TUMOSPEC: A Nation-Wide Study of Hereditary Breast and Ovarian Cancer Families with a Predicted Pathogenic Variant Identified through Multigene Panel Testing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Family Enrolment
2.1.1. Index Case Definition and Eligibility of Family Members
2.1.2. Process for Invitation of Family Members Depends on the Altered Gene and on the Class of Variant
2.2. Variants Eligibility Criteria
- The minor allele frequency (MAF) is less than 0.05% in the general population in all seven ethnic groups: non-Finnish European (EUR), Finnish (FIN), East Asian (EA), South Asian (SA), Latino (LAT), African (AFR) and Ashkenazi Jewish (AJ) according to the 1000Genomes [19] and GnomAD [20] databases. Of note, an exception was made for two variants with MAF > 0.05% (namely NM_007194.4:c.1100del (p.Thr367fs; rs555607708) in CHEK2 [21,22] and NM_020937.4:c.5791C>T (p.Arg1931*; rs144567652) in FANCM [23,24,25]) during the course of the feasibility study (i.e., since October 2019) because of their already reported association with breast cancer risk in previous studies.
- The effect of the variant is predicted to have a deleterious impact on the gene product function. More specifically, eligible variants are:
- Variant predicted to shorten the coding sequence of the gene (nonsense variants, small insertions/deletions (indels), canonical splice site alterations and large rearrangements leading to a truncated protein). Such variants are also referred to as “loss-of-function variants” or “LoF”;
- Genetic alterations in which a single base pair substitution alters the genetic code, referred to as “missense variants” and in-frame indels (small insertions/deletions that do not alter the reading frame) if:
- They have been classified as “pathogenic” or “Class 5” according to the five-tier class system defined by Plon et al. [11], by a group of experts for a specific gene (typically ClinVar or ENIGMA classification expert groups);
- Or an in vitro assay has demonstrated the deleterious impact on the gene product function or on splicing;
- Or the score obtained with the Combined Annotation Dependent Depletion (CADD) tool [26] is indicative of the deleteriousness of the variant. Here, we considered variants with a CADD phred score ≥20 eligible for the study. A score of 20 means that the variant is among the top 1% of most deleterious substitutions when ranking all possible substitutions in the human genome. For genes for which a manually curated protein multiple sequence alignment is available on the Align-GVGD website (http://agvgd.hci.utah.edu/agvgd_input.php, accessed on 1 July 2020), namely ATM, CHEK2, MLH1, MRE11A, MSH2, MSH6, NBN, PALB2, PMS2, RAD50, TP53 and XRCC2, missense variants with Align-GVGD grade C45, C55 or C65 are also eligible [27], even if the CADD phred score is <20.
2.3. Biological Samples and Genetic Analyses
2.4. Data Collection and Storage
3. Results
3.1. Data Collected
3.2. Participants’ Characteristics
3.3. Identified Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lynch, H.T.; Snyder, C.L.; Lynch, J.F.; Riley, B.D.; Rubinstein, W.S. Hereditary breast-ovarian cancer at the bedside: Role of the medical oncologist. J. Clin. Oncol. 2003, 21, 740–753. [Google Scholar] [CrossRef]
- Easton, D.F.; Pharoah, P.D.; Antoniou, A.C.; Tischkowitz, M.; Tavtigian, S.V.; Nathanson, K.L.; Devilee, P.; Meindl, A.; Couch, F.J.; Southey, M.; et al. Gene-Panel Sequencing and the Prediction of Breast-Cancer Risk. N. Engl. J. Med. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breast Cancer Association Consortium. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Hart, S.N.; Gnanaolivu, R.; Huang, H.; Lee, K.Y.; Na, J.; Gao, C.; Lilyquist, J.; Yadav, S.; Boddicker, N.J.; et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021, 384, 440–451. [Google Scholar] [CrossRef]
- INCa. Oncogénétique en 2018/Consultations, Laboratoires et Suivi (2017 et 2018); Institut National du Cancer: Paris, France, 2020. [Google Scholar]
- Tung, N.; Domchek, S.M.; Stadler, Z.; Nathanson, K.L.; Couch, F.; Garber, J.E.; Offit, K.; Robson, M.E. Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat. Rev. Clin. Oncol. 2016, 13, 581–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Leslie, G.; Doroszuk, A.; Schneider, S.; Allen, J.; Decker, B.; Dunning, A.M.; Redman, J.; Scarth, J.; Plaskocinska, I.; et al. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, A.C.; Casadei, S.; Heikkinen, T.; Barrowdale, D.; Pylkas, K.; Roberts, J.; Lee, A.; Subramanian, D.; De Leeneer, K.; Fostira, F.; et al. Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med. 2014, 371, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Song, H.; Leslie, G.; Engel, C.; Hahnen, E.; Auber, B.; Horvath, J.; Kast, K.; Niederacher, D.; Turnbull, C.; et al. Ovarian and breast cancer risks associated with pathogenic variants in RAD51C and RAD51D. J. Natl. Cancer Inst. 2020. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Plon, S.E.; Eccles, D.M.; Easton, D.; Foulkes, W.D.; Genuardi, M.; Greenblatt, M.S.; Hogervorst, F.B.; Hoogerbrugge, N.; Spurdle, A.B.; Tavtigian, S.V. Sequence variant classification and reporting: Recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum. Mutat. 2008, 29, 1282–1291. [Google Scholar] [CrossRef] [Green Version]
- Spurdle, A.B.; Healey, S.; Devereau, A.; Hogervorst, F.B.; Monteiro, A.N.; Nathanson, K.L.; Radice, P.; Stoppa-Lyonnet, D.; Tavtigian, S.; Wappenschmidt, B.; et al. ENIGMA—Evidence-based network for the interpretation of germline mutant alleles: An international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Hum. Mutat. 2012, 33, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.M.; Eccles, D.M.; Romero, I.L.; Al-Mulla, F.; Balmana, J.; Biancolella, M.; Bslok, R.; Caligo, M.A.; Calvello, M.; Capone, G.L.; et al. Genetic Testing and Clinical Management Practices for Variants in Non-BRCA1/2 Breast (and Breast/Ovarian) Cancer Susceptibility Genes: An International Survey by the Evidence-Based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) Clinical Working Group. JCO Precis Oncol. 2018, 2. [Google Scholar] [CrossRef]
- Moretta, J.; Berthet, P.; Bonadona, V.; Caron, O.; Cohen-Haguenauer, O.; Colas, C.; Corsini, C.; Cusin, V.; De Pauw, A.; Delnatte, C.; et al. The French Genetic and Cancer Consortium guidelines for multigene panel analysis in hereditary breast and ovarian cancer predisposition. Bull. Cancer 2018, 105, 907–917. [Google Scholar] [CrossRef]
- Girard, E.; Eon-Marchais, S.; Olaso, R.; Renault, A.L.; Damiola, F.; Dondon, M.G.; Barjhoux, L.; Goidin, D.; Meyer, V.; Le Gal, D.; et al. Familial breast cancer and DNA repair genes: Insights into known and novel susceptibility genes from the GENESIS study, and implications for multigene panel testing. Int. J. Cancer 2019, 144, 1962–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golmard, L.; Castera, L.; Krieger, S.; Moncoutier, V.; Abidallah, K.; Tenreiro, H.; Lauge, A.; Tarabeux, J.; Millot, G.A.; Nicolas, A.; et al. Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers. Eur. J. Hum. Genet. 2017, 25, 1345–1353. [Google Scholar] [CrossRef] [Green Version]
- Castera, L.; Harter, V.; Muller, E.; Krieger, S.; Goardon, N.; Ricou, A.; Rousselin, A.; Paimparay, G.; Legros, A.; Bruet, O.; et al. Landscape of pathogenic variations in a panel of 34 genes and cancer risk estimation from 5131 HBOC families. Genet. Med. 2018, 20, 1677–1686. [Google Scholar] [CrossRef] [Green Version]
- Castera, L.; Krieger, S.; Rousselin, A.; Legros, A.; Baumann, J.J.; Bruet, O.; Brault, B.; Fouillet, R.; Goardon, N.; Letac, O.; et al. Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur. J. Hum. Genet. 2014, 22, 1305–1313. [Google Scholar] [CrossRef] [Green Version]
- Genomes Project, C.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.K.; Hogervorst, F.; van Hien, R.; Cornelissen, S.; Broeks, A.; Adank, M.A.; Meijers, H.; Waisfisz, Q.; Hollestelle, A.; Schutte, M.; et al. Age- and Tumor Subtype-Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers. J. Clin. Oncol. 2016, 34, 2750–2760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Parra, G.; Del Valle, J.; Rofes, P.; Gausachs, M.; Stradella, A.; Moreno-Cabrera, J.M.; Velasco, A.; Tornero, E.; Menendez, M.; Munoz, X.; et al. Comprehensive analysis and ACMG-based classification of CHEK2 variants in hereditary cancer patients. Hum. Mutat. 2020, 41, 2128–2142. [Google Scholar] [CrossRef] [PubMed]
- Figlioli, G.; Bogliolo, M.; Catucci, I.; Caleca, L.; Lasheras, S.V.; Pujol, R.; Kiiski, J.I.; Muranen, T.A.; Barnes, D.R.; Dennis, J.; et al. The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. NPJ Breast Cancer 2019, 5, 38. [Google Scholar] [CrossRef] [PubMed]
- Peterlongo, P.; Catucci, I.; Colombo, M.; Caleca, L.; Mucaki, E.; Bogliolo, M.; Marin, M.; Damiola, F.; Bernard, L.; Pensotti, V.; et al. FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. Hum. Mol. Genet. 2015, 24, 5345–5355. [Google Scholar] [CrossRef] [Green Version]
- Figlioli, G.; Kvist, A.; Tham, E.; Soukupova, J.; Kleiblova, P.; Muranen, T.A.; Andrieu, N.; Azzollini, J.; Balmana, J.; Barroso, A.; et al. The Spectrum of FANCM Protein Truncating Variants in European Breast Cancer Cases. Cancers 2020, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Tavtigian, S.V.; Byrnes, G.B.; Goldgar, D.E.; Thomas, A. Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications. Hum. Mutat. 2008, 29, 1342–1354. [Google Scholar] [CrossRef] [Green Version]
- Schouten, J.P.; McElgunn, C.J.; Waaijer, R.; Zwijnenburg, D.; Diepvens, F.; Pals, G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002, 30, e57. [Google Scholar] [CrossRef] [Green Version]
- Casilli, F.; Di Rocco, Z.C.; Gad, S.; Tournier, I.; Stoppa-Lyonnet, D.; Frebourg, T.; Tosi, M. Rapid detection of novel BRCA1 rearrangements in high-risk breast-ovarian cancer families using multiplex PCR of short fluorescent fragments. Hum. Mutat 2002, 20, 218–226. [Google Scholar] [CrossRef]
- Colas, C.; Golmard, L.; de Pauw, A.; Caputo, S.M.; Stoppa-Lyonnet, D. “Decoding hereditary breast cancer” benefits and questions from multigene panel testing. Breast 2019, 45, 29–35. [Google Scholar] [CrossRef]
- Daly, M.B.; Pal, T.; Berry, M.P.; Buys, S.S.; Dickson, P.; Domchek, S.M.; Elkhanany, A.; Friedman, S.; Goggins, M.; Hutton, M.L.; et al. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 77–102. [Google Scholar] [CrossRef]
- Southey, M.C.; Park, D.J.; Nguyen-Dumont, T.; Campbell, I.; Thompson, E.; Trainer, A.H.; Chenevix-Trench, G.; Simard, J.; Dumont, M.; Soucy, P.; et al. COMPLEXO: Identifying the missing heritability of breast cancer via next generation collaboration. Breast Cancer Res. Bcr. 2013, 15, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaiti, B.; Bonadona, V.; Perdry, H.; Andrieu, N.; Bonaiti-Pellie, C. Estimating penetrance from multiple case families with predisposing mutations: Extension of the ‘genotype-restricted likelihood’ (GRL) method. Eur. J. Hum. Genet. 2011, 19, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.; Weeks, D.; Boehnke, M. Programs for Pedigree Analysis: MENDEL, FISHER, and dGENE. Genet. Epidemiol. 1988, 5, 471–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.J.; Li, J.; Ning, J.; Bojadzieva, J.; Strong, L.C.; Wang, W. Bayesian estimation of a semiparametric recurrent event model with applications to the penetrance estimation of multiple primary cancers in Li-Fraumeni syndrome. Biostatistics 2020, 21, 467–482. [Google Scholar] [CrossRef]
- Thompson, D.; Easton, D.F.; Breast Cancer Linkage, C. Cancer Incidence in BRCA1 mutation carriers. J. Natl. Cancer Inst. 2002, 94, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- d’Almeida, A.K.; Cavaciuti, E.; Dondon, M.G.; Lauge, A.; Janin, N.; Stoppa-Lyonnet, D.; Andrieu, N. Increased risk of breast cancer among female relatives of patients with ataxia-telangiectasia: A causal relationship? Br. J. Cancer 2005, 93, 730–732; author reply 732. [Google Scholar] [CrossRef] [Green Version]
- Tavtigian, S.V.; Oefner, P.J.; Babikyan, D.; Hartmann, A.; Healey, S.; Le Calvez-Kelm, F.; Lesueur, F.; Byrnes, G.B.; Chuang, S.C.; Forey, N.; et al. Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am. J. Hum. Genet. 2009, 85, 427–446. [Google Scholar] [CrossRef] [Green Version]
- Le Calvez-Kelm, F.; Lesueur, F.; Damiola, F.; Vallee, M.; Voegele, C.; Babikyan, D.; Durand, G.; Forey, N.; McKay-Chopin, S.; Robinot, N.; et al. Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: Results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Res. 2011, 13, R6. [Google Scholar] [CrossRef] [Green Version]
- Damiola, F.; Pertesi, M.; Oliver, J.; Le Calvez-Kelm, F.; Voegele, C.; Young, E.L.; Robinot, N.; Forey, N.; Durand, G.; Vallee, M.P.; et al. Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: Results from a Breast Cancer Family Registry case-control mutation-screening study. Breast Cancer Res. 2014, 16, R58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renault, A.L.; Lesueur, F.; Coulombe, Y.; Gobeil, S.; Soucy, P.; Hamdi, Y.; Desjardins, S.; Le Calvez-Kelm, F.; Vallee, M.; Voegele, C.; et al. ABRAXAS (FAM175A) and Breast Cancer Susceptibility: No Evidence of Association in the Breast Cancer Family Registry. PLoS ONE 2016, 11, e0156820. [Google Scholar] [CrossRef]
- Park, D.J.; Lesueur, F.; Nguyen-Dumont, T.; Pertesi, M.; Odefrey, F.; Hammet, F.; Neuhausen, S.L.; John, E.M.; Andrulis, I.L.; Terry, M.B.; et al. Rare mutations in XRCC2 increase the risk of breast cancer. Am. J. Hum. Genet. 2012, 90, 734–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, D.J.; Tao, K.; Le Calvez-Kelm, F.; Nguyen-Dumont, T.; Robinot, N.; Hammet, F.; Odefrey, F.; Tsimiklis, H.; Teo, Z.L.; Thingholm, L.B.; et al. Rare mutations in RINT1 predispose carriers to breast and Lynch syndrome-spectrum cancers. Cancer Discov. 2014, 4, 804–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dataset | Participant | Signed Consent Form 1 | Genetic Test | Questionnaire 3 | |||
---|---|---|---|---|---|---|---|
Negative 2 | Positive | Pending | Sent 4 | Completed 5 | |||
Prospective | Index case | 4431 | 1933 | 456 | 2042 | 417 | 151 |
Relative (all) | 306 | 55 | 28 | 223 | 246 | 145 | |
1st degree | 138 | 20 | 22 | 96 | 111 | 64 | |
2nd degree | 69 | 16 | 2 | 51 | 60 | 36 | |
Cousin | 99 | 19 | 4 | 76 | 75 | 45 | |
Retrospective | Index case | 71 | n/a | 71 | n/a | 71 | 42 |
Relative (all) | 80 | 31 | 16 | 33 | 78 | 55 | |
1st degree | 34 | 13 | 14 | 7 | 33 | 22 | |
2nd degree | 16 | 7 | 2 | 7 | 15 | 11 | |
Cousin | 30 | 11 | 0 | 19 | 30 | 22 |
Dataset | TUMOSPEC Panel | All 1 | Women with Cancer | Men with Cancer | ||||
---|---|---|---|---|---|---|---|---|
N (%) | N | Mean Age at Diagnosis of First Cancer | Range | N | Mean Age at Diagnosis of First Cancer | Range | ||
Prospective | All | 4431 (100) | 3983 | 47.5 | (12–86) | 75 | 60.5 | (30–88) |
Negative | 1933 (43.6) | 1669 | 47.4 | (18–86) | 26 | 61.9 | (35–88) | |
Negative and BRCA1/2 neg. | 432 (9.7) | 340 | 49.2 | (21–76) | 5 | 55.2 | (38–72) | |
Negative and BRCA1 pos. | 32 (0.7) | 24 | 46.7 | (31–67) | 0 | - | - | |
Negative and BRCA2 pos. | 24 (0.5) | 20 | 42.1 | (29–67) | 0 | - | - | |
Negative, BRCA1/2 pending | 1445 (32.6) | 1285 | 47.0 | (18–86) | 21 | 63.5 | (35–88) | |
Positive | 456 (10.3) | 415 | 46.9 | (17–84) | 8 | 54.4 | (30–72) | |
Positive and BRCA1/2 neg. | 421 (9.5) | 384 | 46.9 | (17–84) | 8 | 54.4 | (30–72) | |
Positive and BRCA1 pos. | 14 (0.3) 2 | 12 2 | 47.6 | (27–66) | 0 | - | - | |
Positive and BRCA2 pos. | 19 (0.4) 2 | 172 | 47.3 | (28–81) | 0 | - | - | |
Positive, BRCA1/2 pending | 3 (0.1) | 3 | 43.0 | (25–59) | 0 | |||
Pending result | 2042 (46.1) | 1899 | 47.8 | (12–85) | 41 | 60.8 | (34–81) | |
Retrospective | All (positive) | 71 (100) | 67 | 47.7 | (26–86) | 2 | 48.5 | (32–65) |
Positive and BRCA1/2 neg. | 70 (98.6) | 66 | 47.8 | (26–86) | 2 | 48.5 | (32–65) | |
Positive and BRCA1 pos. | 0 (0) | 0 | - | - | 0 | - | - | |
Positive and BRCA2 pos. | 1 (1.4) | 1 | 41.0 | n/a | 0 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesueur, F.; Eon-Marchais, S.; Bonnet-Boissinot, S.; Beauvallet, J.; Dondon, M.-G.; Golmard, L.; Rouleau, E.; Garrec, C.; Martinez, M.; Toulas, C.; et al. TUMOSPEC: A Nation-Wide Study of Hereditary Breast and Ovarian Cancer Families with a Predicted Pathogenic Variant Identified through Multigene Panel Testing. Cancers 2021, 13, 3659. https://doi.org/10.3390/cancers13153659
Lesueur F, Eon-Marchais S, Bonnet-Boissinot S, Beauvallet J, Dondon M-G, Golmard L, Rouleau E, Garrec C, Martinez M, Toulas C, et al. TUMOSPEC: A Nation-Wide Study of Hereditary Breast and Ovarian Cancer Families with a Predicted Pathogenic Variant Identified through Multigene Panel Testing. Cancers. 2021; 13(15):3659. https://doi.org/10.3390/cancers13153659
Chicago/Turabian StyleLesueur, Fabienne, Séverine Eon-Marchais, Sarah Bonnet-Boissinot, Juana Beauvallet, Marie-Gabrielle Dondon, Lisa Golmard, Etienne Rouleau, Céline Garrec, Mathilde Martinez, Christine Toulas, and et al. 2021. "TUMOSPEC: A Nation-Wide Study of Hereditary Breast and Ovarian Cancer Families with a Predicted Pathogenic Variant Identified through Multigene Panel Testing" Cancers 13, no. 15: 3659. https://doi.org/10.3390/cancers13153659
APA StyleLesueur, F., Eon-Marchais, S., Bonnet-Boissinot, S., Beauvallet, J., Dondon, M. -G., Golmard, L., Rouleau, E., Garrec, C., Martinez, M., Toulas, C., Nguyen, T. D., Brayotel, F., Crivelli, L., Maugard, C. M., Bubien, V., Sevenet, N., Gesta, P., Chieze-Valero, S., Nambot, S., ... Caron, O. (2021). TUMOSPEC: A Nation-Wide Study of Hereditary Breast and Ovarian Cancer Families with a Predicted Pathogenic Variant Identified through Multigene Panel Testing. Cancers, 13(15), 3659. https://doi.org/10.3390/cancers13153659