R.S.; Vogel, A.; Motomura, K.; Assenat, E.; Merle, P.; Brandi, G.; Daniele, B.; et al. Ramucirumab in elderly patients with hepatocellular carcinoma and elevated alpha-fetoprotein after sorafenib in REACH and REACH-2. Liver Int. 2020, 40, 2008–2020. [Google Scholar] [CrossRef] [PubMed]
- Rich, N.E.; Hester, C.; Odewole, M.; Murphy, C.C.; Parikh, N.D.; Marrero, J.A.; Yopp, A.C.; Singal, A.G. Racial and Ethnic Differences in Presentation and Outcomes of Hepatocellular Carcinoma. Clini. Gastroen. Hepatol. 2019, 17, 551–559.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, S.; Kwong, S.L.; Bowlus, C.; Nguyen, T.T.; Maxwell, A.; Bastani, R.; Chak, E.W.; Jr, M.S.C. Racial/ethnic disparities in hepatocellular carcinoma treatment and survival in California, 1988-2012. World J. Gastroenterol. 2016, 22, 8584–8595. [Google Scholar] [CrossRef] [PubMed]
- Pascual, S.; Herrera, I.; Irurzun, J. New advances in hepatocellular carcinoma. World J. Hepatol. 2016, 8, 421–438. [Google Scholar] [CrossRef]
- De Toni, E.; Finn, R.; Yau, C.C.T.; Yen, C.-J.; Hsu, C.-H.; Chan, S.; He, A.; Galle, P.; Trojan, J.; Stirnimann, G. (Eds.) Ramucirumab for Patients with Advanced Hepatocellular Carcinoma and Elevated Alpha Fetoprotein Following a Non-Sorafenib Based Systemic Therapy: Interim Results from an Expansion Cohort of the Phase 3 REACH-2 Study. In Oncology Research And Treatment; 2020; Karger Allschwilerstrasse 10, CH-4009; Basel, Switzerland; Available online: https://www.ilca2020.org/wp-content/uploads/2020/09/ABSTRACTS-2020-1.pdf (accessed on 10 July 2021).
- Yamashita, T.; Kudo, M.; Ikeda, K.; Izumi, N.; Tateishi, R.; Ikeda, M.; Aikata, H.; Kawaguchi, Y.; Wada, Y.; Numata, K.; et al. REFLECT—a phase 3 trial comparing efficacy and safety of lenvatinib to sorafenib for the treatment of unresectable hepatocellular carcinoma: An analysis of Japanese subset. J. Gastroenterol. 2019, 55, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galle, P.R.; Foerster, F.; Kudo, M.; Chan, S.; Llovet, J.M.; Qin, S.; Schelman, W.R.; Chintharlapalli, S.; Abada, P.B.; Sherman, M.; et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019, 39, 2214–2229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2018, 15, 599–616. [Google Scholar] [CrossRef]
- Montal, R.; Andreu-Oller, C.; Bassaganyas, L.; Esteban-Fabró, R.; Moran, S.; Montironi, C.; Moeini, A.; Pinyol, R.; Peix, J.; Cabellos, L.; et al. Molecular portrait of high alpha-fetoprotein in hepatocellular carcinoma: Implications for biomarker-driven clinical trials. Br. J. Cancer 2019, 121, 340–343. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.-B.; Deng, M.-H.; Qiu, W.-S.; Dong, W.-G. Association of serum vascular endothelial growth factor-C and lymphatic vessel density with lymph node metastasis and prognosis of patients with gastric cancer. World J. Gastroenterol. 2007, 13, 1794–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, H.Y.; Park, J.M.; Park, K.H.; Kim, S.J.; Oh, S.C.; Kim, B.S.; Kim, Y.H.; Kim, J.S. Prognostic Significance of Serum Vascular Endothelial Growth Factor Per Platelet Count in Unresectable Advanced Gastric Cancer Patients. Jpn. J. Clin. Oncol. 2010, 40, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Villarejo-Campos, P.; Padilla-Valverde, D.; Martin, R.M.; Menéndez-Sánchez, P.; Cubo-Cintas, T.; Bondia-Navarro, J.A.; Fernández, J.M. Serum VEGF and VEGF-C values before surgery and after postoperative treatment in gastric cancer. Clin. Transl. Oncol. 2012, 15, 265–270. [Google Scholar] [CrossRef]
- Nasir, A.; Holzer, T.R.; Chen, M.; Man, M.Z.; Schade, A.E. Differential expression of VEGFR2 protein in HER2 positive primary human breast cancer: Potential relevance to anti-angiogenic therapies. Cancer Cell Int. 2017, 17, 56. [Google Scholar] [CrossRef]
- Nageswar, S.; Anurag, S.; Urmila, S. HER-2/neu overexpression correlates with increased expression of VEGF in primary breast carcinoma. Int. J. Med. Res. Rev. 2016, 4, 2092–2099. [Google Scholar]
- Singh, R.; Kim, W.J.; Kim, P.-H.; Hong, H.J. Combined blockade of HER2 and VEGF exerts greater growth inhibition of HER2-overexpressing gastric cancer xenografts than individual blockade. Exp. Mol. Med. 2013, 45, e52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorokin, M.; Poddubskaya, E.; Baranova, M.; Glusker, A.; Kogoniya, L.; Markarova, E.; Allina, D.; Suntsova, M.; Tkachev, V.; Garazha, A.; et al. RNA sequencing profiles and diagnostic signatures linked with response to ramucirumab in gastric cancer. Cold Spring Harb. Mol. Case Stud. 2020, 6, a004945. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Hozak, R.R.; Yoshino, T.; Cohn, A.L.; Obermannova, R.; Bodoky, G.; Garcia-Carbonero, R.; Ciuleanu, T.E.; Portnoy, D.C.; Prausová, J.; et al. Analysis of angiogenesis biomarkers for ramucirumab efficacy in patients with metastatic colorectal cancer from RAISE, a global, randomized, double-blind, phase III study. Ann Oncol. 2018, 29, 602–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R. Gettinger, S.N. Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Muro, K.; Chung, H.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef]
- Finke, J.H.; Rini, B.; Ireland, J.; Rayman, P.; Richmond, A.; Golshayan, A.; Wood, L.; Elson, P.; Garcia, J.; Dreicer, R.; et al. Sunitinib Reverses Type-1 Immune Suppression and Decreases T-Regulatory Cells in Renal Cell Carcinoma Patients. Clin. Cancer Res. 2008, 14, 6674–6682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terme, M.; Pernot, S.; Marcheteau, E.; Sandoval, F.; Benhamouda, N.; Colussi, O.; Dubreuil, O.; Carpentier, A.F.; Tartour, E.; Taieb, J. VEGFA-VEGFR Pathway Blockade Inhibits Tumor-Induced Regulatory T-cell Proliferation in Colorectal Cancer. Cancer Res. 2013, 73, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, S.; Sho, M.; Yamato, I.; Yoshiji, H.; Wakatsuki, K.; Nishiwada, S.; Yagita, H.; Nakajima, Y. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin. Exp. Immunol. 2013, 172, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Takahari, D.; Shoji, H.; Hara, H.; Esaki, T.; Machida, N.; Nagashima, K.; Aoki, K.; Honda, K.; Miyamoto, T.; Boku, N.; et al. Preliminary result of phase 1/2 study of ramucirumab plus nivolumab in patients with previously treated advanced gastric adenocarcinoma (NivoRam study). J. Clin. Oncol. 2018, 36, 4047. [Google Scholar] [CrossRef]
- Herbst, R.S.; Arkenau, H.-T.; Santana-Davila, R.; Calvo, E.; Paz-Ares, L.; Cassier, P.A.; Bendell, J.; Penel, N.; Krebs, M.G.; Martin-Liberal, J.; et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced non-small-cell lung cancer, gastro-oesophageal cancer, or urothelial carcinomas (JVDF): A multicohort, non-randomised, open-label, phase 1a/b trial. Lancet Oncol. 2019, 20, 1109–1123. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Golan, T.; Dahan, L.; Fu, S.; Moreno, V.; Park, K.; Geva, R.; De Braud, F.; Wainberg, Z.A.; Reck, M.; et al. Ramucirumab and durvalumab for previously treated, advanced non–small-cell lung cancer, gastric/gastro-oesophageal junction adenocarcinoma, or hepatocellular carcinoma: An open-label, phase Ia/b study (JVDJ). Eur. J. Cancer 2020, 137, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Nishina, T.; Hironaka, S.; Kadowaki, S.; Yamanaka, T.; Nakajima, T.E. An investigator initiated multicenter phase I/II study of paclitaxel, ramucirumab with nivolumab as the second-line treatment in patients with metastatic gastric cancer. J. Clin. Oncol. 2018, 36, TPS4131. [Google Scholar] [CrossRef]
- Le, D.T.; Ott, P.A.; Korytowsky, B.; Le, H.; Le, T.K.; Zhang, Y.; Maglinte, G.A.; Abraham, P.; Patel, D.; Shangguan, T.; et al. Real-world Treatment Patterns and Clinical Outcomes Across Lines of Therapy in Patients With Advanced/Metastatic Gastric or Gastroesophageal Junction Cancer. Clin. Color. Cancer 2020, 19, 32–38.e3. [Google Scholar] [CrossRef] [Green Version]
Study Name | Study Design | Treatment Arms | N | Patient Population | Findings |
---|---|---|---|---|---|
Phase 3 randomized controlled trials (RCTs) in Gastric Cancer | |||||
REGARD [22] |
Randomized, dou- ble-blind, placebo- controlled, Phase 3 trial of ramu- cirumab or pla- cebo plus best supportive care | Placebo + best supportive care vs. ramu- cirumab + best supportive care | 355 |
Patients with advanced gastric or gastro- esophageal junction adenocarcinoma and disease progression after first-line plati- num-containing or fluoropyrimidine-containing chemother- apy | Median overall survival (OS) Ramucirumab—5.2 months (interquartile range [IQR] 2.3–9.9) Placebo—3.8 months (1.7–7.1) OS hazard ratio (HR]: 0.776, 95% confidence interval (CI) 0.603– 0.998; p = 0.047 Median progression free survival (PFS) Ramucirumab—2.1 months (IQR 1.3–4.2) Placebo—1.3 months (1.1–2.1) PFS HR: 0.483, 95% CI 0.376–0.620; p < 0.0001 |
RAINBOW [24] |
Randomized, dou- ble-blind, placebo- controlled, Phase 3 trial of ramu- cirumab + paclitaxel or pla- cebo + paclitaxel |
Ramucirumab + paclitaxel or placebo + paclitaxel | 665 | Patients with advanced gastric or gastro- esophageal junction adenocarcinoma and disease pro- gression on or within 4 months after first- line chemotherapy (platinum plus fluoropyrimidine with or without an an- thracycline) | Median OS: Ramucirumab + paclitaxel - 9.6 months (95% CI 8.5–10.8) Placebo + paclitaxel - 7.4 months (95% CI 6.3–8.4) OS HR: 0.807, 95% CI 0.678–0.962; p = 0.017 Median PFS: Ramucirumab + paclitaxel—4.4 months (95% CI 4.2–5.3) Placebo + paclitaxel 2.9 months (2.8–3.0) PFS HR: 0.635, 95% CI 0.536–0.752; p < 0.0001 |
RAINFALL [25] |
Randomized, dou- ble-blind, placebo- controlled, Phase 3 trial of cisplatin + capecitabine + ramucirumab or cisplatin + capecit- abine + placebo |
cisplatin + capecitabine + ramucirumab or cisplatin + capecitabine + placebo | 645 | Patients with metastatic, HER2-negative gastric or gastro-esophageal junction adenocarcinoma, an Eastern Cooperative Oncology Group (ECOG] performance sta- tus of 0 or 1, and adequate organ function | Median OS Ramucirumab—11.2 months (IQR 9.9–11.9) Placebo—10.7 months (9.5–11.9) OS HR: 0.962, 95% CI 0.801–1.156, p = 0.6757 Median PFS Ramucirumab—5.7 months (IQR 5.5–6.5) Placebo—5.4 months (4.5–5.7) PFS HR: 0.753, 95% CI 0.607–0.935, p = 0.0106 |
Phase 3 RCT in Colorectal Cancer | |||||
RAISE [26] | Randomized, dou- ble-blind, Phase 3 trial of ramu- cirumab + FOLFIRI or pla- cebo + FOLFIRI | Ramucirumab + FOLFIRI or placebo + FOLFIRI | 1072 | patients with colorectal cancer and disease progression during or after first-line ther- apy with bevacizumab, oxaliplatin, and a fluoropyrimidine | Median 0 S Ramucirumab + FOLFIRI—13.3 months (95% CI 12.4–14.5) Placebo + FOLFIRI—11.7 months (10.8–12.7) OS HR: 0.844, 95% CI 0.730–0.976; log rank p = 0.0219 Median PFS Ramucirumab + FOLFIRI—5.7 months (95% CI 5.5–6.2) Placebo + FOLFIRI - 4.5 months (4.2–5.4) PFS HR: 0.793, 95% CI 0.697–0.903; log rank p = 0.0005 |
Phase 3 RCTs in Hepatocellular Carcinoma | |||||
REACH [27] | Randomized, pla- cebo-controlled, double-blind trial of ramucirumab + best supportive care or placebo+ best supportive care | Placebo + best supportive care vs. ramu- cirumab + best supportive care | 565 | Patients with hepatocellular carcinoma with BCLC stage C or B disease, Child -Pugh class A liver disease, ECOG performance statuses of 0 or 1, that was re- fractory, or not amenable to locoregional therapy | Median 0 S Ramucirumab—9.2 months (95% CI 8.1–10.6) Placebo—7.6 months (6.0–9.3) OS HR: 0.87, 95% CI 0.72–1.05; log rank p = 0.14 Median PFS Ramucirumab—2.8 months (95% CI 2.7–3.9) Placebo—2.1 months (95% CI 1.6–2.7) PFS HR: 0.63, 95% CI 0.52–0.75; log rank p < 0.0001 |
REACH 2 [28] | Randomized, pla- cebo-controlled, double-blind trial of ramucirumab + best supportive care or placebo+ best supportive care | Placebo + best supportive care vs. ramu- cirumab + best supportive care | 292 | Patient with histologically or cytologically confirmed hepatocellular carcinoma, or di- agnosed cirrhosis, and hepatocellular carci- noma, Barcelona Clinic Liver Cancer stage B or C disease, Child-Pugh class A liver disease, ECOG performance statuses of 0 or 1, α-fetopro- tein concentrations of 400 ng/mL or greater, and had previously received first-line sorafenib | Median 0S Ramucirumab—8.5 months (95% CI 7.0–10.6) Placebo—7.3 months (95% CI 5.4–9.1) OS HR: HR 0.710, 95% CI 0.531–0.949; log rank p = 0.199 Median PFS Ramucirumab—2.8 months (95% CI 2.8–4.1) Placebo—1.6 months (1.5–2.7) PFS HR: 0.452, 95% CI 0.339–0.603; p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.-H.; Lu, S.-N.; Chen, C.-H.; Lin, P.-C.; Jiang, J.-K.; D’yachkova, Y.; Lukanowski, M.; Cheng, R.; Chen, L.-T. How May Ramucirumab Help Improve Treatment Outcome for Patients with Gastrointestinal Cancers? Cancers 2021, 13, 3536. https://doi.org/10.3390/cancers13143536
Chen M-H, Lu S-N, Chen C-H, Lin P-C, Jiang J-K, D’yachkova Y, Lukanowski M, Cheng R, Chen L-T. How May Ramucirumab Help Improve Treatment Outcome for Patients with Gastrointestinal Cancers? Cancers. 2021; 13(14):3536. https://doi.org/10.3390/cancers13143536
Chicago/Turabian StyleChen, Ming-Huang, Sheng-Nan Lu, Chien-Hung Chen, Peng-Chan Lin, Jeng-Kai Jiang, Yulia D’yachkova, Mariusz Lukanowski, Rebecca Cheng, and Li-Tzong Chen. 2021. "How May Ramucirumab Help Improve Treatment Outcome for Patients with Gastrointestinal Cancers?" Cancers 13, no. 14: 3536. https://doi.org/10.3390/cancers13143536
APA StyleChen, M. -H., Lu, S. -N., Chen, C. -H., Lin, P. -C., Jiang, J. -K., D’yachkova, Y., Lukanowski, M., Cheng, R., & Chen, L. -T. (2021). How May Ramucirumab Help Improve Treatment Outcome for Patients with Gastrointestinal Cancers? Cancers, 13(14), 3536. https://doi.org/10.3390/cancers13143536