Quantitative Assessment of 3D Dose Rate for Proton Pencil Beam Scanning FLASH Radiotherapy and Its Application for Lung Hypofractionation Treatment Planning
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. FLASH-RT Treatment Planning
2.2. PBS Dose Rate Calculation Methods
2.2.1. Dose-Averaged Dose Rate (DADR)
2.2.2. Averaged Dose Rate (ADR)
2.2.3. Dose-Threshold Dose Rate (DTDR)
2.3. Pencil Beam Scanning Parameters
3. Results
3.1. Phantom Dose Assessment
3.2. Plan Quality Assessment
3.3. 3D Dose Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.F.; Brito, I.; Hupé, P.; Bourhis, J.; et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014, 6, 245ra93. [Google Scholar] [CrossRef]
- Griffin, R.J.; Limoli, C.L.; Simone, C.B., 2nd. Radiation Research Special Issue: New Beam Delivery Modalities are Shaping the Future of Radiotherapy. Radiat. Res. 2020, 194, 567–570. [Google Scholar] [CrossRef]
- Montay-Gruel, P.; Petersson, K.; Jaccard, M.; Boivin, G.; Germond, J.F.; Petit, B.; Doenlen, R.; Favaudon, V.; Bochud, F.; Bailat, C.; et al. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother. Oncol. 2017, 124, 365–369. [Google Scholar] [CrossRef]
- Simmons, D.A.; Lartey, F.M.; Schüler, E.; Rafat, M.; King, G.; Kim, A.; Ko, R.; Semaan, S.; Gonzalez, S.; Jenkins, M.; et al. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother. Oncol. 2019, 139, 4–10. [Google Scholar] [CrossRef]
- Vozenin, M.C.; Fornel, P.D.; Petersson, K.; Favaudon, V.; Jaccard, M.; Germond, J.F.; Petit, B.; Burki, M.; Ferrand, G.; Patin, D.; et al. The Advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clin. Cancer Res. 2019, 25, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouillade, C.; Curras-Alonso, S.; Giuranno, L.; Quelennec, E.; Heinrich, S.; Bonnet-Boissinot, S.; Beddok, A.; Leboucher, S.; Karakurt, H.U.; Bohec, M.; et al. FLASH irradiation spares lung progenitor cells and limits the incidence of radio-induced senescence. Clin. Cancer Res. 2020, 26, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Bourhis, J.; Sozzi, W.J.; Jorge, P.G.; Gaide, O.; Bailat, C.; Duclos, F.; Patin, D.; Ozsahin, M.; Bochud, F.; Germond, J.F.; et al. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol. 2019, 139, 18–22. [Google Scholar] [CrossRef]
- Patriarca, A.; Fouillade, C.; Auger, M.; Martin, F.; Pouzoulet, F.; Nauraye, C.; Heinrich, S.; Favaudon, V.; Meyroneinc, S.; Dendale, R.; et al. Experimental Set-up for FLASH Proton Irradiation of Small Animals Using a Clinical System. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 619–626. [Google Scholar] [CrossRef]
- Buonanno, M.; Grilj, V.; Brenner, D.J. Biological effects in normal cells exposed to FLASH dose rate protons. Radiother. Oncol. 2019, 139, 51–55. [Google Scholar] [CrossRef]
- Beyreuther, E.; Brand, M.; Hans, S.; Hideghéty, K.; Karsch, L.; Leßmann, E.; Schürer, M.; Szabó, E.R.; Pawelke, J. Feasibility of proton FLASH effect tested by zebrafish embryo irradiation. Radiother. Oncol. 2019, 139, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Diffenderfer, E.S.; Verginadis, I.I.; Kim, M.M.; Shoniyozov, K.; Velalopoulou, A.; Goia, D.; Putt, M.; Hagan, S.; Avery, S.; Teo, K.; et al. Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, S.; McCauley, S.; Vairamani, K.; Speth, J.; Girdhani, S.; Abel, E.; Sharma, R.A.; Perentesis, J.P.; Wells, S.I.; Mascia, A.; et al. FLASH proton pencil beam scanning irradiation minimizes radiation-induced leg contracture and skin toxicity in mice. Cancers 2021, 13, 1012. [Google Scholar] [CrossRef]
- Esplen, N.; Mendonca, M.; Bazalova-Carte, M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: A topical review. Phys. Med. Biol. 2020, 65, 23TR03. [Google Scholar] [CrossRef]
- Jolly, S.; Owen, H.; Schipper, M.; Welsch, C. Technical challenges for FLASH proton therapy. Phys. Med. 2020, 78, 71–82. [Google Scholar] [CrossRef]
- Zou, W.; Diffenderfer, E.S.; Cengel, K.A.; Kim, M.M.; Avery, S.; Konzer, J.; Cai, Y.; Boisseu, P.; Ota, K.; Yin, L.; et al. Current delivery limitations of proton PBS for FLASH. Radiother. Oncol. 2021, 155, 212–218. [Google Scholar] [CrossRef]
- Koschik, A.; Bula, C.; Duppich, J.; Gerbershagen, A.; Grossmann, M.; Schippers, J.; Welte, J. GANTRY 3: Future development of the PSI PROSCAN proton therapy facility. In Proceedings of the 6th International Particle Accelerator Conference, IPAC2015, Richmond, VA, USA, 3–8 May 2015. [Google Scholar] [CrossRef]
- Shen, J.; Tryggestad, E.; Younkin, J.E.; Keole, S.R.; Furutani, K.M.; Kang, Y.; Herman, M.G.; Bues, M. Using experimentally determined proton spot scanning timing parameters to accurately model beam delivery time. Med. Phys. 2017, 44, 5081–5088. [Google Scholar] [CrossRef]
- Van de Water, S.; Safai, S.; Schippers, J.M.; Schippers, J.M.; Weber, D.C.; Lomax, A.J. Towards FLASH proton therapy: The impact of treatment planning and machine characteristics on achievable dose rates. Acta Oncol. 2019, 58, 1463–1469. [Google Scholar] [CrossRef]
- Van Marlen, P.; Dahele, M.; Folkerts, M.; Abel, E.; Slotman, B.J.; Verbakel, W.F.A.R. Bringing FLASH to the Clinic: Treatment Planning Considerations for Ultrahigh Dose-Rate Proton Beams. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 621–629. [Google Scholar] [CrossRef]
- Folkerts, M.M.; Abel, E.; Busold, S.; Perez, J.R.; Krishnamurthi, V.; Ling, C.C. A Framework for defining FLASH dose rate for pencil beam scanning. Med. Phys. 2020, 47, 6396–6404. [Google Scholar] [CrossRef]
- Bourhis, J.; Montay-Gruel, P.; Jorge, P.G.; Bailat, C.; Petit, B.; Ollivier, J.; Jeanneret-Sozzi, W.; Ozsahin, M.; Bochud, F.; Moeckli, R.; et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother. Oncol. 2019, 139, 11–17. [Google Scholar] [CrossRef]
- Vozenin, M.C.; Hendry, J.H.; Limoli, C.L. Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken. Clin. Oncol. 2019, 31, 407–415. [Google Scholar] [CrossRef]
- Jaccard, M.; Durán, M.T.; Petersson, K.; Germond, J.F.; Liger, P.; Vozenin, M.C.; Bourhis, J.; Bochud, F.; Bailat, C. High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for pre-clinical use: Commissioning. Med. Phys. 2018, 45, 863–874. [Google Scholar] [CrossRef]
- Pratx, G.; Kapp, D.S. A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio. Phys. Med. Biol. 2019, 64, 185005. [Google Scholar] [CrossRef] [Green Version]
- Petersson, K.; Adrian, G.; Butterworth, K.; McMahon, S.J. A quantitative analysis of the role of oxygen tension in FLASH radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 539–547. [Google Scholar] [CrossRef]
- Durante, M.; Bräuer-Krisch, E.; Hill, M. Faster and safer? FLASH ultrahigh dose rate in radiotherapy. Br. J. Radiol. 2018, 91, 20170628. [Google Scholar]
- Wilson, J.D.; Hammond, E.M.; Higgins, G.S.; Petersson, K. Ultra-high dose rate (FLASH) radiotherapy: Silver bullet or fool’s gold? Front. Oncol. 2020, 9, 1563. [Google Scholar] [CrossRef] [Green Version]
- Labarbe, R.; Hotoiu, L.; Barbier, J.; Favaudon, V. A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect. Radiother. Oncol. 2020, 153, 301–310. [Google Scholar] [CrossRef]
- Mazal, A.; Prezado, Y.; Ares, C.; de Marzi, L.; Patriarca, A.; Miralbell, R.; Favaudon, V. FLASH and minibeams in radiation therapy: The effect of microstructures on time and space and their potential application to protontherapy. Br. J. Radiol. 2020, 93, 20190807. [Google Scholar] [CrossRef]
- Shen, J.; Liu, W.; Stoker, J.; Ding, X.; Anand, A.; Hu, Y.; Herman, M.G.; Bues, M. An efficient method to determine double Gaussian fluence parameters in the Eclipse proton pencil beam model. Med. Phys. 2016, 43, 6544. [Google Scholar] [CrossRef]
- Wieser, H.-P.; Cisternas, E.; Wahl, N.; Ulrich, S.; Stadler, A.; Mescher, H.; Müller, L.R.; Klinge, T.; Gabrys, H.; Burigo, L.; et al. Development of the opensource dose calculation and optimization toolkit matRad. Med. Phys. 2017, 44, 2556–2568. [Google Scholar] [CrossRef]
- Videtic, G.M.; Paulus, R.; Singh, A.K.; Chang, J.Y.; Parker, W.; Olivier, K.R.; Timmerman, R.D.; Komaki, R.R.; Urbanic, J.J.; Stephans, K.L.; et al. Long-term Follow-up on NRG Oncology RTOG 0915 (NCCTG N0927): A Randomized Phase 2 Study Comparing 2 Stereotactic Body Radiation Therapy Schedules for Medically Inoperable Patients With Stage I Peripheral Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 1077–1084. [Google Scholar] [CrossRef]
- RTOG0915. Available online: https://www.nrgoncology.org/Clinical-Trials/Protocol/rtog-0915?filter=rtog-0915 (accessed on 5 June 2021).
- Kang, M.; Huang, S.; Solberg, T.D.; Mayer, R.; Thomas, A.; Teo, B.K.; McDonough, J.E.; Simone, C.B., 2nd; Lin, L. A study of the beam-specific interplay effect in proton pencil beam scanning delivery in lung cancer. Acta Oncol. 2017, 56, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Huang, S.; Harms, J.; Zhou, J.; Zhang, R.; Dhabaan, A.; Slopsema, R.; Kang, M.; Liu, T.; McDonald, M.; et al. A standardized commissioning framework of Monte Carlo dose calculation algorithms for proton pencil beam scanning treatment planning systems. Med. Phys. 2020, 47, 1545–1557. [Google Scholar] [CrossRef]
- Geisler, A.E.; Hottenbacher, J.; Klein, H.U.; Krischel, D.; Röcken, H.; Schillo, M.; Stephani, T.; Timmer, J.H. Commissioning of the ACCEL 250 MEV proton cyclotron. In Proceedings of the Eighteenth International Conference on Cyclotrons and Their Applications, Giardini Naxos, Italy, 1–5 October 2007. [Google Scholar]
- Schippers, J.M.; Dölling, R.; Duppich, J.; Goitein, G.; Jermann, M.; Mezger, A.; Pedroni, E.; Reist, H.W.; Vrankovic, V. The SC cyclotron and beam lines of PSI’s new proton therapy facility PROSCAN. Nucl. Instrum. Methods Phys. Res. B 2007, 261, 773–776. [Google Scholar] [CrossRef]
- Baumgarten, C.; Geisler, A.; Klein, H.U.; Krischel, D.; Röcken, H.; Schillo, M.; Stephani, T.; Timmer, J.H. Isochronism of the ACCEL 250 MeV medical proton cyclotron. Nucl. Instrum. Methods Phys. Res. A 2007, 570, 10–14. [Google Scholar] [CrossRef]
- Simone, C.B., 2nd. Thoracic Radiation Normal Tissue Injury. Semin. Radiat. Oncol. 2017, 27, 370–377. [Google Scholar] [CrossRef]
- Simone, C.B., 2nd. New Era in Radiation Oncology for Lung Cancer: Recognizing the Importance of Cardiac Irradiation. J. Clin. Oncol. 2017, 35, 1381–1383. [Google Scholar] [CrossRef]
- Kang, M.; Cessac, R.; Pang, D. Commissioning and beam characterization of the first gantry-mounted accelerator pencil beam scanning proton system. Med. Phys. 2020, 47, 3496–3510. [Google Scholar] [CrossRef]
- Chang, J.Y.; Jabbour, S.K.; De Ruysscher, D.; Schild, S.E.; Simone, C.B., 2nd; Rengan, R.; Feigenberg, S.; Khan, A.J.; Choi, N.C.; Bradley, J.D.; et al. Consensus Statement on Proton Therapy in Early-Stage and Locally Advanced Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 505–516. [Google Scholar] [CrossRef]
- First Patient Treated in FAST-01 FLASH Therapy Trial. Available online: https://www.appliedradiology.com/articles/varian-first-patient-treated-in-fast-01-flash-therapy-trial (accessed on 6 January 2021).
- Chapman, J.D.; Gillespie, C.J. Radiation-induced events and their time scale in mammalian cells. Adv. Radiat. Biol. 1981, 9, 143–198. [Google Scholar] [CrossRef]
- Singh, A.; Singh, H. Time-scale and nature of radiation-biological damage: Approaches to radiation protection and post-irradiation therapy. Prog. Biophys. Mol. Biol. 1982, 39, 6079–6107. [Google Scholar] [CrossRef]
- Rockwell, S.; Dobrucki, I.T.; Kim, E.Y.; Marrison, S.T.; Vu, V.T. Hypoxia and radiation therapy: Past history, ongoing research, and future promise. Curr. Mol. Med. 2009, 9, 442–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, C.C.; Michaels, H.B.; Epp, E.R.; Peterson, E.C. Oxygen diffusion into mammalian cells following ultrahigh dose rate irradiation and lifetime estimates of oxygen-sensitive species. Radiat. Res. 1978, 76, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Adrian, G.; Konradsson, E.; Lempart, M.; Bäck, S.; Ceberg, C.; Petersson, K. The FLASH effect depends on oxygen concentration. Br. J. Radiol. 2020, 93. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.; Jones, B.; Yokoi, T.; Hill, M.; Vojnovic, B. Revisiting the ultra-high dose rate effect: Implications for charged particle radiotherapy using protons and light ions. Br. J. Radiol. 2012, 85, e933–e939. [Google Scholar] [CrossRef] [Green Version]
- Rama, N.; Saha, T.; Shukla, S.; Goda, C.; Milewski, D.; Mascia, A.E.; Vatner, R.E.; Sengupta, D.; Katsis, A.; Abel, E.; et al. Improved Tumor Control Through T-cell Infiltration Modulated by Ultra-High Dose Rate Proton FLASH Using a Clinical Pencil Beam Scanning Proton System. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, S164–S165. [Google Scholar] [CrossRef]
OAR | RTOG0915 Constraints | 34 Gy × 1 (100 MU) | 34 Gy × 1 (400 MU) | 15 Gy × 3 (100 MU) | 15 Gy × 3 (400 MU) |
---|---|---|---|---|---|
Esophagus | D 5 cc (Gy) | 19.1 ± 9.8 | 19.5 ± 9.8 | 24.2 ± 14.2 | 25.9 ± 12.1 |
D max (Gy) | 25.2 ± 9.5 | 25.5 ± 9.3 | 33.3 ± 12.1 | 34.8 ± 11.6 | |
Heart | D 15 cc (Gy) | 13.8 ± 14.1 | 13.6 ± 13.8 | 17.5 ± 18.4 | 18.2 ± 18.6 |
D max (Gy) | 20.9 ± 14.6 | 21.3 ± 14.2 | 26.6 ± 18.6 | 28.6 ± 19.2 | |
Lung-GTV | V 7 Gy (cc) | 909.2 ± 382.2 | 924.3 ± 399.2 | 1111.1 ± 495.4 | 1178.8 ± 495.0 |
V 7.4 Gy (cc) | 825.0 ± 348.0 | 833.8 ± 370.4 | 1081.6 ± 495.9 | 1162.8 ± 488.9 | |
Spinal cord | D 0.35 cc (Gy) | 17.4 ± 5.1 | 17.9 ± 5.4 | 22.7 ± 7.5 | 25.4 ± 8.0 |
D 1.2 cc (Gy) | 16.3 ± 4.6 | 16.9 ± 5.0 | 21.4 ± 6.9 | 24.0 ± 7.6 | |
D max (Gy) | 18.7 ± 5.7 | 19.1 ± 5.8 | 24.3 ± 8.3 | 27.6 ± 8.8 |
34 Gy × 1, Min MU: 100MU | 15 Gy × 3, Min MU: 100MU | 34 Gy × 1, Min MU: 400MU | 15 Gy × 3, Min MU: 400MU | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADR | DADR | DTDR | ADR | DADR | DTDR | ADR | DADR | DTDR | ADR | DADR | DTDR | |
(%) | ||||||||||||
iCTV | 0.04 (0.1) | 98.8 (2.5) | 0.0 (0) | 0.3 (0.8) | 98.8 (2.5) | 25.7 (12.3) | 81.4 (23.1) | 100 (0.03) | 97.2 (2.4) | 93.3 (7.4) | 100.0 (0.13) | 99.9 (0.2) |
esophagus | 0.8 (1.6) | 91.4 (5.7) | 0.3 (0.7) | 3.1 (1.5) | 91.0 (5.5) | 26.7 (15.1) | 87.4 (10.4) | 99.8 (0.2) | 97.6 (3.4) | 94.2 (2.5) | 99.7 (0.21) | 99.1 (0.61) |
heart | 1.3 (2.7) | 82.9 (11.9) | 0.4 (0.5) | 3.1 (1.7) | 83.5 (11.9) | 28.2 (15.4) | 79.1 (13.5) | 99.9 (0.18) | 97.1 (3.0) | 91.6 (5.0) | 98.8 (0.84) | 98.4 (1.4) |
lung | 1.2 (1.84) | 92.1 (3.8) | 0.2 (0.2) | 3.6 (1.8) | 91.5 (3.8) | 31.1 (13.0) | 87.4 (10.6) | 100 (0.07) | 98.2 (1.6) | 94.2 (2.9) | 99.5 (0.27) | 99.4 (0.22) |
spinal cord | 0.7 (1.1) | 89.3 (3.4) | 0.3 (0.8) | 3.1 (2.3) | 90.1 (3.6) | 24.7 (14.8) | 80.6 (16.4) | 99.9 (0.14) | 98.5 (1.8) | 93.5 (3.0) | 99.4 (0.46) | 98.8 (0.96) |
AVG_ OARs | 1.0 | 88.9 | 0.3 | 3.2 | 89.0 | 27.7 | 83.6 | 99.9 | 97.9 | 93.4 | 99.4 | 98.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.; Wei, S.; Choi, J.I.; Simone, C.B., II; Lin, H. Quantitative Assessment of 3D Dose Rate for Proton Pencil Beam Scanning FLASH Radiotherapy and Its Application for Lung Hypofractionation Treatment Planning. Cancers 2021, 13, 3549. https://doi.org/10.3390/cancers13143549
Kang M, Wei S, Choi JI, Simone CB II, Lin H. Quantitative Assessment of 3D Dose Rate for Proton Pencil Beam Scanning FLASH Radiotherapy and Its Application for Lung Hypofractionation Treatment Planning. Cancers. 2021; 13(14):3549. https://doi.org/10.3390/cancers13143549
Chicago/Turabian StyleKang, Minglei, Shouyi Wei, J. Isabelle Choi, Charles B. Simone, II, and Haibo Lin. 2021. "Quantitative Assessment of 3D Dose Rate for Proton Pencil Beam Scanning FLASH Radiotherapy and Its Application for Lung Hypofractionation Treatment Planning" Cancers 13, no. 14: 3549. https://doi.org/10.3390/cancers13143549
APA StyleKang, M., Wei, S., Choi, J. I., Simone, C. B., II, & Lin, H. (2021). Quantitative Assessment of 3D Dose Rate for Proton Pencil Beam Scanning FLASH Radiotherapy and Its Application for Lung Hypofractionation Treatment Planning. Cancers, 13(14), 3549. https://doi.org/10.3390/cancers13143549